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Abstract 
We develop a new evolutionary method of generating epsilon-efficient solu-
tions of a continuous multiobjective programming problem. This is achieved 
by discretizing the problem and then using a genetic algorithm with some de-
rived probabilistic stopping criteria to obtain all minimal solutions for the 
discretized problem. We prove that these minimal solutions are the epsilon- 
optimal solutions to the original problem. We also present some computa-
tional examples illustrating the efficiency of our method. 
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1. Introduction 

The goal of multiobjective optimization, also called vector optimization, is to 
find a certain set of optimal (efficient) elements of a nonempty subset of a 
partially ordered linear space. However, finding an exact description of this set 
often turns out to be practically impossible or computationally too expensive. 
Therefore, many researchers have focused their efforts on approximation pro- 
cedures and approximate solutions (see e.g. [1] [2] and references therein). 

More than three decades ago, the notion of ε -efficiency has been introduced 
by Loridan [3] for multi-objective optimization problems (MOPs). Afterwards, 
this concept has been used e.g. in [2] [4] [5]. To deal with a continuous multi- 
objective optimization problem, one has to consider a finite discretization of the 
set of feasible points (see Section 3 below). The discretization of the search space 
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is one of the efficient techniques to obtain approximate solutions for MOPs, (e.g. 
[6] [7]). The aim of the present paper is to develop a method of generating ε - 
efficient solutions (as defined in [4]) of a continuous MOP. This is achieved by 
discretizing the problem and then using a genetic algorithm according to the 
scheme described in [8]. In this way, some probabilistic stopping criteria are 
obtained for this procedure. They are given in the form of an upper bound for 
the number of iterations necessary to ensure finding all minimal elements of a 
finite partially ordered set with a prescribed probability. Supporting theoretical 
results are established and some computational examples are provided. 

2. Stopping Criteria for Genetic Algorithms 

In this section we review the results of [8] on probabilistic stopping criteria 
which will be applied later in Section 4 to some continuous multiobjective opti- 
mization problem. 

2.1. Random Heuristic Search 

The RHS (Random Heuristic Search) algorithm, described in [9], is defined by a 
fixed initial population p̂  and a transition rule τ  which, for a given popu- 
lation p , determines a new population ( )pτ . Iterating τ , we obtain a se- 
quence of populations: 

( ) ( )2ˆ ˆ ˆ,  ,  ,p p pτ τ                          (1) 

Each population consists of a finite number of individuals which are elements 
of a given finite set Ω  called the search space. Populations are multisets, which 
means that the same individual may appear more than once in a given popu- 
lation. 

To simplify the notation, it is convenient to identify Ω  with a subset of 
integers: { }0,1, , 1nΩ = − . The number n  is called the size of search space. 
Then a population can be represented as an incidence vector (see [10], p. 141): 

( )T
0 1 1, , , ,nv v v v −= 

                        (2) 

where iv  is the number of copies of individual i∈Ω  in the population ( 0iv =  
if the i -th individual does not appear in the population). The size of population 
v  is the number 

1

0
.

n

i
i

r v
−

=

= ∑                              (3) 

We assume that all the populations appearing in sequence (1) have the same 
size r . Dividing each component of incidence vector (2) by r , we obtain the 
population vector 

( )T
0 1 1, , , ,np p p p −= 

                       (4) 

where i ip v r=  is the proportion of individual i∈Ω  in the population. In 
this way, we obtain a more general representation of the population which is 
independent of population size. It follows that each vector p  of this type be- 
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longs to the set 

( )
1

0
: : 0 ,  1 ,

n
n

i i
i

x x i x
−

=

 Λ = ∈ ≥ ∀ = 
 

∑                 (5) 

which is a simplex in n . However, not all points of this simplex correspond to 
finite populations. For a fixed r∈ , the following subset of Λ  consists of all 
populations of size r  (see [9], p. 7): 

{ }( )
1

0

1: : 0 , .
n

n
r i i

i
x x i x r

r

−

=

 Λ = ∈ ∈ ∪ ∀ = 
 

∑              (6) 

We now define the mapping 
: ,Λ → Λ  

called heuristic ([9], p. 9) or generational operator ([10], p. 144), in the following 
way: for a vector p∈Λ  representing the current population, ( )p  is the 
probability distribution that is sampled independently r  times (with replace- 
ment) to produce the next population after p . For each of these r  choices, the 
probability of selecting an individual i∈Ω  is equal to ( )ip , the i -th com- 
ponent of ( )p . 

A transition rule τ  is called admissible if it is a composition of a heuristic 
  with drawing a sample in the way described above. Symbolically, 

( ) ( )( )sample ,  .p p pτ = ∀ ∈Λ                   (7) 

Of course, a transition rule defined this way is nondeterministic, i.e., by 
applying it repeatedly to the same vector p , we can obtain different results. It 
should also be noted that, although ( )p  may not belong to rΛ , the result of 
drawing an r -element sample is always a population of size r ; therefore, it 
follows from (7) that ( ) rpτ ∈Λ . 

2.2. The Case of a Genetic Algorithm 

In this subsection we consider a genetic algorithm as a particular case of the RHS. 
We assume that a single iteration of the genetic algorithm produces the next 
population from the current population as follows: 

1) Choose two parents from the current population by using a selection 
method which can be described by some heuristic (see [9], 4.2). 

2) Crossover the two parents to obtain a child. 
3) Mutate the child. 
4) Put the mutated child into the next population. 
5) If the next population contains less than r  members, return to step 1.  
The only difference between the iteration described above and the iteration of 

the Simple Genetic Algorithm defined in ([9], p. 44) is that in our version muta- 
tion is done after crossover. 

To derive our stopping criteria, we will use some properties of mutation 
which is generally understood as changing one element of the search space to 
another, with a certain probability. The way of implementing selection and 
crossover is not important for our model, so we omit the discussion of them (we 
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refer the reader to ([10], Chapter 5)). The only requirement is that the com- 
position of the three operations (selection, crossover, mutation) can be described 
in terms of some heuristic. 

We assume that mutation consists in replacing a given individual from Ω  by 
another individual, with a prescribed probability. Let us denote by ,i ju  the 
probability that individual i  mutates to j . In this way, we obtain a n n×   
matrix , ,i j i j

U u
∈Ω

 =   . We denote by ( ) ( )( )Pr Prq p p qτ= =  the probability  

of obtaining a population q  in the current iteration of the RHS algorithm 
provided the previous population is p , and by [ ]( ) ( )Pr jj p p=   the pro- 
bability of selecting an individual j∈Ω  by a single sampling of the probability 
distribution ( )p . In particular, the probability of generating individual j  
from population p  by successive application of selection, crossover and muta- 
tion is equal to (see [8], formula (7)) 

( ) [ ]( ) [ ]( )
1

,scm sc0
Pr Pr ,

n

i jj
i

p j p u j p
−

=

= = ∑               (8) 

where the subscript sc means that we are dealing with the composition of 
selection and crossover, and the subscript scm indicates the composition of 
selection, crossover and mutation. To get a whole new population, one should 
draw an r-element sample from the probability distribution (8). The probability 
of generating a population q  in this way is then equal to (see [8], formula (8)) 

( )
[ ]( )( )
( )

1
scm

scm
0

Pr
Pr ! .

!

jrq
n

j j

j p
q p r

rq

−

=

= ∏                 (9) 

2.3. Stopping Criteria for Finding All Minimal Elements of Ω  

We now consider the following multiobjective optimization problem. Let Ω  be 
a finite search space defined in Subsection 2.1, and let :f FΩ→  be a function 
being minimized, where ( ){ }:F f ω ω= ∈Ω  and ( ),F   is a partially ordered 
set. An element x F∗ ∈  is called a minimal element of ( ),F   if there is no 
x F∈  such that x x∗ , where the relation   is defined by 

( ) ( ): .x y x y x y⇔ ∧ ≠                   (10) 

The set of all minimal elements of F  is denoted by Min ( ),F  . We define 
the set of optimal solutions in our multiobjective problem as follows: 

( ) ( ) ( )( ){ }Min , : : Min , .f f fω ω∗Ω = Ω = ∈Ω ∈ Ω        (11) 

In particular, if F  is a finite subset of the Euclidean space k , and  
( )1, , kf f f=  , where each component of f  is being minimized indepen- 

dently, then the relation   in F  can be defined by 

( ) ( ): , 1, , .i ix y x y i k⇔ ≤ =   

In this case, ∗Ω  is the set of all Pareto optimal solutions of the respective 
multiobjective optimization problem. 

In this section, we assume that the goal of RHS is to find all elements of ∗Ω . 
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Suppose that the set ∗Ω  of minimal solutions has the following form: 

{ }1 2, , , ,mj j j∗Ω =                        (12) 

where the (possibly unknown) number m  of these solutions is bounded from 
above by some known positive integer M . We say that all elements of ∗Ω  have 
been found in the first t  iterations if, for each { }1, ,l m∈  , there exists 

{ }1, ,s t∈   such that ( )ˆ 0s
jl

pτ > . This means that each minimal solution is a 
member of some population generated in the first t  iterations. 

Theorem 1 ([8], Thm. 6.1) We consider the general model of genetic algori- 
thm, described in Subsection 2.2, being a special case of the RHS algorithm with 
the heuristic   given by (8). Suppose that there exists a number ( )0,1β ∈  sa- 
tisfying 

, , ,  .i ju i jβ ∗≥ ∀ ∈Ω ∈Ω                    (13) 

Let M  and t  be two positive integers satisfying the inequality 

( )1 1.rtM β− <                        (14) 

Let ∗Ω  be of the form (12) with m M≤ . Then the probability of finding all 
elements of ∗Ω  in the first t  iterations is at least 

( )1 1 .rtM β− −                        (15) 

Corollary 2 ([8], Cor. 2) We consider the same model of algorithm as in 
Theorem 1. Suppose that condition (13) holds for some ( )0,1β ∈ . Let M  be a 
given upper bound for the cardinality of ∗Ω . For any ( )0,1δ ∈ , we denote by 

( )mint δ∗  the smallest number of iterations required to guarantee that all elements 
of ∗Ω  have been found with probability δ . Then 

( ) ( )
( )min

ln 1 ln
,

ln 1
M

t
r

δ
δ

β
∗  − −

≤  
−  

                 (16) 

where x    is the smallest integer greater than or equal to x .  

2.4. Construction of the Set of Minimal Elements  

The results of Section 2.3 give no practical way of constructing the set ∗Ω . 
Different elements of this set are members of different populations generated by 
the genetic algorithm, and cannot be easily identified. To give an effective way of 
constructing ∗Ω , some modification of the RHS is necessary. 

The algorithm presented below is a combination of the RHS and the base VV 
(van Veldhuizen) algorithm described in ([11], 3.1). Suppose we have some RHS 
satisfying the assumptions of Theorem 1. It generates a sequence (1) of popu- 
lations, all of them being members of rΛ . For each rp∈Λ , we define the set of 
individuals represented in population p : 

( ) { }set : : 0 .p pωω= ∈Ω ≠                   (17) 

Then we construct a sequence { }tD  of subsets of Ω  as follows: 

( )( )ˆ: set , 0,1, ,t
tD p tτ= = 

                  (18) 
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where 0 : idτ =  is the identity mapping. Finally, we define another sequence 
{ }tE  of sets recursively by 

( )0 0: Min , ,fE D=                       (19) 

( )1 1: Min , , 0,1, ,t f t tE E D t+ += ∪ =               (20) 

where we have used the notation Min f  as in (11). Formulas (19) and (20) 
define the VV algorithm. 

It is shown in ([11], Prop. 1) that the sets ( )tf E  converge with probability 1 
to ( )Min ,F   in the sense of some metric. However, as the authors comment, 
“The size of the sets tE  will finally grow to the size of the set of minimal 
elements. Since this size may be huge, this base algorithm offers only limited 
usefulness in practice”. In fact, our considerations can have practical value only 
if the cardinality of ∗Ω  is relatively small. For continuous multiobjective opti- 
mization problems, such situation can be achieved by choosing a suitable dis- 
cretization. 

Our final result is the following theorem which shows that, with a prescribed 
probability, the sets tE  constructed by the VV algorithm are equal to ∗Ω  for 
t  sufficiently large. 

Theorem 3 ([8], Thm. 7.1) Let the assumptions of Corollary 2 be satisfied. 
Then, with probability δ , we have 

( )min, .tE t t δ∗ ∗Ω = ∀ ≥                      (21) 

3. Generation of ε -Efficient Solutions for a Continuous  
Problem 

Let : lf X →   be a given mapping, where X  is a closed and bounded subset 
of k . We consider the following multiobjective optimization problem: 

( ){ }min : .f x x X∈                       (22) 

To solve this problem means to find all Pareto optimal (efficient) points of X  
with respect to the partial order relation in l  defined by 

( ) ( ): , 1, , .i iu v u v i l⇔ ≤ =                   (23) 

However, in practical situations this can be very difficult or even impossible. 
Therefore, we shall consider a discretized version of problem (22). 

For any given 0η > , we say that a subset Ω  of k  is a η -discretization 
of X  if 

( )and , ,
z

X X B z η
∈Ω

Ω ⊂ ⊂


                  (24) 

where ( ) { }, : :kB x y y xη η= ∈ − <
. Since X  is compact, we can always 

find a finite η -discretization of X . The discretized multiobjective optimi- 
zation problem can now be formulated as follows: 

( ){ }min : ,f x x∈Ω                      (25) 

where the same relation (23) is considered, but now in the finite set ( )f Ω . 
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It is natural to ask whether an exact solution of problem (25) yields some sort 
of approximate solution of problem (22). One of the cases where a positive 
answer can be given is described in the proposition below. Before formulating it, 
we must define ε -efficient solutions, following ([4], Definition 2.3 (ii)). 

Let ( )1, , l
lε ε ε= ∈   be such that ( )0 1, ,i i lε > =  . We say that a point 

x X∈  is an ε -efficient solution of problem (22) if there is no x X∈  such 
that 

( ) ( ) ,f x f x ε−                        (26) 

where the relation “ ” is defined by formula (10). 
Proposition 4 Let ( )1, , : l

lf f f X= →   where X  is compact and each 
function if  is Lipschitz continuous with constant ( )0 1, ,iK i l> =  . Let  

lε ∈  be such that ( )0 1, ,i i lε > =  . Define 

: min : 1, , ,i

i

i l
K
ε

η
 

= = 
 

                     (27) 

and let Ω  be a η -discretization of X . Denote by ∗Ω  the set of all Pareto 
optimal solutions of problem (25) (i.e., ( )Min ,f

∗Ω = Ω   as in formula (11)). 
Then every point x ∗∈Ω  is an ε -efficient solution of problem (22).  

Proof. Let x ∗∈Ω . Suppose to the contrary that x  is not an ε -efficient 
solution of (22). Then there exists x X∈  such that (26) holds. In particular, we 
have 

( ) ( ) { }, for all 1, , .i i if x f x i lε≤ − ∈                 (28) 

By the second inclusion in (24), there exists z∈Ω  such that z x η− < . 
Therefore, using (27) and (28), we obtain, for all { }1, ,i l∈  , 

( ) ( ) ( ) ( )
( )
( )
( ) ( ) ,

i i i i

i i

i i

i i i i

f z f x f z f x

f x K z x

f x K

f x K f x

η

ε η

≤ + −

≤ + −

< +

≤ − + ≤

 

which contradicts the assumption that x ∗∈Ω .   

4. The Main Algorithm 

Consider the multiobjective optimization problem (22), where the constraint set 
X  is a box defined by 

[ ]
1

: , ,
k

i i
i

X α β
=

=∏                        (29) 

where ( ) 1, ,i i i kα β< =  . Suppose that the assumptions of Proposition 4 are 
satisfied. We want to specify a η -discretization of X . We construct the set Ω  
as follows: 

( ): : , 0,1, , , 1, , ,k i
i i i i i i

i

t
x x t k i k

k
α β α

 
Ω = ∈ = + − = = 

 
        (30) 

where ( ) 1,ik i k=   are given positive integers. 
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Proposition 5 For every given 0η > , it is possible to find the numbers ik  
so large that the set Ω  defined by (30) is a η -discretization of X .  

Proof. The inclusion XΩ ⊂  is obvious. We now prove the second inclusion 
in (24). For simplicity, we consider the l∞  norm in k :  

1
: max .ii k

x x
∞ ≤ ≤
=                          (31) 

Let us choose ik  so that 

( )1 2 .i i
ik
β α η− <                         (32) 

Take any x X∈ . Then, for each { }1, ,i k∈  , there exists { }0,1, ,i is k∈   
such that the number iz  defined by 

( ): i
i i i i

i

s
z

k
α β α= + −                       (33) 

satisfies  

( )1 .
2i i i i

i

x z
k

β α η− ≤ − <  

Then the vector ( )1: , , kz z z= ∈Ω  is such that 

1
: max ,i ii k

x z x z η
∞ ≤ ≤

− = − <  

which completes the proof.   
In the sequel we consider the following simple evolutionary algorithm which 

is a special case of the algorithm described in Subsection 2.4. It does not contain 
selection and crossover. The mutation process is very simple and consists in 
replacing the current population by another randomly chosen population of 
the same size. However, the stopping criteria described above still hold for this 
algorithm because their proofs make use of the properties of the mutation 
alone. 

Algorithm 1 Parameters: 0δ >  (for the stopping criterion), lε ∈  (for 
defining η -discretization). 

1) Set : 0t = . 
2) Choose randomly a population 0D  consisting of r  elements of Ω . 
3) Construct the set 0E  by formula (19). 
4) Mutate the population tD  by replacing it by another randomly chosen 

population 1tD +  consisting of r  elements of Ω . 
5) Construct the set 1tE +  by formula (20). 
6) If ( )min1t t δ∗+ ≥ , then stop and define 1: tE +Ω = . 
7) Increase t  by 1 and go to Step 4.  
Proposition 6 After stopping Algorithm 1, the equality ∗Ω = Ω  holds with 

probability δ , and consequently, Ω  consists entirely of ε -efficient solutions 
of problem (22) with probability δ .  

Proof. Apply Theorem 3 and Corollary 2 with : cardM = Ω  and : 1 Mβ =  
(we assume the equal probability 1 M  of mutating i  to j  for every  
,i j∈Ω ).   
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5. Computational Examples 

Below we report on testing the algorithm described above on some examples 
taken from literature. To find the set of minimal elements (i.e., nondominated 
elements) of finite sets in Steps 3 and 5, we have used the simple algorithm for 
classifying a population according to non-domination, see Section 4.3.1 of [12]. 

Example 7 (Problem SCH in Table I of [13]) 

( ) ( )( )1 2min , ,f x f x  

where ( ) ( ) ( )22 3 3
1 2, 2 , 10 ,10 .f x x f x x x  = = − ∈ −   

As stated in Table I of [13], any point [ ]0,2x∈  is a Pareto optimal solution 
of this problem. Let 3 310 ,10 .X  = −   Since each of the functions , 1, 2,if i =  is 
continuously differentiable on ,X  which is closed and bounded, then each of  

if  is locally Lipschitz continuous on .X  Here ( )1d
= 2

d
f x

x
x

 and  

( ) ( )2d
= 2 2 .

d
f x

x
x

−  Hence, ( )1d
2000sup

dx X

f x
x∈ ≤  and ( )2d

2004.sup
dx X

f x
x∈ ≤  

Therefore, we can take the Lipschitz constants 2004,  1, 2iK i= =  such that  

( ) ( ) , for all  , .i i if y f z K y z y z X− ≤ − ∈  

Let ( ) ( )1 2, 50,50 .ε ε ε= =  Then, from (27), we have 25 .
1002

η =  In formula  

(30), let 3
1 64 10 .k = ×  Hence the cardinality of Ω  is ( ) 3card 64 10 1Ω = × +   

and ( )1 1
1

1 1 ,
32k

β α− =  and therefore inequality (32) is satisfied. Suppose that  

the population size is 200.r =  For the stopping criterion, we take 0.99δ =  
and compute ( )min 5016t δ∗ = . After 5016 iterations of Algorithm 1, the resulting 
set Ω  is the following:  

1 1 3 1 5 3 7 1 9 5 11 3 13 7 150,1,2, , , , , , , , , , , , , , , ,
32 16 32 8 32 16 32 4 32 16 32 8 32 16 32

1 17 9 19 5 21 11 23 3 25 13 27 7 29 15, , , , , , , , , , , , , , ,
2 32 16 32 8 32 16 32 4 32 16 32 8 32 16

31 33 17 35 9 37 19 39 5 41 21 43 11 45 2, , , , , , , , , , , , , ,
32 32 16 32 8 32 16 32 4 32 16 32 8 32

Ω = .
3 47 7, ,

16 32 4
49 25 51 13 53 27 55 7 57 29 59 15 61 31 63, , , , , , , , , , , , , ,
32 16 32 8 32 16 32 4 32 16 32 8 32 16 32

 
 
 
 
 
 
 
 
 
 
 

  (34) 

Remarks: 
1) One should remember that the number ( )mint δ∗  depends on the pre- 

scribed probability δ . We have run Algorithm 1 many times up to 10,000 
iterations and have observed the following changes in the set 1tE + : it has always 
become the set (34) somewhere between iterations 1155 and 1330, and has not 
changed in the later iterations. This means that the theoretically computed 
number of 5016 iterations gives the correct set Ω  (in the sense that it cannot 
be further improved), but in fact much less iterations are sufficient to obtain the 
same result. 
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2) The cardinality of Ω  is ( )card 65Ω = . Each element of Ω  belongs to 
the interval [ ]0,2 , and hence is a Pareto efficient solution. 

3) According to the performance measure Diversity Metric ,∆  see section B 
page 188 in [13], the mean and variance of ∆  for Algorithm 1 is 0.1014490343  
and 0.09539251009,  respectively, where 0.f ld d= =  Hence our algorithm 
finds better spread of solutions than any other algorithm included in Table III of 
[13], see Figure 1, this is because the mean is the smallest one. 

Example 8 (Problem FON in Table I of [13]). Consider the following opti- 
mization problem: 

( ) ( )( )1 2min , ,f x f x  

where  

( ) ( )
2 23 3

1 2
1 1

1 11 exp , 1 exp , 
3 3i i

i i
f x x f x x

= =

      
   = − − − = − − +            
∑ ∑  

with variable bounds [ ]1 2 3, , 4, 4 .x x x ∈ −  
Table I of [13] states that every point ( )1 2 3, ,x x x  satisfying the condition  

1 2 3
1 1,
3 3

x x x  
= = ∈ − 

 
                   (35) 

is a Pareto optimal solution of this problem. Let [ ]34, 4X = − . Since each of the 
functions , 1, 2,if i =  is continuously differentiable on X , which is closed and 
bounded, then each of if  is locally Lipschitz continuous on .X  We denote by 

( )if x∇  the gradient vector of if  at x :  

( ) ( ) ( ) ( ) T

1 2 3

, , , 1, 2.i i i
i

f x f x f x
f x i

x x x
∂ ∂ ∂ 

∇ = = 
∂ ∂ ∂ 

 

Then  

( ) ( )
1 3
max , 1, 2.i

i j
j

f x
f x i

x∞ ≤ ≤

∂
∇ = =

∂
 

 

 
Figure 1. True PF and nondominated solutions by 
New Algorithm on SCH. 
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Note that ( ) 1sup ix X f x∈ ∞
∇ ≤  for 1,2i = . For any ,y z X∈ , there exists  

[ ],u y z∈  such that 

( ) ( ) ( ) ( ) ( )

( ) ( )

( )

3

1

3

1

,

3

3sup .

i
i i i j j

j j

i
j j i

j j

i
x X

f u
f y f z f u y z y z

x

f u
y z f u y z

x

f x y z

=

∞∞
=

∞∞∈

∂
− = ∇ − = −

∂

∂
≤ − ≤ ∇ −

∂

≤ ∇ −

∑

∑        (36) 

Therefore, we can take the Lipschitz constants 3,  1, 2,iK i= =  such that  

( ) ( ) , for all  , .i i if y f z K y z y z X
∞

− ≤ − ∈             (37) 

Let ( )1 2
3 3, , .
5 5

ε ε ε  = =  
 

 Then, from (27), we have 1 .
5

η =  In formula (30),  

let 50,  1, 2,3.ik i= =  Hence the cardinality of Ω  is ( ) 3card 51 132651Ω = =   

and ( )1 4 ,
25i i

ik
β α− =  and therefore inequality (32) is satisfied. Suppose that  

the population size is 200r = . For the stopping criterion, we take 0.99δ =  
and compute ( )min 10878t δ∗ = . After 10878  iterations of Algorithm 1, the re- 
sulting set Ω  is the following:  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

8 8 8 8 8 84 4 4 4 4 40,0,0 , , , , , , , , , , , , ,
25 25 25 25 25 25 25 25 25 25 25 25

16 16 16 16 16 16 812 12 12 12 12 12 4 4, , , , , , , , , , , , , , ,
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

8 8 8 84 4 4 4 4 4 4 4 4, , , , , , , , , , , , ,
25 25 25 25 25 25 25 25 25 25 25 25 25

− − − − − −

− − − − − −

− − − − − − − −

Ω =

( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

8 4, ,
25 25

8 8 8 8 8 8 8 8 8 84 4 4 4 4, , , , , , , , , , , , , , ,
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

8 8 8 8 8 8 8 8 8 84 12 12 12 12, , , , , , , , , , , , , , ,
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
8 8 8 8 8 812 12 12 12 12, , , , , , , , , , ,
25 25 25 25 25 25 25 25 25 25 25

−

− − − − − −

− − − − − −

− − − − − − ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( )

812 12 12, , , ,
25 25 25 25

8 8 8 16 1612 12 12 12 12 12 12 12 12 12, , , , , , , , , , , , , , ,
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

16 16 16 16 16 1612 12 12 12 12 12 12 12 12, , , , , , , , , , , , , , ,
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
16 16 112, , ,
25 25 25

− − − − − − − − −

− − − − − − − − −

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

6 16 16 16 16 16 16 1612 12 12 12, , , , , , , , , , , ,
25 25 25 25 25 25 25 25 25 25 25 25

4 4 4 4 4 4 4 4 4 4 4 4, ,0 , 0, , , ,0, , , ,0 , 0, , , ,0, ,
25 25 25 25 25 25 25 25 25 25 25 25

4 4 4 4 4 4,0,0 , 0,0, , 0, ,0 , ,0,0 , 0,0, , 0, ,0
25 25 25 25 25 25

















− − − − − − − − −

− − − − − −

− − −


.

















 
 
 
 
 
 
 
 
 
 
 
 
 

  (38) 

Remarks: 
1) In practical tests, the set 1tE +  has always become the set (38) somewhere 

between iterations 3475 and 3500, and has not changed in the later iterations. 
2) The cardinality of Ω  is card ( ) 57.Ω =  The points in Ω  which satisfy 

condition (35) are Pareto optimal but the other elements of Ω  are not optimal. 
However, it follows from Proposition 6 that all elements of Ω  are ε -efficient 
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solutions with probability δ . 
3) According to the performance measure Diversity Metric ,∆  see section B 

page 188 in [13], the mean and variance of ∆  for Algorithm 1 is  
0.06078996663  and 0.4859115201,  respectively, where  

0.01343253265.f ld d= =  Hence our algorithm finds better spread of solutions 
than any other algorithm included in Table III of [13], see Figure 2, this is 
because the mean is the smallest one. 

Example 9 (Problem POL in Table I of [13]). 

( ) ( )( )1 2min , ,f x f x  

where 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
1 1 1 2 2 2 1 21 ,   3 1 ,f x A B A B f x x x   = + − + − = + + +     

 1 0.5sin1 2cos1 sin 2 1.5cos 2,A = − + −  2 1.5sin1 cos1 2sin 2 0.5cos 2,A = − + −   

1 1 1 2 20.5sin 2cos sin 1.5cos ,B x x x x= − + −   

2 1 1 2 21.5sin cos 2sin 0.5cos ,B x x x x= − + −  with variable bounds  
[ ]1 2, π, π .x x ∈ −  

POL is a problem with two nonconvex Pareto fronts that are disconnected in 
both the objective and decision variable spaces, see [13]. The true set of Pareto- 
optimal solutions is difficult to know in this problem. Figure 3 illustrates that 
Algorithm 1 is able to discover the two disconnected Pareto fronts that lie on the 
boundaries of the search space. 

Let [ ] [ ]π, π π, π .X = − × −  Since each of the functions , 1, 2,if i =  is con- 
tinuously differentiable on ,X  which is closed and bounded, then each of 

, 1, 2,if i =  is locally Lipschitz continuous on .X  By using a computer program, 
it is possible to show that ( )1 34sup x X f x∈ ∞

∇ ≤  and ( )2 13sup x X f x∈ ∞
∇ ≤ . 

Using an estimate similar to (36), but with two variables, we find that, for the 
following Lipschitz constants: 1 68,K =  and 2 26K = , we have  

( ) ( ) , for all  , , 1, 2.i i if y f z K y z y z X i
∞

− ≤ − ∈ =  

 

 
Figure 2. True PF and nondominated solutions by New 
Algorithm on FON. 
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Let ( ) ( )1 2, 5 2,1 .ε ε ε= =  Then, from (27), we have 5 .
136

η =  In formula  

(30), let 100,ik =  1,2.i =  Hence the cardinality of Ω  is  

( ) 2card 101 10201Ω = =  and ( )1 π ,
50i i

ik
β α− =  and therefore inequality (32) is  

satisfied. Suppose that the population size is 200=r . For the stopping criterion, 
we take 0.99δ =  and compute ( )min 706t δ∗ = . After 706 iterations of Algorithm 
1, the resulting set Ω  is the following: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

31 1 2π,0 , π, , π, π , π, π , π, π ,
50 25 50 25

3 71 4π, π , π, π , π, π , π, π ,
10 25 50 25

9 61 11π, π , π, π , π, π , π, π ,
50 5 50 25

31 1 2π, π , π, π , π, π , π, π ,
50 25 50 25

3 71 4π, π , π, π , π, π , π, π ,
10 25 50 25

9 1 11π, π , π, π , π,
50 5 50

π− − − − −

− − − −

− − − −

− − − − − − − −

− − − − − − − −

− − − − − −

Ω =

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

π ,

6 13 7 3π, π , π, π , π, π , π, π ,
25 50 25 10
8 13 13 13 13 271π, π , π, π , π, π , π, π ,
25 50 2 50 25 50 50

17 13 17 27 8 8 131π, π , π, π , π, π , π, π ,
50 25 50 50 25 2 25 50
8 27 8 8 29 8 314π, π , π, π , π, π , , π ,
25 50 25 25 25 50 25 5
8 31 8 16 7 12π, π , π, π , π, π
25 50 25 25 25 25

v

− − − − − − − −

− −

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( )

7 1, π, π ,
25 2

7 13 7 27 6 13 49π, π , π, π , π, π , π,0 ,
25 25 25 50 25 25 50

49 49 49 3 491 1 2π, π , π, π , π, π , π, π ,
50 50 50 25 50 50 50 25

49 49 3 49 71π, π , π, π , π, π ,
50 10 50 25 50 50

49 49 9 49 494 1 1π, π , π, π , π, π , π, π ,
50 25 50 50 50 50 50 25

49 3π, π ,
50 50

−

− − − −

− − −

− − − − − −

− − −( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

49 492 1π, π , π, π ,
50 25 50 10

49 3 49 3 49 8 3 12π, π , π, π , π, π , π, π ,
50 25 50 10 50 25 10 25

3 3 13 3 271π, π , π, π , π, π ,
10 2 10 25 10 50

3 3 29 3 3 3 3114π, π , π, π , π, π , π, π ,
10 25 10 50 10 25 10 50

8 324 24π, π , π, π
10 25 10 10





























− − −

− − − − − −

− − − −

.



























 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (39) 

Remarks: 
1) In practical tests, the set 1tE +  has always become the set (39) somewhere  
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Figure 3. True PF and nondominated solutions by New 
Algorithm on POL. 

 
between iterations 285 and 350, and has not changed in the later iterations. 

2) The cardinality of Ω  is ( )card 75.Ω =  It follows from Proposition 6 that 
all elements of Ω  are ε -efficient solutions with probability δ . 

3) According to the performance measure Diversity Metric ,∆  see section B 
page 188 in [13], the mean and variance of ∆  for Algorithm 1 is 0.5021982345  
and 0.7382353788,  respectively, where 0.1063348336fd =  and  

0.01974325126ld =  for the left Pareto front in Figure 3, and  
0.0139738762fd =  and 0.1941428847ld =  for the right Pareto front in Fig- 

ure 3. Hence, in Table III of [13], a better spread of solution is achieved by the 
algorithm NSGA-II (real-coded) in [13]. The spread of solution by our algori- 
thm is the next-best for this problem. 

6. Conclusion 

We have presented a new evolutionary method for generating ε -efficient so- 
lutions of a continuous multiobjective programming problem. This was achieved 
by discretizing the problem and then using a genetic algorithm. Some proba- 
bilistic stopping criteria were used for this procedure to obtain, with a pre- 
scribed probability, all minimal solutions for the discretized problem, which are 
ε -efficient solutions for the original problem. This article contains the main 
underlying theory and only some preliminary numerical computations pertaining 
to this method. 
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