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Abstract 
This paper summarizes research intended to develop a pedagogically friendly 

argument that establishes the fact that ( ), xx e  is never a rational point in the 

plane. A point ( ) 2,x y ∈  is rational if both x and y are rational. Applying a 
method based on Hurwitz polynomials, the research establishes simple irra-
tionality proofs for nonzero rational powers of e and logarithms of positive 
rationals (excluding one). 
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1. Introduction 

A certain class of polynomials with integer coefficients displays divisibility prop-
erties which can be used to establish irrationality. The purpose of the present re-
search is to exploit this property by evaluating such polynomials at zero and at the 
base of natural logarithms e, which, for the sake of contradiction, is assumed to be 
rational. Subsequent algebraic manipulations lead to a divisibility argument which 
forces a contradiction by producing an “integer” strictly between zero and one. 
This is a well-worn path in demonstrating irrationality, but the specifics for de-
veloping such contradictions are highly dependent on the number under considera-
tion. Historically, irrationality proofs for the powers of e were developed for spe-
cific integer exponents. Euler [1] proved that both e and e2 were irrational in 1737, 
Liouville showed that e4 was irrational in 1840, and Hurwitz [2] proved that e3 
was likewise irrational in 1891, however this was preceded by a comprehensive 
answer to all questions of this type when the transcendence of e  

was established by Hermite [1] [3] in 1873. Observe that if 
m
ne ∈ , then 

nm
mne e

 
= ∈  

 


, hence e solves 0m mx e− = , contradicting transcendence. The  
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method below establishes the same result, namely the irrationality of all non-zero 
powers of e, more simply by avoiding the necessity of showing the transcendence 
of e. 

2. Overview 

Given some α ∈  which is to be shown irrational, construct the following po-
lynomial function with the property that it can be translated from zero to α  sub-
ject to a controllable error by a simple exponential transformation. Let 
( ) [ ]G x x∈  be the polynomial. Specifically, write ( ) ( ) ( )e 0 errorxG G x= + , 

where the error term can be dominated by a fixed multiple β  of the degree of 
( )G x . The trick in making this work is to define ( )G x  so that it meshes with the 

pattern by which the Maclaurin expansion for ex  restores powers of x  to 
( )0G . The exact manner in which this can be done is the subject of a lemma be-

low. The exponential transform is due to Hermite. 
The form of ( )G x  that emerges from the preceding considerations turns out to 

be the sum of the derivatives of a more basic polynomial, the Hurwitz polynomial 
of type p , defined as ( ) ( )1 ppg x x x α−= − . The primality of p  is not required 
by the definition, but in the sequel it will be taken to be prime. So define  

( ) ( ) ( )deg
0

g n
nG x g x
=

= ∑ , where the sum runs from 0 to 2 1p − , since all higher der- 

ivatives vanish. Applying Leibnitz’ Rule for differentiating products to  

( ) ( )1 ppg x x x α−= − , obtain ( ) ( ) ( )( ) ( )( )( )1
0

kn k pnn p
k

n
g x x x

k
α

−−
=

 
= − 

 
∑ . Hence 

( ) ( )( ) ( )( )( )2 1 1
0 0

kn k pp n p
n k

n
G x x x

k
α

−− −
= =

  
= −  

  
∑ ∑ , which is truly a cumbersome  

expression to work with. 
There is some computational relief provided by the fact that only ( )G x  needs 

to be evaluated at the zeroes of ( )g x , namely 0 and α . Evaluation at these two 
points automatically eliminates a considerable number of terms. 

The principal steps in the argument are: 
1) Assume for the sake of contradiction that α +∈ , say r sα = , where 

,r s∈  and ( )gcd , 1r s =  

2) Show ( )1ps G α−  is an integer divisible by !p  
3) Show ( )0ps G  is an integer divisible by ( )1 !p −  but not by !p  
(iv) Show ( ) ( ) ( )e 0 2 1G G pα α β− ≤ −  recall that the degree of ( )g x  is 

2 1p −  

4) If eα +∈ , say e u
v

α = , where ,u v∈  and ( )gcd , 1u v = , then show 

( ) ( ) ( )0 2 1uG vG p vα β− ≤ −  
5) Show ( ) ( ) ( )0 0 2 1p ps uG vG s p vα β< − ≤ −  

6) Show ( )
( )

2 1
lim 0

1 !

p

p
s p v

p
β

→∞

−
=

−
 

7) Establish contradiction by concluding 
( ) ( )
( )

0
1 !

ps uG vG
p

α−

−
 is a positive  
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integer strictly less than one for large p  
This contradiction yields the main theorem which asserts that α  and eα  

cannot both be positive rationals. This theorem is used by showing that if one 
is rational, the other is not. Interesting results flow immediately as corolla-
ries. All positive rational powers of e must be irrational. Natural logarithms 
of positive rational numbers except 1 cannot be rational. 

3. Main Theorem 

Validation of the technical details of the preceding program follow. It is assumed  

throughout that ( )g x  and ( )G x  are as defined above, 
r
s

α = , with ,r s∈   

and ( )gcd , 1r s = , and p  is a prime. 
Lemma 1: ( )1ps G α−  is an integer divisible by !p . 

Proof: Setting x α=  in ( ) ( )( ) ( )( )( )2 1 1
0 0

kn k pp n p
n k

n
G x x x

k
α

−− −
= =

  
= −  

  
∑ ∑   

would eliminate all terms except those where ( ) px α−  has been differen-
tiated p  times. The surviving terms would be of the form 

( )
( ) ( ) 11 !

!
1 !

p kp k p
p

p p k
α − −+ − 

  − − 
, corresponding to the situation where 1px −  has  

also been differentiated k  times. Hence 

( ) ( )
( ) ( ) 1

0

1 !
!

1 !
p kp

k

p k p
G p

k p k
α α − −

=

+ − 
=   − − 

∑ . 

Simplifying, it is clear that 

( ) ( ) ( )
( ) ( ) ( ) ( )1 11 1

0 0

1! 1 !
! !

! ! 1 !
p k p kp p

k k

pp k p
G p p k

kp k p k
α α α− − − −− −

= =

−+ −  
= = +  − −  

∑ ∑ . 

Rewriting 
r
s

α = , evidently ( ) ( )
1

11 1
0

1
!

p k
pp p
k

p rs G p k s
k s

α
− −

−− −
=

−   = +    
  

∑ ,  

which is an integer divisible by !p , since it divides ( )!p k+  for 0k ≥  and  
1p

k
− 

 
 

 is always an integer, establishing the result.   

Lemma 2: ( )0ps G  is an integer divisible by ( )1 !p −  but not by !p  for 
sufficiently large p. 

Proof: Setting 0x =  in ( ) ( )( ) ( )( )( )2 1 1
0 0

kn k pp n p
n k

n
G x x x

k
α

−− −
= =

  
= −  

  
∑ ∑   

would eliminate all terms except those where 1px −  has been differentiated 
1p −  times. The surviving terms would be of the form 

( ) ( ) ( )
1 !1 ! 0

!
p kp k pp

k p k
α −+ − 

− −  − 
, corresponding to the situation where  

( ) px α−  has also been differentiated k  times. Hence 

( ) ( ) ( ) ( )0

1 !0 1 !
!

p kp
k

p k pG p
k p k

α −

=

+ − 
= − −  − 

∑ . Simplifying further it follows 
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( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

0

0

1 ! !0 1 ! 1
1

tha
! ! !

1

t

1 !

p k p kp
k

p k p kp
k

p k pG p
p k p k

p
p k

k

α

α

− −

=

− −

=

+ −
= − −

− −

 
= − + −  

 

∑

∑
. Rewriting 

r
s

α =  

as above, clearly ( ) ( ) ( )00 1 1 !
p kp kpp p

k

p rs G p k s
k s

−−

=

   = − + −    
  

∑ . Evidently 

( )1 !p −  divides ( )0ps G , since it divides ( )1 !p k+ −  for 0k ≥  and 
p
k

 
 
 

 is  

always an integer. On the other hand, for the sake of contradiction, if !p  were to 
divide ( )0ps G , then it would divide 

( ) ( ) ( ) ( ) ( ) ( )10 1 1 ! 1 1 !
0

p kp k p ppp p
k

p prs G p k s p r
k s

−−

=

      − − + − = − −      
        

∑ . 

This is absurd, since it cannot divide the right hand side if p  is chosen greater 
than r . Recall α , hence r , is fixed, but p  can be an arbitrary prime. The 
contradiction establishes that !p  does not divide ( )0ps G  and the result follows. 
  

Lemma 3.1: Let ( )k xε  denote the infinite series 

( ) ( ) ( )
2

1

!
1 1 2 !

j

j

x x k x
k k k k j

∞

=
+ + =

+ + + +∑
. Then ( ) ( )

!

k

k k
x x E x
k
ε = , 

where 

( ) 1 !

j

k j k

xE x
j

∞

= +
= ∑ . 

(Note that ( )kE x  is the series for ex  with the first 1k +  terms removed.) 

Proof: Observe that 
( ) ( )1 1

!
! ! !

k j j k

j j

x k x x
k k j k j

+
∞ ∞

= =

 
= + + 

∑ ∑ , which is equivalent to 

1 !

j

j k

x
j

∞

= +∑ .   

Lemma 3.2: Suppose ( ) [ ]1 0
n

ng x c x c x c x= + + + ∈ 

. Let ( )G x  be the 
corresponding sum-of-derivatives polynomial. Then 

( ) ( ) ( )00 nx k
k kke G G x c x xε

=
= +∑ , with ( )k xε  as in Lemma 3.1. 

Proof: By induction on deg g . If deg 0g = , then ( ) 0g x c= . There is only 
the zeroth derivative to sum, so ( ) ( ) 00G G x c= = . Since ( )0 e 1xxε = − .,  

evidently ( ) ( )( ) ( )0 0
0 0 0 0 00e 0 1x

kG x c c c x xε ε
=

= + = +∑ , establishing the base case. 

The induction hypothesis is that for any polynomial 
( ) 1

1 1 0
n

nx c x c x cφ −
−= + + +

 of degree 1n − , we have 

( ) ( ) ( )1
0e 0 nx k

k kkx c x xε−

=
Φ = Φ +∑ . It is to be shown that for a polynomial of de- 

gree n , namely ( ) ( ) n
ng x x c xφ= + , ( ) ( ) ( )0e 0 nx k

k kkG G x c x xε
=

= +∑  it is true 

that. Now ( ) ( ) ( )( )
0

jn n
njG x x c x

=
= Φ +∑ , since the only derivatives of ( )G x   

missing from ( )xΦ  are those attributable to the leading monomial n
nc x . Then 

( ) ( )0 0 ! nG n c= Φ + , as all the derivatives except the thn  of n
nc x  evaluate to 
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zero at zero. Forming ( ) ( )e 0 e 0 !x x
nG n c= Φ +   , we have 

( ) ( ) ( )1
0e 0 ! e !nx k x

n k k nkn c x c x x n cε−

=
Φ + = Φ + +   ∑  by the induction hypothesis. 

Observe that ( )
2 1

e ! 1 !
1! 2! ! 1 !

n n
x

n n
x x x xn c n c

n n

+   
= + + + + + +    +    

  . But 

( )
2

1 21 ! 1 ! !
1! 2! !

n
n n n

n n n n n n
x x x n c c x nc x n n c x n c x n c

n
− − 

+ + + + = + + − + + 
 



, which 

is precisely ( )( )
0

jn n
nj c x

=∑ . It follows that 

( ) ( ) ( )( ) ( ) ( )1
0 0e 0 !

jn nx n k
n k k n nj kG x c x c x x E x n cε−

= =
 = Φ + + +  ∑ ∑  

where ( ) 1 !

j

n j n

xE x
j

∞

= +
= ∑  as in Lemma 3.1. But the term 

( ) ( ) ( )! !
!

n
n

n n n n n n
xE x n c x n c c x x
n
ε ε

 
= = 
 

 by Lemma 3.1, hence it can be absor- 

bed and evidently ( ) ( ) ( )1
0 0!n nk k

k k n n k kk kc x x E x n c c x xε ε−

= =
+ =∑ ∑ . Recognizing 

that ( ) ( )( ) ( )0

jn n
njx c x G x

=
Φ + =∑ , it is now clear that 

( ) ( ) ( )0e 0 nx k
k kkG G x c x xε

=
= +∑ , as required.   

Lemma 3.3: With the notation of Lemma 3.2, for a given ( ) [ ]g x x∈  of de- 

gree n  and fixed x , the function ( ) ( )0 00
n k

k kkn c x xε ε
=

= ∑  is ( )O n . 

Proof: It may be assumed that the fixed 0x ≠ . From Lemma 3.1 

( ) ( ) ( ) ( )0 0 0
n n nk k k

k k k k k kk k kn c x x c x x c x xε ε ε ε
= = =

= ≤ =∑ ∑ ∑ . Note that 

( )kE x < ∞  since ( )kE x  is dominated by the absolutely convergent series xe . 

Then ( ) ( )!
k kk

kx E x
x

ε =  is bounded, and hence 

( ) ( )0 maxn k k
k k k n k kk c x x n c x xε ε≤=

 ≤ ⋅  ∑ . It follow that ( )n nε β≤ , 

where ( )max k
k n k kc x xβ ε≤

 =   .   

Lemma 3.4: With the notation above, ( ) ( ) ( )e 0 2 1G G pα α β− ≤ −  for some 
fixed 0β > . 

Proof: Lemma 3.2 shows ( ) ( ) ( )0e 0 nx k
k kkG G x c x xε

=
− = ∑ . Hence for x α=  it 

must be that ( ) ( ) ( ) ( ) ( )0e 0 2 1n k
k kkG G c p pα α α ε α ε β

=
− = = ≤ −∑  by Lemma 

3.3, since the degree of the Hurwitz polynomial ( )g x , which defines ( )G x  via 
summation of derivatives, is 2 1p − . The result is now immediate.   

Lemma 4: If eα +∈ , say e u
v

α = , where ,u v∈  and ( )gcd , 1u v = , then 

( ) ( ) ( )0 2 1uG vG p vα β− ≤ −  Moreover, if 
r
s

α =  as above, then  

( ) ( ) ( )0 0 2 1p ps uG vG s p vα β< − ≤ −  for sufficiently large p. 

Proof: From Lemma 3.4, ( ) ( ) ( ) ( ) ( )e 0 0 2 1uG G G G p
v

α α α β− = − ≤ − , so 
( ) ( ) ( )0 2 1uG vG p vα β− ≤ − . Hence (since 0s > ) 
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( ) ( ) ( )0 2 1p ps uG vG s p vα β− ≤ −  Note that ( )0ps uG  is an integer that is 
not divisible by !p  for sufficiently large p  by Lemma 2, but that 

( )ps vG α  is an integer that is divisible by !p  for any large p  by Lemma 1. 
Here p  can be chosen large enough to not appear in any prime factorization 
of s . It follows that ( ) ( )0ps uG vG α−  would be a nonzero integer, estab-
lishing the claim.   

Theorem 1: If α +∈  then eα +∉ . 
Proof: To the contrary, suppose α +∈  and eα +∈ , then by the lemmas 

above, ( ) ( )0ps uG vG α−  would be an integer, and for sufficiently large p  
would satisfy ( ) ( ) ( )0 0 2 1p ps uG vG s p vα β< − ≤ − . In the expression on the 
right hand side, once α  is fixed the terms , ,s u v , and β  are constant. 
Claim: 

( )
( )

2 1
lim 0

1 !

p

p
s p v

p
β

→∞

−
=

−
. The expression can be rewritten 

( )
2

22 1
2 ! 1

ps p s v
p p

β
− −

⋅ ⋅
− −

 and it is then apparent that the limit must be 

( )
2

22 lim
2 !

p

p
ss v

p
β

−

→∞⋅
−

, which is zero due to the factorial dominance over the 

exponential. So choose a prime 0p  for which ( )
( )

2 1
1

1 !

ps p v
p

β −
<

−
. Now 

( ) ( )
( )

0

0

0
0 1

1 !

ps uG vG
p

α−
< <

−
.  But since ( )0 1 !p −  divides both ( )0G  and 

( )G α  but does not, by virtue of its selection, divide ,s u , or v , it is clear that 

( ) ( )
( )

0

0

0
1 !

ps uG vG
p

α−

−
 is an integer. Moreover, it is apparently an integer strictly  

between zero and one, which is absurd. The contradiction establishes the theorem. 
  

4. Conclusions 

Based on the preceding Theorem 1, the following conclusions are immediate. 
Corollary 1: The nonzero rational powers of e  are irrational 
Proof: For the positive rational powers the statement is true immediately 

by  

Theorem 1. If 0γ > , then e γ−  cannot be of the form 
r
s

 with ,r s +∈ , 

otherwise e s
r

γ = , contrary to Theorem 1.   

Corollary 2: The natural logarithm of a positive rational number is irrational 
Proof: By the contrapositive of Theorem 1, If lne γγ =  is rational (necessarily 

positive), then ln γ  is irrational.   
Corollary 3: If ln lnγ δ+  is rational, then either γδ  is irrational or 1γδ =  
Proof: If ln lnγ δ+  is a nonzero rational, then ( )lnln lne e γδγ δ γδ+ = =  is irra-

tional. If ln ln 0γ δ+ = , then 1γδ = .   
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