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Abstract 
This research develops a solution method for project scheduling represented 
by a max-plus-linear (MPL) form. Max-plus-linear representation is an ap-
proach to model and analyze a class of discrete-event systems, in which the 
behavior of a target system is represented by linear equations in max-plus al-
gebra. Several types of MPL equations can be reduced to a constraint satisfac-
tion problem (CSP) for mixed integer programming. The resulting formula-
tion is flexible and easy-to-use for project scheduling; for example, we can 
obtain the earliest output times, latest task-starting times, and latest input 
times using an MPL form. We also develop a key method for identifying crit-
ical tasks under the framework of CSP. The developed methods are validated 
through a numerical example. 
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1. Introduction 

This research develops a solution method for a project scheduling using max- 
plus algebra (MPA). Goto [1] developed a solution method for two types of li-
near equations in MPA: ⊗ =A x b  and = ⊗ ⊕x A x b , where ⊕  and ⊗  are 
the max and plus operations in MPA. These equations, also referred to as max- 
plus-linear (MPL) equations, can be reduced to constraint satisfaction problems 
(CSPs) for mixed integer programing (MIP) [1]. MPA [2] [3] is an algebraic sys-
tem wherein the max and plus operations are defined as addition and multipli-
cation, respectively. MPL representation is an approach to model and analyze a 
class of discrete-event systems with structures of non-concurrency, synchroniza-
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tion, parallel processing of multiple tasks, and so on. Such systems include pro-
duction systems and project scheduling, the behavior of which is represented by 
linear equations in MPA. In project scheduling, the linear equation  
= ⊗ ⊕x A x b  is used to obtain the earliest start times x , while the equation 
⊗ =A x b  to obtain the latest event occurrence times x . If both matrix A  

and vector b  consist of constants only, then the optimal solution is a unique 
constants vector. There are already solution methods for such case [4]. On the 
other hand, if matrix A  or vector b  contain variables, then the optimal solu-
tion becomes a function of variables. For example, suppose that matrix A  in-
cludes system parameters which correspond to the duration times. If matrix A  
or vector b  is incorporated into other constraints, the existing solution me-
thods cannot be used. Accordingly, Goto [1] developed a solution method for 
these equations by reducing the two MPL equations into CSPs for MIP. However, 
the reference does not provide a solution method for calculating other essential 
quantities in project scheduling. 

Therefore, we newly develop a solution method for calculating the earliest 
output times to all output transitions, latest task-starting times, and latest input 
times, all of which are represented by an MPL from. In addition, we develop a 
method to identify critical tasks under the framework of CSP, which shall be a 
key method in this article. 

2. Max-Plus Algebra 

We define a set { }max = ∪ −∞  , where   is the whole real line. Then, for 

max,x y∈ , we define the following two basic operators: 

( )max , ,x y x y⊕ =                           (1) 

.x y x y⊗ = +                             (2) 

Additionally, we define a set { } { }max = ∪ −∞ ∪ +∞   to add the following 
two complementary operators: 

( )min , ,x y x y∧ =                           (3) 

.x y x y= − +                             (4) 

The priority of operators ⊗  and   is higher than that of ⊕  and ∧ . We 
shall denote the zero and unit elements for operators ⊕  and ⊗  by ( )ε = −∞
and ( )0e = , respectively, and the unit element for operator ∧  by ( )ε = +∞ . If 

max, n m×∈X Y , and max
m q×∈Z , then 

[ ] [ ] [ ] ,ij ij ij⊕ = ⊕X Y X Y                        (5) 

[ ] [ ] [ ]( )1max .n
kij ik kj=⊗ = ⊗X Z X Z                    (6) 

Moreover, 

[ ] [ ] [ ] ,ij ij ij∧ = ∧X Y X Y                       (7) 

[ ] [ ] [ ]( )1min ,n
kij ik kj== − X Z X Z                  (8) 
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T \ .=X Z X Z                         (9) 

ε  is a matrix whose elements are all ε , and e  is a matrix whose diagonal 
elements are e  and off-diagonal elements are ε . If max

n n×∈X , then ∗X  repre- 
sents the Kleene staroperation defined below: 

( )12 s⊗ −∗ ⊗= ⊕ ⊕ ⊕ ⊕X e X X X                   (10) 

where ( ) 1s s n≤ ≤  is an instance that satisfies ( )1s⊗ − ≠X ε  and s⊗ =X ε . 

3. Reduction of the Relevant Operators to CSPs 

The addition and multiplication operators are reduced to CSPs for MIP. For 

max, ,x y z∈ , 

,z x y= ⊕                             (11) 

z x y= ⊗                             (12) 

are focused on. First, Equation (11) is reduced to a CSP. The resulting formula-
tion is: 

( )
( )

( ) { }

1

2

1 2

1 2

,
,

1 ,

1 ,

, 0,1 ,
 1,

z x
z y
z x M s

z y M s

s s
s s

≥
≥

≤ + −

≤ + −

∈

+ ≥

                        (13) 

where 1 2,s s  are binary variables, whilst M  is a large positive constant called 
big-M. The big-M, 1s , and 2s  play a role of switching the equal signs. By ge-
neralizing this result for multiple numbers, the addition 1

n
i iz x== ⊕  can be re-

duced to a CSP as follows: 

( )
{ }

1

,
1   ,
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1,

i n
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                    (14) 

where { }1,2, ,n n=  . If max, n m×∈X Y , and max
m r×∈Z , then the addition  

= ⊕P X Y  can be formulated as follows: 
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≤ + − ∀ ∈ ∀ ∈

∈ ∀ ∈ ∀ ∈

+ ≥

 

 

 

 

 

         .,n mi j∀ ∈ ∀ ∈ 

               (15) 

With respect to Equation (12), the multiplication of two numbers in MPA can 
be formulated as follows: 

.z x y= +                             (16) 
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Then, the multiplication of two matrices = ⊗Q Y Z  can be reduced to: 

( )
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1
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1                     
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∈ ∀ ∈ ∀ ∈ ∀ ∈

≥ ∀ ∈ ∀ ∈∑

  

  

  

 

           (17) 

Next, we focus on the two complementary operators: 
,z x y= ∧                              (18) 

.z x y=                               (19) 

In a similar manner to the reduction of x y⊕ , Equation (18) can be reduced 
to: 

( )
( )

( ) { }
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, 0,1 ,
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                         (20) 

By generalizing this result for multiple numbers, the minimization 1
n
i iz x== ∧  

can be reduced as follows: 
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If max, n m×∈X Y , and max
n r×∈Z , then the minimization of two matrices  

= ∧P X Y  can be formulated as follows: 
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Next, we focus on Equation (19), which can be reduced in a straightforward 
manner from the definition of Z  to: 

.z x y= − +                             (23) 

Then, the pseudo division operation T= Q X Z  can be formulated as fol-
lows: 
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4. Solution Methods for MPL Equations 
4.1. MPL Representation 

After defining the following relevant matrices and vectors, we introduce the 
MPL equations taken up in references [5] and [6]: 
• n : number of tasks; 
• p : number of external outputs; 
• q : number of external inputs; 
• max

n q×∈B : input matrix, [ ]ij =B { e : if task i has an input transition j , 
ε : otherwise}; 

• max
p n×∈C : output matrix, [ ]ij =C { e : if task j  has an output transition i , 

ε : otherwise}; 
• max

n∈d : system parameter, [ ]id : duration time in task i ; 
• max

q∈u : input vector, [ ]iu : input time to external input i ; 
• max

p∈y : output vector, [ ]iy : output time from external output i ; 
• max

n∈x : state vector, [ ]ix : start or completion time of task i . 
The earliest task-completion times of all tasks, Ex , are calculated using 

,E E= ⊗ ⊕x A x b                           (25) 

Matrix max
n m×∈A  is the weighted transition matrix, and vector max

n∈b  is 
the weighted input vector which satisfies the following relation  
= ⊗ ⊗b P B u . The earliest output times to all output transitions, Ey , are 

then calculated by 

.E E= ⊗y C x                            (26) 

Then, the latest task-starting times, Lx , are calculated using 
T

L L= ∧x A x c                          (27) 

Vector max
n∈c  is the weighted output vector which satisfies: 

( )\ \ E=c P C y . The latest input times, Lu , are calculated using Lx : 
T .L L= u B x                           (28) 

As a consequence, the total floats of all tasks can be calculated using Equa-
tions (25) and (27): 

( ) .L E= + −m x d x                         (29) 

All tasks can be subsequently classified into two types according to [ ] 0i =m  
or [ ] 0i >m , where the former one is classified as a critical task whereas the 
latter one as a non-critical task. 

4.2. Reduction of MPL Equations to CSPs 

We consider a solution method for Equation (25). A simple approach is to relax 
the equation into the following inequality: 

.E E≥ ⊗ ⊕x A x b                        (30) 

The solution that has the smallest elements satisfying Equation (30), also 
called the least solution, is given by E

∗= ⊗x A b . We can reduce Equation (30) 
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to the following CSP for MIP in the following manner: 
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If ika ε= , then ik Ekja x ε+ =  follows. It is notable that we can compute 
∗ ⊗A b  directly without calculating ∗A . After relaxing the equation, we reduce 

Equation (26) to a CSP for MIP with the help of Equation (17): 
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Next, we consider a solution method for Equation (27). A simple approach is 
to relax the equation into the following inequality: 

T .L L≤ ∧x A x c                        (33) 

The solution that has the maximum elements satisfying Equation (33), also 
called the greatest solution, is given by \L

∗=x A c . We can reduce Equation 
(33) to a CSP for MIP in the following manner: 
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If ika ε= , then ki Lkja x ε− + =  follows. Here, it is again remarkable that Eq-
uation (34) can compute \∗A c  directly without calculating ∗A . After relaxing 
the equation, we reduce Equation (28) to a CSP for MIP with the help of Equa-
tion (24): 
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Lastly, we focus on reducing Equation (29), the resulting formulation of which 
is as follows: 

( )   .ni Li i Eim x d x i= + − ∀ ∈                    (36) 

Then, we reduce Equation (36) to a CSP for MIP as follows. 
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If the total float im  is a real number, then Equation (37) can be computed by 
introducing a small positive constant ( )1 M . If 0iα = , then task i  is critical 
since 0im =  follows. Conversely, if 1iα = , then task i  is non-critical because 
( )1 iM m M≤ ≤  holds. This is an important and key technique to classify all 
tasks into either critical or non-critical. 

5. Numerical Example 

A numerical example is presented to validate the developed framework. We use 
a personal computer with the following execution environment: 
• machine: Dell Optiplex 9020; 
• CPU: Intel® Core™ i7-4790 3.60 GHz; 
• OS: Microsoft Windows 7 Professional; 
• memory: 4.0 GB. 

To solve CSPs, we use SCIP version 3.2.1. Figure 1 is a simple manufacturing 
system with five processes, two inputs, and one output, which is the same as 
taken in reference [1]. Each node represents a task having a processing time equal 
to the node number. We feed raw materials to inputs 1 and 2 at t = 3 and t = 0, 
respectively. 

1 4
2 2

,   ,   ,   .3 3
4 4
5 5 5 7

ε ε ε ε ε ε
ε ε ε ε ε ε

ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε

       
       
       
       = = = =
       
       
              

d A b c  

The constant vectors and a matrix, d , A , b , and c , reflect the processing 
times, precedence constraints, locations of the external inputs, and locations of 
the external outputs, the definitions of which appear in Section 4.1. Since the 
solver cannot treat the zero element ε , we need to set the two constants big-M 
and zero element ε  carefully. In accordance with the procedure in reference 
[1], we set the constants to 70M =  and 20ε = . The resulted values from the 
solver are as follows: the earliest task-completion times: [ ]T4 2 7 6 12E =x , the 
earliest output time: 12E =y , the latest task-starting times: [ ]T3 1 4 3 7L =x ,  
 

 
Figure 1. A simple manufacturing system with five processes (the same as [1]). 
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the latest input times: [ ]T ,3 1L =u  the total floats: [ ]T0 1 0 1 0=m , and the 
criticalities of all tasks: [ ]T0 1 0 1 0=α . We hence were able to obtain solutions 
by reducing the MPL equations to CSPs for MIP. 

6. Conclusion 

This research has developed a solution method for reducing a project scheduling 
problem represented by a max-plus-linear form. The resulting formulation was 
constraint satisfaction problems for mixed-integer programming. We attained 
calculating the earliest output times, latest task-starting times, latest input times, 
and critical tasks. Moreover, we also developed a method to classify all tasks into 
either critical or non-critical by introducing a small positive constant ( )1 M . 
Our future works include a proper setting of the small positive constant as well 
as considering resource contentions. 

References 
[1] Goto, H. (2017) Reduction of Max-Plus Algebraic Equations to Constraint Satisfac-

tion Problems for Mixed Integer Programming. IEICE Transactions on Fundamen-
tals of Electronics, Communications and Computer Science, E100-A, 427-430.  

[2] Heidergott, B., Olsder, G.J. and Woude, L. (2006) Max Plus at Work: Modeling and 
Analysis of Synchronized Systems. Princeton University Press, New Jersey. 

[3] Baccelli, F., Cohen, G., Older, G.J., and Quadrat, J.P. (1992) Synchronization and 
Linearity. An Algebra for Discrete Event Systems, John Wiley & Sons, New York. 

[4] Goto, H., and Masuda, S. (2004) On the Properties of the Greatest Subsolution for 
Linear Equations in the Max-Plus Algebra. IEICE Transactions on Fundamentals of 
Electronics, Communications and Computer Science, E87-A, 424-432. 

[5] Goto, H. (2013) Address a Project Scheduling Problem using Max-Plus Algebra. 
Journal of the Society of Instrument and Control Engineers, 52, 1083-1089. 

[6] Yokoyama, H. and Goto, H. (2016) Resolution of Resource Contentions in the 
CCPM-MPL Using Simulated Annealing and Genetic Algorithm. American Journal 
of Operations Research, 6, 480-488. https://doi.org/10.4236/ajor.2016.66044  

 
 
 
 
 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact ajor@scirp.org    

https://doi.org/10.4236/ajor.2016.66044
http://papersubmission.scirp.org/
mailto:ajor@scirp.org

	Reduction and Analysis of a Max-Plus Linear System to a Constraint Satisfaction Problem for Mixed Integer Programming
	Abstract
	Keywords
	1. Introduction
	2. Max-Plus Algebra
	3. Reduction of the Relevant Operators to CSPs
	4. Solution Methods for MPL Equations
	4.1. MPL Representation
	4.2. Reduction of MPL Equations to CSPs

	5. Numerical Example
	6. Conclusion
	References

