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Abstract 
This paper describes a new method of calculation of one-dimensional steady 
compressible gas flows in channels with possible heat and mass exchange 
through perforated sidewalls. The channel is divided into small elements of a 
finite size for which mass, energy and momentum conservation laws are writ-
ten in the integral form, assuming linear distribution of the parameters along 
the length. As a result, the calculation is reduced to finding the roots of a qua-
dratic algebraic equation, thus providing an alternative to numerical methods 
based on differential equations. The advantage of this method is its high to-
lerance to coarse discretization of the calculation area as well as its good ap-
plicability for transonic flow calculations. 
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1. Method’s Description 

Let us consider a compressible gas flow along a channel with a variable cross- 
section area and perforated sidewalls through which heat and mass exchange is 
possible. 

Let us divide this channel into many small elements of finite length x∆ . 
Cross-section 1 is the element’s entry and cross-section 2 is its exit (see Figure 
1). 

The mass, energy and momentum conservation laws for this element can be 
written in the following one-dimensional integral form: 
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Figure 1. Channel’s element. 
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Here:  
G —gas mass flow, 

0T —total temperature, 

pc —specific heat at constant pressure, 
Q —heat flow between the gas and the sidewalls, 
u —gas velocity, 
P —pressure, 
F —cross-section area, 

fR —walls’ friction force. 
Indices 1, 2, and “per” designate cross-sections 1 and 2 and perforation. 
As the element’s length x∆  is small, we may assume that the cross-section 

area and all the flow parameters are linearly distributed along the element’s 
length. Let us also assume that the longitudinal velocity of the cross-perforation 
flow is equal to the average longitudinal velocity of the main flow between cross- 
sections 1 and 2. This can happen if the pressure difference at the perforation 
holes is high enough to suck the gas from the core of the flow rather than from 
its boundary layer. 

As such, the third equation of the system (1) can be re-written as follows: 

( )1 2 1 2
2 2 2 2 1 1 1 1 2 12

.
2 f

u u P PG u P F G u PF G F F R+ +
+ = + + ∆ + − −       (2) 

Here: 2 1G G G∆ = − —total mass flow through the perforation holes. 
The walls’ friction force fR  can be described by the hydraulic relationship: 

2
1 1 1 1

1
1 1

,
2 2f
u G u xxR F

D D
ρζ ζ ∆∆

= =  

where ζ —hydraulic friction coefficient depending on the walls’ roughness and 
Reynolds number, ρ —gas density, D —hydraulic diameter of the element. 



A. Tolmachev 
 

85 

Let us transform the Equation (2) by dividing both its parts by 1G  and taking 
into account that: 

1 2 1 1 2 2 2 2 2 2 1 2 2 1

1 1 1 1 2 1 1 2 2 1

,  1 ,  1 .PF PF F P F P F P F P F FG G
G G F G G G G G F G

   ∆ ∆
= = + = +   

   
 

After grouping the terms we shall have: 
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Now we should note that: 
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and, besides:  
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γ
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where:  
R —gas constant, 

0,T T —static and total temperature, 

p vc cγ = —specific heat ratio, 
M u a∗ ∗= —characteristic Mach number (the ratio of the local gas speed to 

the speed of sound under the sonic conditions). 
After some transformations we shall obtain a quadratic algebraic equation for 

the characteristic Mach number at the element’s exit: 
2

2 2 0,AM BM C∗ ∗− + =  
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The total temperature at the element’s exit 02T  included in the coefficient B  
can be found from the second equation of the system (1), which describes the 
energy conservation law. The following variants are possible: 

1) The additional gas is injected into the element through the perforation 
holes ( )0G∆ > , and the total temperature of this gas 0perT  is known. Then: 

1 01 0per
02

1

.pG T GT Q c
T

G G
+ ∆ + ∆

=
+ ∆

                 (6) 

Here:  

0

d d
d

x QQ x
x

∆
∆ = ∫ —total heat flow between the gas and the element’s walls. 
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2) The gas is partly sucked away from the element through the perforation 
holes ( )0G∆ < . Then: 

( )02 01
1

.
2p

QT T
c G G

∆
= +

+ ∆
                     (7) 

3) There is no mass exchange ( )0G∆ = . Then: 

02 01
1

.
p

QT T
c G
∆

= +                          (8) 

4) There is no mass- and heat exchange ( )0, 0G Q∆ = ∆ = . Then: 

02 01.T T=                            (9) 

Thus, the characteristic Mach number at the element’s exit 2M ∗  can be cal-
culated by a simple algebraic formula:  

( )
2

2 1,2

4 ,
2

B B ACM
A

∗ ± −
=                    (10) 

where the coefficients A , B , and C  should be calculated by formulas (3)-(5) 
taking into account the relationships (6)-(9). “Plus” and “minus” signs before 
the root correspond to supersonic and subsonic solutions. 

In case of a constant cross-section area and the absence of external influences 
(i.e. when 1 2F F= , 0, 0, 0G Q ζ∆ = ∆ = = ) this formula gives two trivial solu-
tions: 

( ) ( )2 1 21 2
1

1,    .M M M
M

∗ ∗ ∗
∗==  

The second solution describes a normal shock wave and therefore may physi-
cally exist just for 1 1M ∗ > . 

Then all other gas parameters at the cross-section 2 can be easily found: 
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2 2 2.P RTρ=                         (13) 

In such a manner, by dividing the channel into small discrete elements and 
sequentially calculating the flow parameters in each element with the help of re-
lationships (10)-(13) we may calculate the gas flow along the whole channel. To 
complete this system of equations three additional conditions have to be taken 
into account: 
• The total pressure losses in the channel should be equal to the external pres-

sure difference between the channel’s inlet and outlet. For subsonic flows this 
requirement can be met by iterative adjustment of the flow velocity at the 
channel’s entry. For supersonic flows this requirement can be met by itera-
tive adjustment of the shock wave’s position inside the channel (i.e. finding 
the element in which the sign before the root in the Equation (10) should be 
changed from “+” to “−”). 
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• The mass flow through the perforation holes G∆  should be calculated 
based on the pressure difference at the perforation holes and the size of these 
holes, taking into account the total pressure losses caused by the gas cross- 
perforation flow. 

• The heat flow Q∆  should be calculated based on the temperature difference 
between the gas and the sidewalls. 

2. Examples of Application 

Figure 2 shows an example of the use of the considered method for the calcula-
tion of the static pressure recovery factor: 

( ) 1
2

1 1

2

st
P x P

u
σ

ρ
−

=  

along the length ( x x d= , where x —length, d —entry diameter) of a sub-
sonic conical diffuser upon its division into n = 1, 2, 4 and 8 elements. Also 
shown is the experimental data from the work [1]. It can be seen that the consi-
dered method works even with very rough discretization of the calculation area. 
With an increase of the number of elements the calculation error quickly de-
creases. 

One more advantage of this method is its good applicability for transonic flow 
calculations. Unlike numerical methods based on the known differential equa-
tion: 
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(14) 

 

 
Figure 2. Experimental and calculated values of the static pressure recovery factor 
for the subsonic conical diffuser upon its division into n = 1, 2, 4 and 8 elements. 
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Figure 3. Experimental and calculated Mach number distributions along the length 
of a perforated test section of a transonic wind tunnel. 

 
this method makes it possible to calculate flows at M ∗  numbers very close to 1. 
The denominator in the Equation (14) turns into zero at 1M ∗ = , while in the 
considered method it is just radicand in the numerator in the Equation (10) that 
turns into zero.  

Due to this feature, this method can be used for calculations of transonic gas 
flows in channels. Figure 3 shows an example of calculation of Mach number 
distribution along the length ( x x b= , where x —length, b —entry width & 
height) of a perforated test section of a transonic wind tunnel. Also shown are 
the experimental results, obtained by the author in one of TsAGI’s wind tunnels. 

As can be seen from Figure 3, the considered method makes it possible to 
successfully simulate such experimental effects as “suction nozzle” and “suction 
diffuser” (caused by the gas forced by suction through the perforation holes), as 
well as a system of shock waves in the end of the test section, which is simulated 
by one normal shock wave. 

3. Conclusions 

1) An algebraic method of calculation of one-dimensional steady compressible 
gas flows in channels is presented, which is an alternative to finite-difference 
methods. 

2) The advantage of this method is its high tolerance to coarse discretization 
of the calculation area as well as its good applicability for transonic flow calcula-
tions. 

References 
[1] Nicoll, W.B. and Ramaprian, B.R. (1970) Performance of Conical Diffusers with 

Annular Injection at Inlet. Transactions of the ASME, Series D, Journal of Basic En-
gineering, 92, 827-835. https://doi.org/10.1115/1.3425153  

https://doi.org/10.1115/1.3425153


 
 

 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact ojfd@scirp.org  

http://papersubmission.scirp.org/
mailto:ojfd@scirp.org

	Algebraic Calculation Method of One-Dimensional Steady Compressible Gas Flow
	Abstract
	Keywords
	1. Method’s Description
	2. Examples of Application
	3. Conclusions
	References

