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Abstract 
The induced polarization response of an environment presenting cylindrical 
layers was obtained. The fractal model for complex resistivity was employed 
as an intrinsic property of the polarizable layers. The influence of the model 
fractal parameters on the electromagnetic response was investigated. The re-
sults demonstrated that the fractal parameters dominate the apparent resistiv-
ity phase response; measurements of the induced polarization data allow for 
the determination of the fractal properties of the environment without noti-
ceable electromagnetic coupling effects at frequencies below 104 Hz. 
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1. Introduction 

The induced polarization effect has an electrochemical origin and is usually as-
sociated with geological and biological environments [1] [2] [3]. As a conse-
quence of this effect, electrical resistivity values in these environments are com-
plex and frequency-dependent.  

In geophysics, the induced polarization method uses fact that the constituent 
parameters of rocks (conductivity and permittivity) are frequency-dependent to 
carry out prospecting activities. This method was originally applied to the pros-
pecting of disseminated ores, and has gradually evolved over the years, currently 
being used in mineral discrimination [4] and environmental studies [5] and [6]. 

The quantitative interpretation of field induced polarization data is a difficult 
task due to the fractal nature of geological environments and the inductive 
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coupling caused by electromagnetic interactions between the environment and 
the electrode arrays used for current injection and potential measurements. The 
interpretation of these kinds of data requires a physical model to explain the be-
havior of a polarizable environment in an ample frequency range. 

Several relaxation models have been proposed to describe the electrical pola-
rization of rocks, in the works of Debye [7], Cole-Cole [8], Davidson and Cole 
[9] and Dias [10], each taking into account a certain specific characteristic for a 
given frequency range, limited to 102 Hz. Relaxation models demonstrate the 
general behavior of the amplitude spectrum and the complex resistivity phase 
(conductivity) at different frequencies for different types of materials. The most 
widely used model is the Cole-Cole model, which does not, however, consider 
the fractal nature of the environment.  

Rocha [11] developed a model that considers the fractal effects of porous sur-
faces and includes rock volume response, namely the fractal model for complex 
resistivity. This model accounts for the electrical properties of rocks at a higher 
frequency range than traditional models. The introduction of the roughness fac-
tor in this model allows for the investigation of rock texture, which is very im-
portant when attempting to describe the electrical behavior of rocks. This means 
that parameters representing the fractal geometry of the environment exist, 
which may be, in turn, related to rock texture. With this, it is possible to obtain 
important and accurate geological information of the subsurface from electrical 
data obtained on the terrain surface. 

Rocha [11] and Rocha & Habshy [3] determined the response of a terrain 
presenting three horizontal layers, with the second layer polarizable with its in-
trinsic properties given by the fractal model for complex resistivity of [11] and 
analyzed the induced polarization response. These authors observed that the pa-
rameters related to the fractal geometry of the model dominate the phase re-
sponse of the apparent complex resistivity at low frequencies, and also found 
that the fractal exponent does not depend on the electrical properties of the fluid 
filling the rock cavities. 

The fact that the fractal exponent is independent from the electrical resistivity 
of the percolating solutions avoids any influence of the invasion zone in the 
electric profiling of wells. Thus, it is interesting to investigate the response of a 
polarizable medium in well environments by applying the fractal model for 
complex resistivity. 

Farias et al. [12] [13] simulated the fractal model for complex resistivity as 
being an intrinsic electrical property of horizontal environments with superficial 
and volumetric formations (2-D and 3-D geological models), with applications 
for both contaminated and non-contaminated environments. The results dem-
onstrated that anomalies are well-detected and observable by images of the pa-
rameter distribution of the fractal model, being an alternative in the detection of 
anomalies in the geologic environment, such as in the study of environmental 
contamination. The fractal complex resistivity model, however, has not yet been 
applied as an intrinsic electrical property in the analysis of the polarization re-
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sponse of cylindrical environments. 
The main aim of electrical well profiling is to estimate the electrical resistivity 

of the geological formation where the well is inserted. However, the response of 
the resistivity profiling is influenced by the resistivity of the formation itself, as 
well as by the invaded zone, which is generated during the drilling process. 
Therefore, the effects of this invaded area should be avoided. 

In the present study, the fractal model for complex resistivity [11] is employed 
as an intrinsic electrical property of an environment with cylindrical layers (the 
well, invaded zone and formation) to evaluate the influence of the parameters of 
the fractal model in the induced polarization response in this geological geome-
try. The model parameters represent the fractal geometry of the environment 
which, as presented previously, can be related to the texture of the rocks in the 
analyzed environment. 

2. The Fractal Model 

Representing the time dependence of the electric field as e−iωt, the expression 
proposed by [4] for the complex resistivity ( )ρ ω  is: 

( )

( )

11 1 11
1

o h

r

m u
v

ρ ω ρ γ

δ

  
  
  = − −

+  +  +  

                 (1) 

where oρ  is the DC resistivity of the material; m is the chargeability defined by 
[14]; δr is the parameter that relates the resistivity of the conductive grains 
blocking the pores of the geologic environment to the DC resistivity of the rock 
matrix; ( )1 1h oiγ ωτ= + ; ( )1u i vωτ= + ; ( )fv i

η
ωτ

−
= ; τ is the relaxation 

time constant related to the double-layer oscillations; τo is the relaxation time 
constant associated with the material as a whole; τf is the time of fractal relaxa-
tion, related to the time involved in the charge and energy transfer in the rough 
interfaces; and η is the parameter directly related to the fractal geometry of the 
environment, determined by the type and distribution of the mineral that causes 
the polarization at low frequencies. 

Some typical values of the fractal model parameters for complex resistivity 
cited by [11], are: 210  moρ = Ω ⋅ ; 0,5m = ; 1rδ = ; 0,5η = ; 610  sτ −= ; 

310  sfτ
−=  and 1210  soτ

−= . 

3. Induced Polarization Response in a Stratified Cylindrical  
Environment 

Normally a four-electrode configuration is used to measure the complex resistiv-
ity of a geological environment. An electric current is introduced into the envi-
ronment via an electrode pair (A and B) and the voltage is measured by the oth-
er electrode pair (M and N). Figure 1 illustrates the four-electrode configuration 
used in the present study to determine the apparent resistivity on an environ-
ment presenting cylindrical layers. 
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Figure 1. Illustration of the four-electrode configuration applied to a strati-
fied cylindrical environment. 

 
To calculate the potential measured by the receiver electrode pair, the elec-

tromagnetic problem for a four-electrode configuration must be solved. From 
Maxwell equations and assuming a time dependence of the i te ω−  type, we have: 

E i Hωµ∇× =                            (2) 

SH i E E Jωε σ∇× = − + +                       (3) 

where SJ  is the current density due to the source; ε is the effective dielectric 
constant and μ is the permeability of the environment and is approximated by 
the permeability of vacuum. Combining the conductivity ( )σ  and displace-
ment factor ( )iωε , the current density can be denoted as: 

J Eσ= ∗                              (4) 

and (3) can be denoted as: 

SH J J∇× = +                           (5) 

When applying the divergence operator to (2) and (5), the following equations 
are obtained: 

0H∇ ⋅ =                              (6) 

SJ J∇ ⋅ = −∇ ⋅                            (7) 

where the left side of (7) is a result of the charge accumulation caused by the in-
jected current. When observing (6), the Maxwell equations can be displayed in 
terms of a vector potential A and scalar potential φ  

H A= ∇×                             (8) 

oE i Aωµ φ= −∇                           (9) 

observing (4), (5), (8) and (9), and considering the condition 
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A σ φ∇ ⋅ = − ∗                           (10) 

where iσ σ ωε∗ = −  is the complex conductivity. Thus, the wave equations be-
low are obtained: 

2 2
SA k A J∇ + = −                         (11) 

2 2 1
Sk Jφ φ

σ ∗∇ + = ∇ ⋅                       (12) 

with 2k iωµσ ∗= . Specifying the current density in cylindrical coordinates, with 

( ) ( ) ( )1 2
S z

I r u z z u z z
J e

r
δ − − −  = −                (13) 

where u is a Heaviside function, I is the current intensity, z1 and z2 are the posi-
tions of the current electrodes (A e B) and ez is the unit vector in the z direction. 

Considering (8), (9) and (10) and the fact that the vector potential is of the 
(0,0,Az) form, the following equations are obtained: 

2

2
1 z

z o z
AE i A
z

ωµ
σ ∗

∂
= +

∂
                     (14) 

zAHθ ρ
∂

=
∂

                           (15) 

With 1zA  being the solution for (11) in the internal region of the well, then 

( ) ( ) ( )1 22 2
1 1 1z z

I r u z z u z z
A k A

r
δ − − −  ∇ + = −            (16) 

is valid for r a≤ , where a is the well radius. If 2zA  is the solution to (11) in 
the invaded zone, then 

2 2
2 2 2 0z zA k A∇ + =                        (17) 

is valid for a r b≤ ≤ , where b is the radius of the invaded zone. In the same 
manner, regarding the formation, with a solution 3zA , the following equation is 
obtained: 

2 2
3 3 3 0z zA k A∇ + =                        (18) 

for r b≥ . The tangential components of E  and H  are continuous in the in-
terfaces, or 

1 2 1 2   and      in   z zE E H H r aθ θ= = =  

and 

2 3 2 3   and      in   z zE E H H r bθ θ= = =  

thus, by using (14) and (15) the boundary conditions to solve (16), (17) and (18) 
are obtained.  

2 2
1 2

1 22 2
1 1z z

o z o z
r a r a

A Aiw A iw A
z z

µ µ
σ σ∗ ∗

= =

   ∂ ∂
+ = +   ∂ ∂   

         (19) 

1 2z z

r a r a

A A
r r= =

∂ ∂   =   ∂ ∂   
                      (20) 
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22
321

21 32 2
1 1 zz

o z o z
r b r b

AAiw A iw A
z z

µ µ
σ σ∗ ∗

= =

   ∂∂
+ = +  ∂ ∂   

        (21) 

32 zz

r b r b

AA
r r= =

∂∂    =   ∂ ∂   
                     (22) 

In order to solve Equations (16), (17) and (18) subject to the boundary Equa-
tions (19), (20), (21) and (22), it is convenient to introduce the Green ( ),G r z z′−  
equation, that satisfies the following equations: 

( ) ( )2 2
1 1 1    for   z z

I r z z
G u G r a

r
δ δ ′−

∇ + = ≤              (23) 

2 2
2 2 2 0   for   z zG u G a r b∇ + = ≤ ≤                  (24) 

2 2
3 3 3 0    for    z zG u G r b∇ + = ≥                    (25) 

subject to the boundary conditions below: 
2 2

1 2
1 22 2

1 1z z
o z o z

r a r a

G Giw G iw G
z z

µ µ
σ σ∗ ∗

= =

   ∂ ∂
+ = +   ∂ ∂   

          (26) 

1 2z z

r a r a

G G
r r= =

∂ ∂   =   ∂ ∂   
                      (27) 

22
321

21 32 2
1 1 zz

o z o z
r b r b

GGiw G iw G
z z

µ µ
σ σ∗ ∗

= =

   ∂∂
+ = +  ∂ ∂   

         (28) 

32 zz

r b r b

GG
r r= =

∂∂    =   ∂ ∂   
                      (29) 

The solutions to Equations (23), (24) and (25) are given by: 

( ) ( ) ( ) ( ) ( )
1

1 1 10
cos d

4π

iu R

z z o r z o r z z
IeG A k K k r B k I k r k z z k

R
∞− ′= + + −  ∫   (30) 

Since 1zG  is regular in 0r = , then ( ) 0zA k = , thus: 

( ) ( ) ( )
1

1 10
cos d

4π

iu R

z z o r z z
IeG B k I k r k z z k

R
∞− ′= + −∫           (31) 

Using the identity (15) [15]: 

( ) ( )
1

10

2 cos d
π

iu R

o r z z
e K k r k z z k

R
∞

′= −∫  

in Equation (31), the following equation is obtained: 

( ) ( ) ( ) ( ) ( )1 12 0 0
cos d cos d

2πz o r z z z o r z z
IG K k r k z z k B k I k r k z z k

∞ ∞− ′ ′= − + −∫ ∫  (32) 

valid for r a≤ ; 

( ) ( ) ( ) ( ) ( )2 2 20
cos dz z o r z o r z zG C k K k r D k I k r k z z k

∞
′= + −  ∫      (33) 

valid for a r b≤ ≤ ; and 

( ) ( ) ( )3 30
cos dz z o r z zG E k K k r k z z k

∞
′= −∫              (34) 

in r b≥ , where oI  and oK  are modified Bessel functions of order zero of the 
first and second species, respectively, and ( )1, 2,3jrk j =  and R are given by: 
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( )22 2 2      jr z jk k u R r z z′= − = − − . 

The vector potential function ( ),jA r z  is determined by the integral of the 
Green function ( )lG : 

( ) ( )1

2
, , d

z
l jz

A r z G r z z z′ ′= −∫                   (35) 

Imposing boundary conditions (26)-(29) in Equations (32), (33) and (34), 
functions B, C, D and E are determined. In this way, the following system of eq-
uation is obtained: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2
2 21 1

1 1 2 2 2 12
2

1 1 1 2 1 2 1 2 1 1 12

2 22
2 2 2 3 3

3

2 1 2 1 2 3 1 3

;
2π

;
2π

0;

0

r
r o r r o r o r o r

r r r r r r r

r o r o r r o r

r r r r r

Ikk I k a B k K k a C I k a D K k a

Ik I k a B k K k a C I k a D k K k a

k K k b C I k b D k K k b E

e
k K k b C I k b D k K k b E

σ
σ

σ
σ

∗

∗

∗

∗

− + =  

−
+ − =  

+ − =  

− − =  

 

to calculate the induced potential difference measured by electrodes M and N 
(Figure 1). Thus only the vector potential ( )1 ,A r z  must be obtained, which is 
associated with the function ( )zB k . Solving the above system, the following 
equations are obtained: 

( )
( )1 1 2 22

3 1 4 2

2π
z

I F H F H
B k

F H F H

+
=

+
                 (36) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2
1 1 1 2 1 1 2
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2 1 1 2 1 1 2

12
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3 1 1 2 1 1 2
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1 2
4 1 1 2 1 1 2

12

32
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r
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r
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r

r
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r

r
r o r o r r

r

kF K k a K k a K k a K k a
k

kF K k a I k a K k a I k a
k

kF I k a K k a I k a K k a
k

kF I k a I k a I k a I k a
k

kH K k b I k b K k b I k b
k

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

= −

= +

= +
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= +

( ) ( ) ( ) ( )32
2 2 1 3 1 2 3

23

r
o r r r o r

r

kH K k b K k b K k b K k b
k

σ
σ

∗

∗= −

 

When combining Equations (32) and (35), ( )1 ,A r z  can be written as: 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 120

d, sen sen
2π

z
o r z o r z

z

kIA r z K k r B k I k r k z z z z
k

∞ − = + − − −    ∫  (37) 

With ( )zB k  given by Equation (36). The potential difference measured by 
electrodes M and N is given by the line integral:  

( ) ( )1, , dV r z E r z l= ∫  
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with d d zl ze= , so 

( ) ( )
2

1
1 12

1

1, , d o
AV r z E r z z iw A

z
µ

σ ∗

 ∂
= = + ∂ 
∫ ∫  

thus, 

( ) ( ) ( ) ( ) ( ) ( )
2

1
1 1 1 22 20

1

1, cos cos d
2π

r
o r z o r z

z

k IV r z K k r B k I k r z z z z k
kσ

∞

∗
 = − − − −    ∫  (38) 

The potential MNV  is calculated as follows: 

( ) ( ), ,MN o N o MV V r z V r z= −  

where or  is the radial position of the electrodes in the well and Mz  and Nz  
are the vertical positions of the potential electrodes. The integral of Equation 
(38) is solved by quadrature technique [16] or by digital filters [17]. 

A similar result was found by [18] in the study of the anisotropy effect on re-
sistivity measurements in wells and by [19] in the study of a dynamic model for 
resistivity and induced polarization data in wells. 

4. Results 

The induced polarization responses of the two geological two situations were 
obtained by applying Equation (38): 1) the environment presenting two cylin-
drical layers (the well and the formation); 2) the environment presenting three 
cylindrical layers (the well, the invaded zone and the formation). The resistivity 
of the mud for the two geometries was of 1 Ω·m when disregarding the polariza-
tion effect. The distances between the electrodes, in meters, were of 0.41, 6.1, 
20.9 and 26.59 for AM, NA, BN and BM, respectively. The default value for the 
well radius was of 10 cm. 

In order to analyze the influence of parameters η, m, δr, τ and τf of the fractal 
model, the simulations were carried out for three different values for each of 
these parameters, and when variations in a certain parameter occurred the oth-
ers assumed the typical values described above. 

4.1. Environment Presenting Two Layers 

Figure 2 displays the induced polarization response for a well with only two cy-
lindrical layers (mud and formation). The following values were used: 0.25, 0.5 
and 0.75 for the fractal exponent η; 0.25, 0.5 and 0.75 for chargeability; 0.1, 1 and 
10 for parameter δr; 10−9 s, 10−6 s and 10−3 s 3 for the time constant τ and 10−4 s, 
10−3 s and 10−2 for the fractal time constant τf. 

It is observed from Figure 2 that the fractal model for complex resistivity can 
be used in a wide frequency range at environment with cylindrical layers. As in 
the case of horizontal layers [11], the fractal parameters η, δr e τf, particularly the 
fractal exponent η dominates the phase angle response of the apparent complex 
resistivity, mainly at low frequency. According to [2] [11], this feature is very 
important because at low frequency the parameters carry information about the 
roughness of the pores of rocks. Thus, it becomes possible to investigate, from  
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(a)                                                             (b) 

 
(c)                                                             (d) 

 
(e) 

Figure 2. Amplitude and phase angle of the apparent resistivity in a well presenting mud and non-invasion of the formation. The 
formation is polarizable with the intrinsic electrical properties given by the fractal model when (a) varying η; (b) varying m; (c) va-
rying δr; (d) varying τ and (e) varying τf. 
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data of induced polarization in the frequency domain in the well, the transport 
properties of the geological environment. 

4.2. Environment Presenting Three Layers 

Three thicknesses of the invaded zone were considered when analyzing the in-
duced polarization response in an environment with three cylindrical layers 
(mud, invaded zone and formation): one, two and five times the radius of the 
well. The DC resistivity of the invaded area was presumed equal to 10 Ω·m. Fig-
ures 3-7 shows the response of the induced polarization when varying η, m, δr, τ 
and τf, respectively: 

The amplitude response of the apparent complex resistivity was affected by 
the variation of the invaded zone. However, the phase angle response was only 
slightly affected. This is similar to the results observed by [2] [3], which demon-  
 

 
(a)                                                             (b) 

 
(c) 

Figure 3. Amplitude and phase angle of the complex apparent resistivity in a well presenting mud, an invaded zone and formation. 
The invaded zone and formation are polarizable, and the intrinsic electrical properties are given by the fractal model when varying 
the parameter η. The radii of the invaded zone were (a) the same; (b) twice and (c) five times the well radius. 
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(a)                                                             (b) 

 
(c) 

Figure 4. Amplitude and phase angle of the complex apparent resistivity in a well presenting mud, an invaded zone and formation. 
The invaded zone and formation are polarizable, and the intrinsic electrical properties are given by the fractal model when varying 
the parameter m (chargeability). The radii of the invaded zone were (a) the same; (b) twice and (c) five times the well radius. 

 
strates the fractal nature of the complex resistivity, since the scale variation in 
the measurements did not change the phase angle response of the cylindrical en-
vironment. In addition, the fractal exponent parameter η, which dominates the 
response phase, is not dependent on the electrical properties of the fluids filling 
the empty spaces of the rocks present in the environment, depending only on 
their mineralogical composition. Thus, the influence of the invaded zone is at-
tenuated in the phase response. 

5. Conclusion 

The induced polarization response of a cylindrical stratified environment was 
obtained and the fractal model for complex resistivity was applied as an intrinsic 
electrical property of a polarizable environment presenting cylindrical layers. 
The influence of the model parameters on the induced polarization response was  
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(a)                                                             (b) 

 
(c) 

Figure 5. Amplitude and phase angle of the complex apparent resistivity in a well presenting mud, an invaded zone and formation. 
The invaded zone and formation are polarizable, and the intrinsic electrical properties are given by the fractal model when varying 
the parameter δr. The radii of the invaded zone were (a) the same; (b) twice and (c) five times the well radius. 

 

 
(a)                                                             (b) 
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(c) 

Figure 6. Amplitude and phase angle of the complex apparent resistivity in a well presenting mud, an invaded zone and formation. 
The invaded zone and formation are polarizable, and the intrinsic electrical properties are given by the fractal model when varying 
the time constant parameter τ. The radii of the invaded zone were (a) the same; (b) twice and (c) five times the well radius. 

 

     
(a)                                                             (b) 

 
(c) 

Figure 7. Amplitude and phase angle of the complex apparent resistivity in a well presenting mud, an invaded zone and formation. 
The invaded zone and formation are polarizable, and the intrinsic electrical properties are given by the fractal model when varying 
the fractal time constant parameter τf. The radii of the invaded zone were (a) the same; (b) twice and (c) five times the well radius. 
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investigated. The results demonstrate that, as in the case of an environment pre-
senting horizontal layers, the parameters of the fractal model dominate the re-
sponse phase of the complex apparent resistivity of the environment at low fre-
quencies, with particular emphasis on the fractal exponent parameter ( )η , the 
parameter relating the resistivity of the conductive grains that block the pores of 
the geological environment to the value of the DC resistivity of the rock matrix 
( )rδ  and the time parameter of fractal relaxation ( )fτ . Since the induced po-
larization parameters at low frequencies carry information regarding the rough-
ness of the rock pores, this result becomes important when interpreting petro-
physical data. Furthermore, as the fractal exponent depends only on the mine-
ralogical composition and the fractal geometry of the environment, the effects of 
the invaded zone in the phase response are attenuated. Additionally, the induced 
polarization data makes it possible to determine the characteristics of the envi-
ronment without noticeable electromagnetic coupling effects at frequencies low-
er than 104 Hz. 
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