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Abstract 
We assume that M is a phase space and   an Hilbert space yielded by a 
quantization scheme. In this paper we consider the set of all “experimental 
propositions” of M and we look for a model of quantum logic in relation to 
the quantization of the base manifold M. In particular we give a new 
interpretation about previous results of the author in order to build an 
“asymptotics quantum probability space” for the Hilbert lattice ( )  . 
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1. Introduction 

Geometric quantization is a scheme involving the construction of Hilbert spaces 
by a phase space, usually a symplectic or Poisson manifold. In this paper, we will 
see how this complex machinery works and what kinds of objects are involved in 
this procedure. This mathematical approach is very classic and basic results are 
in [1]. About the quantization of Kähler manifolds and the Berezin-Toeplitz 
quantization we suggest the following literature [2] [3] [4] [5] [6]. 

From another point of view we have the quantum logic. This is a list of rules 
to use for a correct reasoning about propositions of the quantum world. Fun- 
damental works in this field are [7] [8] [9]. In order to emphasize the im- 
portance of these studies we shall notice that these are used in quantum physics 
to describe the probability aspects of a quantum system. A quantum state is 
generally described by a density operator and the result used to introduce a 
notion of probability in the Hilbert space is a celebrated theorem due to Gleason 
in [10]. We will see how recent developments in POVM theory (positive 
operator-valued measure) suggest to see the classical methods of quantization as 
special cases of the POVM formalism. Regarding these developments on POVMs 
see [11] [12] [13]. 
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The principal idea that inspires this work is to consider the special case of the 
geometric quantization as a “machine” of Hilbert lattices and try to find a 
possible measurable probability space. 

2. Preliminaries 
2.1. Quantum Logic, Hilbert Lattice and Quantum Probability 

In the usual meaning of classical logic, “propositions” can be interpreted as sets 
and implications as the subset relation ⊂. Let   a family of subsets of the phase 
space M. These subsets are associated to “experimental propositions” in the 
sense of [7]. Assume that   is a partially ordered system respect the inclusion 
⊂. Assume in addition that there are two relations “meet” ∩  and “joint” ∪  
with a relation of complementation of sets ⊥. We shall take ( ), , ,⊥∪ ∩  as an 
orthocomplemented lattice. Now we shall focus on a crucial point that 
differentiates the logic associated to a classical system respect the logic associated 
to a quantum system. The main issue is the validity of the following distributive 
law: 

( ) ( ) ( ) ,X Y Z X Y X Z=∩ ∪ ∩ ∪ ∩                   (1) 

for every experimental propositions , ,X Y Z . An orthocomplemented lattice   
is said Boolean if (1) holds. 

We shall regard the classical phase space M as a Boolean algebra through the 
lattice  . 

It is then natural to ask if also a quantum space   obeys to (1). The answer 
is negative and further developments on this problem are due to [7] [8] [9], let 
us clarify the issue. We will consider orthocomplemented lattices such that: 

( ) ,Z X X X Z Z⊥⊂ ⇒ = ∩ ∪                     (2) 

with , ,X Y Z  experimental propositions of  . The identity (2) is called the 
orthomodular law and the associated lattice orthomodular. What happens is that 
orthomodular lattices are models for a quantum logic. 

We shall take as quantum space   an Hilbert space and ( )   as the 
collection of all closed linear subspaces of  . The Hilbert space   generally 
is an infinite complete function space possessing the structure of an inner 
product, a typical example is the set of square integrable functions. We notice 
that ( )   is an orthomodular lattice and we call it the Hilbert lattice. A way 
to describe ( )   is by the one to one correspondence between closed 
subspaces and projectors P such that * 2P P P= = , where *P  is the adjoint 
operator. The link between observables and projectors is guaranteed by the 
spectral theorem: 

( ],d ,A P λλ −∞= ∫                           (3) 

where A is a self-adjoint operator, { }Pλ  the associated spectral resolution of the 
identity with λ ∈  and ( ],dP λ−∞  is the Stieltjes measure associated to the 
distributional function Pλλ � . Much information about the spectral theorem 
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can be found in [14]. 
Let us denote with ,⋅ ⋅  the inner product on the Hilbert space   and 

recall that a self-adjoint operator A is said to be positive if , 0As s ≥  for all 
s∈ . In this case there is a trace class T  associated: 

( ) ,j j
j

A As s= ∑T                          (4) 

where the series (4) converges and { }js  is an orthonormal basis for  . 
Now we have a model for a quantum logic and we are able to describe it in 

terms of quantum observables. What we need to complete the description of the 
quantum picture is a notion of probability on ( )  . An answer to this problem 
was given by [15] that introduced a probability function ( ) [ ]: 0,1p →  . The 
function p is σ-additive and can be understood in the sense of [16] with 

( )( ), , p    as probability space. We shall observe that it is a non-Kol- 
mogorovian measure because the lattice ( )   is interpreted as a non-Boolean 
σ-algebra. 

A fundamental result concerned the probability measure is due to [10], this 
called the Gleason theorem. Let us recall the statement of this theorem. 

Theorem 2.1 (Gleason). Let   be a separable Hilbert space over   (or 
 ) with ( )dim 3≥ . There exists a positive semi-definite self-adjoint operator 
T of the trace class such that for all projector in ( )   

( ) ( ).p P TP= T                           (5) 

The operator T is called the von Neumann density operator. 

2.2. Geometric Quantization, Berezin-Toeplitz Quantization and  
POVM 

In this section we will examine the quantization procedures usefull to pass from 
a phase space, generally a symplectic manifold, to an Hilbert space  . Let 
( ), ,M J ω  be a complex projective compact manifold and ω  a Kähler form. 
Let ( ),L h  be an hermitian line bundle on M with associated hermitian product 
h. Let Θ  the curvature of the unique Levi-Civita connection ∇  compatible 
with L. We shall assume the prequantization condition 2iωΘ = − . Let us denote 
with X the S1-bundle of L and with ( ) ( ) ( )2 Ker bH X L X= ∂∩  the Hardy space 
where b∂  stands for the Cauchy-Riemann operator. 

We shall follow the scheme used in [17] under the action of a dG-dimensional 
compact Lie group G and a dT-dimensional torus T. We assume that these 
actions are Hamiltonian and holomorphic and that commute togheter. By virtue 
of the Peter-Weyl theorem we may unitarily and equivariantly decompose 

( )H X  over irreducible representations of G and T: 

( ) ( ) ,
ˆ ,

.
G TdTG TG

H X H X ν ν
ν ν∈ ∈

= ⊕


                     (6) 

The finite dimensionality of ( ) ,G T
H X ν ν

 is guaranteed under assumptions on 
the moment maps associated to the actions (details are in [18] and [19]). 

Another scheme of quantization is called the Berezin-Toeplitz quantization. 
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In this picture the main rule is played by the notion of covariant Berezin symbol 
σ and coherent vector. Let A be a self-adjoint operator on the space of sections 

( )0 , kH M L⊗ , we define the covariant Berezin symbol ( )Aσ  by the map: 

( ) ( )
( ) ( )

( ) ( )

,
,

,

k k

k k

Ae e
x X A x

e e

α α

α α

σ∈ =�                  (7) 

where ( )keα  is the coherent vector associated to { }\ 0Lα ∨∈  such that: 
( ) ( )( )( ), k ks e sα α π α⊗=  

for every section s, where ,⋅ ⋅  is the scalar product on the space of sections. 
The material regarding this topic can be found in [2] and [20]. 

Observation 1. In order to compare the two schemes we take in consideration 
the remarkable relation between [ ]kQ f , the well know operator of geometric 
quantization and [ ]kT f  given by 

[ ] 1 ,
2k kQ f iT f f

k
 = − ∆  

 

where ∆  is the Laplace-Beltrami operator with respect the Kähler metric. This 
suggest we have the same semi-classical behaviour as k → +∞  (the result is due 
to Tuynman in [21]). This semi-classical behaviour is understood if we put  

1k =
�

 where �  is the Plank constant and we imagine to send 0→� .  

A last mathematical formalism permits to express the Berezin-Toeplitz quan- 
tization in the modern language of POVM (that stands for Positive Operator 
Valued Measure, details on definitions are in [11] and [13]). 

More precisely, if we equip the symplectic manifold M with a Borel σ-algebra 

M  there exists a sequence of ( )k  -valued POVM { }kE  on M such that 
the Toeplitz operator associated to ( )f M∞∈  is 

[ ] d ,k kM
T f f E= ∫                         (8) 

where ( ) ( )0 , k
k H M L⊗=  . 

On the previous upshot we refer to proposition 1.4.8 of Chapter II in [13] and 
the same theme is treated in [12]. 

3. From the Geometric Quantization to QL 
3.1. Realization of the Hilbert Lattice 

The goal of this paper is a reinterpretation of main ideas of geometric 
quantization in the framework of quantum logic. The key strategy is to use the 
quantization of geometrical objects (manifolds) in order to have a quantization 
of “experimental propositions” that are the principal subjects of a logic 
formalism. We shall try in this section to develop these ideas. We shall start 
observing that from the quantization machinery we have a collection of finite 
dimensional Hilbert spaces given by the equivariant Hardy spaces: 

( ) , ,
G T

H X ν ν
                          (9) 
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where Gν  and Tν  are irreducible representations of a Lie group G and a torus 
T as explained in the previous section. 

Theorem 3.1. The family ( ){ },G T
H X

ν ν
=  with ( ) ˆ, Td

G T Gν ν ∈ ×  is an 
orthoalgebra.  

Proof. The family ( ){ },G T
H X

ν ν
=  with ( ) ˆ, Td

G T Gν ν ∈ ×  satisfies the 
properties for poset (partially ordered set). It is an orthocomplemented lattice 
with meet ∩ , joint ∪  and ⊥  the complementation. The orthogonal space is 
defined as 

( )( ) ( ){ },
, : , 0 ,G T

G T
H X s H X s sν ν

ν ν

⊥
= ∈ =  

where ,⋅ ⋅  is the hermitian product ( ), dm MM
h V⋅ ⋅∫  and { },G Tsν ν  an ortho- 

normal basis. We observe that the decomposition of ( )H X  by the Peter-Weyl 
theorem provides isotypes that are pairwise orthogonal. 

The lattice is orthomodular and we have that the joint ∪  is in fact the direct 
sum ⊕ .                                                          

We shall use the geometric quantization to produce orthomodular lattices and 
obviously, it is not distributive because contains the diamon: 

( ) ( )

( ) ( )

( ) ( )

, ,

, ,

, ,

j j l l
G TTG

j j l l
G TTG

j j l l
G TTG

H X H X

H X H X

H X H X

ν ν ν ν

ν ν ν ν

ν ν ν ν

⊕

↗ ↖

↖ ↗
∩

 

Observation 2. We are primarily interested in the equivariant case because it 
is more general, nothing change if we have only the standard action of 1S . In 
this case the previous argumentation is almost trivial.  

3.2. Examples 

Example 3.2. Let us consider 1M =  . Let us take in account the standard circle 
action induced by the representation on 2  given by  

( ) ( ) ( )1

0 1 0 1 0 1, , ,S z z t z z tz tzµ = ⋅ = . It is holomorphic and Hamiltonian with 
moment map ( )1 0 1, 1

S
z zΦ = . The equivariant decomposition: 

( ) ( ) ,k
k

H X H X
∈

=⊕


 

provides the Hilbert lattice ( ){ }k k
H X

∈
=


 .  

Example 3.3. Let us consider now the action of a torus G T=  on 1  induced 
by the representation on 2  given by ( ) ( ) ( )1

0 1 0 1 0 1, , ,G z z t z z tz t zµ −= ⋅ = . Also 
in this case it is a holomorphic Hamiltonian action with moment map given by: 

( )
2 2

0 1
0 1 2 2

0 1

, .G
z z

z z
z z

−
Φ =

+
                   (10) 

Let us assume that ∨∈g0  is a regular value of GΦ  and let k ∈ , then 

( ) ( ) 1
2

0 1 0 1 0 1 .G a k a a k a G k a a k a
t t

z z z z t z zµ µ −
− − − −= =�  
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For every Gν ∈  we have 

( )
2 2

0 1
,

if mod 2
=

0 if mod 2

G G

G

k k

G
k

G

z z k
H X

k

ν ν

ν

ν

ν

− +   ≡ 
  
 ≡/

 

In this case ( ){ }, ,G G
k k

H X ν ν ∈
=


 .  

Example 3.4. In this last example let us start with 1M =   and the action of 
( )2G SU= . The group ( )2SU  acts linearly on 2 , and it’s action descends 

to an action on 2S . We may equivariantly identify 1  with 2S . Let us assume  

that 2S  has radius 
2

r∈  . This is an holomorphic, Hamiltonian action with  

moment map GΦ  that corresponds to the inclusion 2 3:i S →  , where here 
( )3 2 ∨≅ su . Let us consider the line bundle L M→  and the space of 

holomorphic sections ( )0 , kH M L⊗ . For every 1k ≥  the irreducible 
representations of ( )2G SU=  are given by the symmetric polynomials 

( )2Symk   so let Gν  an irreducible representation for G we have that: 

( ) { }0 1, , .
G

a b
GkH X z z b a a b k

ν
ν= − = + =  

Here ( ) ,G kH X ν
 corresponds to the atomic elements of the equivariant de- 

composition.  

3.3. Scaling Limits for the Probability Measure 

In the same setting of [17], we have the action of the product group P G T= ×  
on the symplectic manifold M. We shall interpret the von Neumann density 
operator as the equivariant Szegö projector Π� . Now we spend few words on the 
Szegö projector. 

Given a pair of irreducible weights Gν  and Tν  for G and T, respectively, we 
shall denote by ( ) ( )2

, ,:
G T G T

L X H Xν ν ν νΠ →�  the orthogonal projector. We refer  

to its Schwartz kernel in terms of an orthonormal basis ( ){ } ,,

1

G TG T
N

j
j

s
ν νν ν

=
 of  

( ) ,G T
H X ν ν

 as: 

( ) ( ) ( ) ( ) ( ), ,
, ˆ ˆ, .G T G T

G T j j
j

x y s x s yν ν ν ν
ν νΠ = ∑�               (11) 

In the paper [17] the main subject studied is a local asymptotics of the 
equivariant Szegö kernels ,G Tkν νΠ� , where the irreducible representation of T 
tends to infinity along a ray, and the irreducible representation of G is held fixed. 
The Szegö kernel is usually expressed in Heisenberg local coordinate centered at 
x X∈  and for our purpose we shall need the scaling limits of ,G Tkν νΠ�  on the 
diagonal of X X× . We shall observe that ,G Tν νΠ�  is an orthogonal projector, 
self-adjoint (with microsupport Σ  see [22]), positive and it is a trace class. 
Looking at these key features, we shall force the interpretation of the equivariant 
kernel as a “fundamental state of the system” in the sense of quantum physics. 

Let us assume that the dimension of ( )H X  is 3≥ , then there exists a von 
Neumann density operator Π�  such that: 
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( ) ( ) ( )
( ) ( )

0,

212

, , 1 1 d ,
det2

M PM P

G
G T G T T T T

d dd d
TT

k k Md d M

d mk
p V m

C mν

ν
ν ν ν ν

ν
ππ

− + −− +

− −

Φ 
Π = Π Π = ⋅ + 

 
∫� � �� �T  (12) 

where P G Td d d= +  is the dimension of the product group, p  the probability 
function, ( ) ( ) ( )( )1 1 1 1

0, 0,T T G T TX Mν νπ π ν− − − −
+= = Φ Φ ⋅∩0  , : X Mπ →  is the 

canonical projection from the circle bundle to M, Td  is the dimension of the 
torus, Gd  the dimension of the group G, ( )( )det C m  is a quantity associated 
to the metric and ,G TΦ Φ  are respectively the moment map of the group G and 
the torus T. Here we were under the assumptions that ∨∈0 g  is a regular value 
for GΦ  and T∉Φ0  (for more datails see [17]). 

Let us consider now the setting of Berezin-Toeplitz quantization and let  
[ ], , ,G T G T G Tk k f kT f Mν ν ν ν ν ν= Π Π� �� �  a Toeplitz operator, where f is ( )M∞ ,  

,G Tkν νΠ�  is the Szegö kernel and fM  denotes multiplication by f. We shall 
consider fixed ˆ

G Gν ∈ , Td
Tν ∈  and k → +∞ . Then [ ],G TkT fν ν  is a self- 

adjoint endomorphisms of ( ) ,G TkH X ν ν
. We shall reinterpret a result of [17] 

obtaining an asymptotic of the principal term of [ ]( ),G TkT fν ν  (the mean value 
operator) for k → +∞ . We shall have: 

[ ]( ) ( ) [ ]( ), , ,
G T G Tk kT f T T fν ν ν ν= Π =� � T T               (13) 

with the following principal term in the asymptotic expansion: 

[ ]( ) ( )( ) ( )( )
( )( ) ( )

0,

212

, 1 1 d ,
2

M PM P

G
G T T T T

d dd d
TT

k Xd d X

f x xd k
T f V x

xν

ν
ν ν

π πν
ππ π

− + −− +

− −

Φ 
= ⋅ + 

 
∫ �T


 (14) 

where ( )( ) ( )( )detx C mπ = . 
The previous formulas (12) and (14) are respectively corollaries of more 

general asymptotic expansions of the equivariant Szegö and Toeplitz kernels 
near to the diagonal of X X× . 

4. Conclusion 

The case of geometric quantization presented here is a very special case that 
works because it requires some restrictions on the space M, for example one of 
those is that M must be simply connected. We have seen how this procedure fits 
well with the pourpose of quantum logic to find a general “formal” procedure to 
quantize “experimental propositions”. This suggests a chain of inclusions 
between differents methods of quantization described as follow: 

,GQ BQ QL⊆ ⊆  

where GQ is the geometric quantization; BQ is the Berezin Toeplitz quantization 
and QL is the quantum logic. 
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