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Abstract 
The aim of this study is to develop two-dimensional cellular automata model 
of HIV infection that depicts the dynamics involved in the interactions be-
tween acquired immune system and HIV infection in the peripheral blood 
stream. The appropriate biological rules of cellular automata model have been 
extracted from expert knowledge and the model has been simulated with de-
termined initial conditions. Obtained results have been validated through 
comparing with the accepted AIDS reference curve. The new rules and states 
were added to the proposed model to show the effects of applying combined 
antiretroviral therapy. Our results showed that by applying RTI and PI drugs 
with maximum drug effectiveness, comparing with cases in which no treat-
ment was applied, the steady state concentrations of healthy (infected) CD4

+T 
cells were increased (decreased) 53% (41%). Also, the use of cART with 
maximum drug effectiveness led to a 69% reduction in the steady state level of 
viral load. At this time, obtained results have been validated through compar-
ing with available clinical data. Our results showed good agreement with both 
reference curve and the clinical data. In the second phase of this study, by ap-
plying genetic algorithms, a therapeutic schedule has been provided that its 
use, while maintaining the quality of the treatment, leads to a 47% reduction 
in both drug dosage and the side effects of antiretroviral drugs. 
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1. Introduction 

Human Immunodeficiency Virus (HIV) is a subgroup of retrovirus that causes 
the Acquired Immune Deficiency Syndrome (AIDS), a condition in humans in 
which progressive failure of the immune system allows life-threatening opportu-
nistic infections and cancers to thrive. HIV infects vital cells in the human im-
mune system such as helper T cells (specifically CD4

+T cells), macrophages and 
dendritic cells [1]. Figure 1 shows HIV life cycle. According to the World 
Health Organization, millions of people die each year from Acquired Immune 
Deficiency Syndrome (AIDS) [2]. That’s why most of research teams have fo-
cused their studies on AIDS and their knowledge about Human Immunodefi-
ciency Virus (HIV) has been improved significantly. Although AIDS is not 
treatable definitely, it is controllable [3]. Antiretroviral drugs have been effec-
tively applied to control the progression of disease in the HIV infected individu-
als because they increase the time interval between entry of HIV and onset of 
AIDS. Two of the most important categories of antiretroviral drugs for AIDS 
control are Reverse Transcriptase Inhibitors (RTI) and Protease Inhibitors (PI). 
The RTI antiretroviral drugs interfere with ability of HIV enzyme reverse tran-
scriptase to convert HIV RNA into HIV DNA. Thus they can stop the HIV rep-
lication process. The PI drugs prevent the assembly of particles of new virus by 
interfering with HIV enzyme protease. Since by transforming the HIV as a result 
of mutation, some strains of HIV will be resistant to the type of drug used, 
therefore, the chance to control the HIV will be increased if the patient uses 
multiple types of drugs simultaneously. One of the conventional methods in 
HIV control is Combined Anti Retroviral Therapy (cART) in which the patient 
uses combination of RTI and PI antiretroviral drugs [4]. 
 

 
Figure 1. HIV life cycle. This figure is available online in  
www.Southsudanmedicaljournal.com 

http://www.southsudanmedicaljournal.com/
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By finding an appropriate model for a biological system, experts will be need-
less to do many relevant clinical trials. If we also consider the effects of drug 
therapy in such models, we will be able to introduce the best treatment by simu-
lating the effects of different therapeutic methods. Although antiretroviral ther-
apy has significant effects on prolonging survival of patients, the side effects of 
long-term applying of these drugs may put the patient at risk [5]. Therefore, in 
this study, after development of an appropriate model of HIV infection in the 
peripheral blood stream of patients who are submitted to antiretroviral therapy, 
a therapeutic schedule is provided that its use causes to a significant decrease in 
drug dosage. As a result, by applying obtained therapeutic schedule, while 
maintaining the quality of treatment, the side effects of antiretroviral drugs will 
be decreased significantly. 

Most of researchers have used models with Ordinary Differential Equations 
(ODEs) or Partial Differential Equations (PDEs) to simulate the dynamics of 
HIV infection [6] [7] [8]. The biological systems such as human immune system 
are so complicated and their components interact with each other through spe-
cific rules that are almost impossible to depict such rules using ODEs approach. 
On the other hand, ODEs modeling approaches are unable to depict the specific 
properties of immune systems such as memory and emerging [9]. Also, espe-
cially when the drug is administered to control the disease, behavioral variations, 
and special states arise which ODEs modeling approaches are unable to depict 
all of these variations and they can’t consider appropriate parameters for show-
ing all of these states. Because of the reasons mentioned, in this study, instead of 
using ODEs approaches we tried to use a qualitative modeling method based on 
rules to simulate the complicated and nonlinear dynamics of a human immune 
system and its response to the virus entered the human body.  

The Cellular Automata (CA) modeling approach is a perfect choice for this 
type of modeling techniques. Cellular Automata (CA) is discrete dynamical sys-
tems for which its behavior is based entirely on local communications [10]. The 
main idea of CA is that each region of grid is considered as a cell, and specific 
status is assigned to that cell. In each iteration, the state of each cell will be up-
dated, according to own state and the neighboring cells state. The neighboring 
cells of one cell include the cell itself and its nearest adjacent cells. These states 
are correlated to each other through certain rules. These rules are obtained from 
the biological and physical rules which are responsible for guiding the system 
behavior. Since in most biological systems a large degree of uncertainty is ob-
served, therefore, for such systems, using the deterministic rules is not reasona-
ble. Thus in modeling the biological systems with CA method, sometimes it will 
be necessary to consider probable rules [11]. CA modeling power is from its 
simplicity and at the same time its ability to model complex systems. Also, due 
to the direct use of real biological rules governing the issue, there will be the pos-
sibility of full compliance of model to the reality of issue [12]. Some researchers 
have developed different CA models to explain the dynamics of HIV infection 
and most of them have focused on lymphoid tissue. Dos Santos used two-di- 
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mensional CA modeling approach to model the dynamics of HIV proliferation 
and infection in the lymphoid tissue [12]. They dispersed a fraction of infected 
CD4

+T lymphocytes as the initial infection among of the healthy CD4
+T lym-

phocytes and depicted the interactions between these healthy and infected lym-
phocytes through a set of simple rules. Then they validated their model through 
comparing the behavioral quality of their obtained results with a reference curve 
which shows the natural history of HIV infection dynamics currently accepted. 
This common pattern is depicted in Figure 2. The study was conducted by dos 
Santos was the basis of many articles published in the field of modeling the dy-
namics of HIV infection in lymphoid tissue using CA approach [13] [14] [15] 
[16]. 

In the previous mentioned literature, the dynamics of HIV infection have 
been studied in the lymph node. However, whenever most physicians try to as-
sess the progress of disease, they would prefer to use patient’s blood data because 
such data can be accessed more easily. Moreover, they can find all types of cells 
in the peripheral bloodstream. Because of these reasons, some of the authors se-
lected peripheral bloodstream to model the dynamics of HIV infection using CA 
method [17] [18]. Jafelice et al. developed a CA model to simulate the evolution 
of HIV in the bloodstream of positive individuals [17]. They studied the effects 
of drug therapy in their model using a fuzzy rule based system with two inputs, 
the medication potency and patient’s treatment adhesion. They considered four 
types of cells namely uninfected cells, infected cells of lymphocytes T of CD4

+, 
free virus particles and specific antibodies CTL. These cells were placed at ran-
dom positions initially in a two dimensional cell grid and the states of each cell 
in the grid were updated according to the defined local dynamic rules of each 
cell. Obtained results were validated through the reference HIV history pattern. 
It should be noted that their work was invaluable but they just had considered 
cellular response of immune system and they ignored the role of humoral re-
sponse in the adaptive system. Moreover, the effects of intracellular biochemical 
factors that influence the effectiveness, such as the susceptibility of inhibiting  
 

 
Figure 2. The natural history of HIV infection dynamics currently accepted [18]. 
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drugs was not considered. Khabouze et al., developed the study done by Jafelice 
by taking into account the role of humoral response as one of the basic part of 
adaptive immune system by considering a new type of cell called antibody but 
the effects of drug treatment in their model was not studied [18]. 

In this study we model the interactions between HIV enters the human’s body 
and the immune system response, in the peripheral bloodstream, using 
two-dimensional CA technique. We also consider the effects of antiretroviral 
therapy in our model rules. Actually our CA model is an extended version of 
model proposed by Khabouze [18] by taking into account the following impor-
tant points: a) the effects of either mono or combined antiretroviral therapy. For 
this purpose we considered new cell states associated with reverse transcriptase 
inhibitors and protease inhibitors drug absorption by the healthy cells of CD4

+T 
lymphocytes and we defined new rules to show how these inhibitor drugs can 
prevent the healthy cells from infection. We also investigated the effects of drug 
efficiency and initial time of onset of treatment in improving the quality of 
treatment. b) The phenomenon of drug resistance, c) The effect of latently in-
fected cells in clinical latency phase of HIV infection and their important role in 
taking the patient to the onset of AIDS phase, d) The phenomenon of virus mu-
tation, e) Infecting the healthy cells through contact with either free viruses or 
infected cells, while in the previous studies [17] [18], authors considered that in-
fection of healthy cells can only occur through free viruses. The simulation re-
sults obtained from our CA model reproduces three phase pattern of HIV infec-
tion and shows how the use of antiretroviral therapy is able to delay the arrival 
of the patient to the onset of AIDS phase. We validated our results through 
comparison with available clinical data.  

In the next step, we used an intelligent optimization technique to provide an 
optimal therapeutic schedule that simultaneously keeps disease progression un-
der control and allows the restoration of immune system. So far, in often models 
that have been used to depict the dynamic behavior of HIV, the time-continuous 
equations have been applied, and in this case, using optimal control methods 
(despite the high computational volume) were the best treatment strategy. 
However, since the CA model that used in this study is described by biological 
rules and there is no analytical equation, applying the classic optimal control 
methods is impossible. Therefore, in order to optimize treatment protocol and to 
provide optimal therapeutic schedule in terms of number and order of days of 
applying antiretroviral drugs and drug dosage, utilizing of algorithms which are 
search-based in discrete-time space, is recommended. Since the genetic algo-
rithm is a good candidate of such algorithms, in this study we used genetic algo-
rithms to provide the optimal therapeutic schedule. 

After this introduction, this paper is organized as follow: in the next section, 
we introduce the proposed CA model by incorporating the antiretroviral therapy 
process into the rules of this model. Then we present the simulation results and 
we compare our obtained results with available clinical. After ensuring the valid-
ity of proposed model, in the next step, by utilizing the genetic algorithms, the 
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optimal therapeutic schedule is obtained. In order to prove the effectiveness of 
the proposed treatment program, the results obtained from applying this opti-
mum schedule is compared with the results obtained from two other therapeutic 
programs named “Full therapy” and “Random therapy”, respectively. In the last 
section we have concluded our work and suggestions for future works are ex-
pressed. 

2. Material and Methods 
2.1. Proposed Cellular Automata Model 

The structure of proposed model in this study is two-dimensional CA model 
with Moor neighboring. For developing such a structure, we used two-dimen- 
sional cell grids with size of 250 × 250 to depict the bloodstream toroidal system. 

Since CA models belong to subset of agent based modeling methods, defining 
the agents of proposed CA model is the first step of organizing this model. In 
this study, following agents have been defined: 

1) Healthy cells (H): this is the state of a normal healthy cell which has not 
absorbed any type of antiretroviral drugs. The cell in this state is capable of be-
coming infected and this happens, it can infect other healthy cells in own 
neighboring. 

2) Healthy cells resistant to infection (HR): this is the state of healthy cells in 
which due to the absorption of both RTI and PI antiretroviral drugs, they will 
not become infected even if they are exposed to infectious factors. 

3) Active infected cells (A1): this state refers to the active infected cells which 
are able to infect the normal healthy cells in their own neighboring [12]. 

4) Inactive infected cells (A2): this state corresponds to the infected cells that 
after Ƭ1 time delay, the immune system has developed own cellular response 
against it. With considering such time delay we can depict the mutation rate of 
HIV. In fact we consider that since each infected cell contains a new strain of 
HIV, thus the immune system needs time to identify each of them. On the other 
hand, as a result of cellular response of immune system, such infected cells alone 
are not able to infect the normal healthy cells in their own neighboring but local 
aggregation of them will cause the neighbor healthy cells to become infected. It 
means that if, at least, R numbers of A2 cells have been located in the neighbor-
ing of a normal healthy cell, the healthy cell will become an active infected cell 
[12]. 

5) Latently infected cells (A0): this is the state of infected cells which have kept 
the latent infection in to themselves for a time and they are not capable of 
spreading the infection during this period of time. But they may be re-activated 
after a time delay Ƭ2 and if it happens, they will be able to infect their own adja-
cent healthy cells [14]. 

6) Inactivated infected cells in effect of PI drug absorption (API): this state 
corresponds to the infected cells which have arisen due to infecting healthy cells 
that have absorbed PI antiretroviral drugs. The cells in this state are not able to 
spread the infection and they will not produce any new HIV strain. 
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7) HIV Infectious: this is the state of active and infectious HIV particles which are 
capable of infecting their own adjacent normal healthy cells [16]. 

8) HIV non-Infectious: when a healthy cell that has absorbed PI antiretroviral drugs 
becomes infected, this type of infected cell produces free viruses that are often 
defective and are not capable of infecting other healthy cells. This state is cor-
responds to such detective and non-infectious viruses [16]. 

9) HIV Inactive: this state corresponds to viruses that the immune system has 
developed own humoral response against them. Therefore, due to the perfor-
mance of immune system, the ability of such viruses is decreased for infecting 
other healthy cells [16]. 

10) Dead cells (D): this state corresponds to both of the healthy cells and free 
viruses that are dead due to natural death. This state also contains the infected 
cells that will die in next step due to the performance of immune system against 
them [12]. 

11) CTLs: the state of immune system cells that is responsible for identifying 
killing the infected cells [17]. 

12) Anti bodies (AB): the state of anti bodies that are responsible for killing 
the viruses [18].  

In second step, we considered following percentages as an initial number of 
each of cell types in our model: 25% ± 10% of the entire cell grid was initially 
considered as normal healthy CD4+T lymphocytes [17] [18]. To depict the initial 
infection, we considered 0.05% of the entire cell grid as infected cells [12]. 5% ± 
1% of the entire cell grid was considered as free infectious viruses [17] [18]. 
CTLs and anti bodies, each of them initially constituted 3% ± 1% of the entire 
cell grid [18]. Mentioned cells, initially were randomly distributed in the cell grid 
space. 

2.1.1. The Rules of Proposed CA Model 
As previously mentioned, in this study we have developed a CA model for mod-
eling the HIV infection in the peripheral bloodstream with taking into account 
the effects of applying antiretroviral therapy. For this purpose, the effectiveness 
of RTI and PI drugs was considered by PRTI and PPI, respectively, and the value of 
them was selected between 0 to 0.9 (the value of 0 indicates no use of drug of in-
terest and the value 0.9 indicates maximum effectiveness of the drug). We de-
fined following rules for our proposed CA model based on neighboring. It is 
worth noting that in the defined rules where ever the phrase “in the presence of 
infecting factors” is used, it means that, at least, one active infected cell (A1) or 
one infectious HIV or R numbers of inactivated infected cells (A2) exist in the 
neighborhood of target cell. 

Rule 1) The rules for updating the state of a normal healthy cell (H): 
a) We have defined a lifespan limit for normal healthy cells and a random ini-

tial age (between 0 and the lifespan limit) has been assigned to each of H cells. At 
the beginning of each of iterations, if an H cell reaches its lifespan then it will 
die, otherwise the following updating rules will be used [17] [18]. 
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b) The H cell will choose randomly an empty place in the neighborhood and 
moves there for the next iteration. If there is no empty place then it remains at 
own place [17]. 

c) For the next iteration, each of H cells, becomes an HR cell with probability 
of PRTI×PPI in the presence or absence of infecting factors—it shows that when a 
normal healthy cell absorbs both of RTI and PI drugs simultaneously, it becomes 
a resistant healthy cell which none of the infecting factors are not able to infect 
that and it is protected from infection for longer period of time than the normal 
healthy cells which have absorbed only RTI drug; 

Or remains an H cell with probability of PRTI × (1 − PPI) in the presence or ab-
sence of infecting factors and its age will be increased one unit–this shows that if 
a normal healthy cell only absorbs RTI drug, in the effect of this type of drug the 
virus prevents from entering to healthy cell. So the healthy cell will be protected 
from infection, but since it has not absorbed both RTI and PI drugs, this protec-
tion lasts only until the next iteration-; 

Or with probability of (1 − PRTI) × PPI, two modes may occur: 1) in the ab-
sence of infecting factors, it remains an H cell and its age will be increased one 
unit, 2) in the presence of infecting factors, it becomes an AP cell with age zero–it 
shows that since the healthy cell has not absorbed RTI drug, it will not protected 
from entering virus and, therefore, it will be infected in presence of infecting 
factors. But since it has absorbed PI drug, even if it becomes infected by infect-
ing factors, the risen infected cell (API) will not be able to infect other healthy 
cells-; 

Or with probability of (1 − PRTI) × (1 − PPI) two modes may occur: 1) in the 
absence of infecting factors it remains at H state and its age will be increased one 
unit for the next iteration, 2) in the presence of infecting factors it becomes an 
active infected cell (A1) with age of zero with probability of Pinf, or it becomes a 
latently infected cell (A0) with age of zero with probability of (1 − Pinf) [14] [15]. 

d) The normal healthy cells are proliferating with a constant rate during the 
simulation [17] [18].  

Rule 2) The rules for updating the state of a resistant healthy cell (HR): 
Since a resistant healthy cell has absorbed both of RTI and PI drugs, therefore, 

even if the infecting factors exist in its neighborhood, it will not become infected. 
This type of healthy cell becomes a normal healthy cell for the next iteration [15] 
[16].  

Rule 3) The rules for updating the state of active infected cells (A1): 
If an A1 cell is not identified by the immune system cells, it releases a new in-

fectious HIV from within itself with probability of PHIV-PR [16] [18] [19]. Ac-
cording to empirical findings, each of active infected cells may be identified by 
effective immune cells about 3 to 5 weeks after infection and loses its ability to 
spread the infection and becomes an inactivated infected cell (A2) [12] [19]. In 
the previous studies, the time required to identify A1 cells by the immune system 
cells was considered 4 weeks (the average of 3 and 5 weeks) [12]. But in this 
study, instead of averaging, we considered that there is the probability of identi-
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fying an A1 cell by the immune system cells during the third until fifth weeks af-
ter infection of healthy cell. From the third week until fifth week, this probability 
is increasing. But due to the occurrence of mutation, an infected cell may con-
tain a new strain of HIV into itself which has not previously been introduced to 
the immune system. For this reason, an infected cell may not be identified by the 
immune cells even five weeks after occurrence of infection. In this case, due to 
release of several HIVs from infected cell, its membrane will tear and thus the 
infected cell becomes dead cell for the next iteration [20]. 

The state of A1 cell is updated according to the following rules: 
a) Until three weeks after infection, an A1 cell produces HIVInfectious with prob-

ability of PHIV-PR or produces HIVInactive with probability of (1-PHIV-PR) for the next 
iteration. The new released HIV is placed at one of empty sites in A1’s neigh-
borhood. Also the age of an A1 cell is incremented one unit for the next iteration 
[16] [18].  

b) Between three until five weeks after infection, following modes may occur: 
1) If there is, at least, one CTL in the neighborhood, for the next iteration, an 

A1 cell becomes A2 with probability of Pidentification; or produces HIVInfectious with 
probability of (1 − Pidentificatin) × PHIV-PR; or produces HIVInactive with probability of 
(1 − Pidentificatin) × (1 − PHIV-PR). Also the age of an A1 cell is incremented one unit 
for the next iteration [12] [16] [17] [18] [19]. 

2) If there is no CTL in the neighborhood, for the next iteration, an A1 cell 
produces HIVInfectious with probability of PHIV-PR; or produces HIVInactive with 
probability of (1-PHIV-PR). Also the age of an A1 cell is incremented one unit for 
the next iteration [16] [18]. 

c) If due to mutations, an A1 cell is not detected by the CTLs up to five weeks 
after infection, due to releasing new viruses from within it, finally the cell mem-
brane of this A1 cell will tear and it will die for the next iteration [20].  

d) Before an infected cell dies due to membrane rupture, if it is not detected at 
each of iterations by CTLs then for the next iteration it will select randomly an 
empty place in its neighborhood to move there and the age of this A1 cell is in-
cremented one unit. But if there is no empty place in its neighborhood then it 
remains at an own place and its age is incremented one unit for the next itera-
tion [17] [18]. 

Rule 4) The rules for updating the state of an inactivated infected cell (A2): 
An A2 cell becomes a dead cell for the next iteration [12]. 

Rule 5) The rules for updating the state of a latently infected cell (A0): 
a) Each of A0 cells after a time delay TRe-activation will be reactivated with proba-

bility of PRe-activation and becomes a new A1 cell with the age of zero for the next 
iteration; or remains an A0 with probability of (1 − PReactivation) and dies for the 
next iteration [14]. 

b) Before reaching the time of TRe-activation, for the next iteration each of A0 cells 
will randomly select an empty place in its neighborhood to move there and if 
there is no empty place, it remains at own place. Also the age of A0 cell is incre-
mented one unit for the next iteration. 
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Rule 6) The rules for updating the state of an API cell: 
As we mentioned before, whenever a healthy that has absorbed PI drugs be-

comes infected by infecting factors in its neighborhood, it becomes an API cell 
with the age of zero for the next iteration. We also considered a lifespan limit for 
API cells similar to what we had previously defined for A1 cells (5 iterations). We 
defined following rules for updating the state of API cells: 

a) If an API cell reaches its lifespan limit, it becomes a dead cell for the next 
iteration. 

b) Before reaching the lifespan limit, following modes may occur for the next 
iteration: 

1) It remains an API cell and produces HIVnoninfectious with probability of PPI × 
PHIV-PR; or it remains an API cell and produces HIVInactive with probability of PPI × 
(1 − PHIV-PR). The new released HIV is placed at one of the empty sites in API’s 
neighborhood. In this case, the API cell will randomly choose an empty place in 
the own neighborhood to move there and if there is no empty place, it remains 
at own place. Also the age of API cell is incremented one unit for the next itera-
tion. 

2) It becomes an A1 cell with the last age of API cell and produces HIVInfectious 
with probability of (1 − PPI) × PHIV-PR; or it becomes an A1 cell with the last age of 
API and produces HIVInactive with probability of (1 − PPI) × (1 − PHIV-PR). In this 
case, as we mentioned before, the arisen A1 cell continues its life with the last age 
of corresponding API cell and from now on, the rules that were defined for up-
dating the state of A1 cell will be used for it. 

The rules defined for updating the state of API cell is inspired from [4] [21].  
It is worth mentioning that the viruses which are produced by API cells or by 

A1 cells will be placed randomly in one of the neighboring places of infected cell 
producing their own. Depending on the type of the selected place, following 
modes may occur: 

I. If this place is an empty place then the produced virus will be located there 
for the next iteration. 

II. Since only the normal healthy lymphocytes are hosts for viruses, thus if this 
place be relevant to any state except H, the virus will not have no effect on the 
state of the place. 

III. If this place is relevant to a normal healthy cell, since both of HIVnon-Infectious 
and HIVInactive are not capable enough to infect other cells, thus only HIVInfectious 
particles can infect the H cell.  

Rule 7) The rules for updating the state of dead cells:  
A dead cell can be replaced by a new healthy cell for the next iteration. The 

probability of this replacement is shown by Preplication. In fact, Preplication depicts the 
ability of the immune system for reconstructing the destroyed cells. Among new 
produced healthy cells, a very small fraction of them contain the infection. The 
new produced cell may be infected with probability of Pnew-infection [12]. Therefore, 
following rules have been defined for updating the sate of dead cells: 
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a) Each of dead cells becomes a new normal healthy cell (H) with probability 
of Preplication × (1 − Pnew-infection) or becomes a new infected cell (A1) with probability 
of Preplication × Pnew-infection or remains a dead cell with probability of (1 − Preplication) 
for the next iteration [12]. 

Rule 8) The rules of HIV proliferation and updating its state: 
As mentioned before, HIVInfectious is a virus particle that is able to infect own 

adjacent healthy cells. It means if there is, at least, one HIVInfectious in the neigh-
borhood of a normal healthy cell, this virus transcribes own RNA in to the DNA 
of host cell through reverse transcriptase enzyme and infect the healthy cell in 
this way. On the other hand, the rules numbers 3a, 3b and 6b show how one A1 
or API cell causes to the proliferation of this type of HIV. We also defined fol-
lowing rules for updating the state of HIVInfectious: 

a) We defined a lifespan limit for HIVInfectious particles that is shown by the pa-
rameter “V_LSL”. If one HIVInfectious particle reaches the V_LSL, this virus par-
ticle will die due to the natural death for the next iteration [16] [17] [18]. 

b) Before the HIVInfectious reaches V_LSL, following modes may occur: 
1) At each iteration, if there is, at least, one anti body cell (AB) in the neigh-

borhood of an HIVInfectious and detects this HIV particle with probability of Pidenti-

fication then the HIVInfectious will lose its ability for spreading the infection due to the 
performance of humoral response of immune system. Therefore, the HIVInfectious 
becomes HIVinactive for the next iteration [16] [18] [20].  

2) If the HIVInfectious is not identified by the AB cell in its adjacent with proba-
bility of (1 − Pidentification), or if there is not any AB cell in the neighborhood of this 
HIVInfectious, then for the next iteration the HIVInfectious will randomly select one of 
the empty places in own neighborhood to move there and if there is no empty 
place, it will remain at own place. Also, the age of this HIVInfectious is incremented 
one unit for the next iteration [18] [20].  

As mentioned before, whenever a normal healthy cell that has absorbed PI 
drugs, becomes infected by infecting factors, the arisen infected cell (API) pro-
duces the HIV particles which are often faulty and are not able to infect other 
healthy cells. We called this type of HIV particles HIVnon-infectious. The rule 7b 
shows how API cells produce this type of HIV. We also defined following rule for 
HIVnon-infectious: 

c) Each of HIVnon-infectious becomes HIVinactive for the next iteration [16]. 

Also we defined following rule for HIVinactive: 
d) Each of HIVinactive becomes a dead cell for the next iteration [16].  
Rule 9) The rules for updating the state of CTLs: 
The immune system develops own cellular response against infection through 

CTLs. This type of immune system cell is responsible for killing the infected 
cells. The rule number 3 shows how CTLs detect the infected cells and kill them. 
Following rules has been defined for updating the state of CTLs: 

a) A lifespan limit for CTLs (CTL_LSL) has been defined. If a CTL reaches the 
lifespan limit then it becomes a dead cell for the next iteration. Otherwise, for 
the next iteration it will randomly select an empty place in the own neighbor-
hood to move there and if there is no empty place then it remains at own place. 
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Also, the age of CTL is incremented one unit for the next iteration [17] [18]. 

b) At each of iterations, CTLs are being reproduced by a constant rate 
(CTL_PR).  

Rule 10) The rules for updating the state of anti bodies: 
The main role of antibodies (AB) is identifying virus particles and killing 

them. In rule 8b, we described how AB cells do this task. Following rules has 
been defined for updating the state of AB: 

a) A lifespan limit for AB cells (AB_LSL) has been defined. If an AB reaches 
the lifespan limit then it becomes a dead cell for the next iteration. Otherwise, 
for the next iteration it will randomly select an empty place in the own neigh-
borhood to move there and if there is no empty place then it remains at own 
place. Also, the age of AB is incremented one unit for the next iteration [18]. 

b) At each of iterations, AB cells are being reproduced by a constant rate 
(AB_PR).  

Figure 3 shows the block diagram of the interaction between the states of all 
agents. 

2.1.2. The Parameters of Proposed Model 
In order to simulate the proposed model, we used a set of parameters some of 
which have been extracted from reference articles and the rest of them are de-
rived from expert knowledge and experimental findings. The expert knowledge 
includes medical reference books on AIDS [22] [23], medical authoritative ar-
ticles on AIDS [19] [20] [24] [25] [26] [27] and knowledge of infectious disease 
specialist. Table 1 shows the value of parameters used for simulating the pro-
posed model. 
 

 
Figure 3. The block diagram of interactions between the states of proposed cellular au-
tomata model in peripheral blood stream in the presence of antiretroviral therapy. 
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Table 1. The parameters used for CA model. 

Parameter Definition Value Reference 

L Lattice size 250 Ad hoc 

H_PR Production rate of normal healthy CD4+T cell 18 cells/iteration [17] 

CTL_PR Production rate of CTLs 
30 cells/iteration (in primary infection phase)  

& 3 cell every 14 iterations (after the end  
of primary infection phase) 

[17] [18] 

AB_PR Production rate of Anti Bodies 
50 cells/iteration (in primary infection phase)  

& 5 cell every 14 iterations (after the end  
of primary infection phase) 

[17] [18] 

H_LSL Life span limit of normal Healthy CD4+T cells 4 iterations [17] 

CTL_LSL Life span limit of CTLs 15 iterations [17] [18] 

AB_LSL Life span limit of Anti Bodies 15 iterations [18] 

V_LSL Life span limit of HIVInfectious 3 iterations [17] 

R 
Number of infected A2 cells in the neighborhood of  

a healthy CD4+T cell which makes converting  
a healthy cell into an A1 infected cell 

4 cells [12] 

TRe-activation Delay time needed to re-activate the A0 latently infected cells 30 iterations [14] 

Pinf 
The probability of converting a healthy cell into an  

A1 cell in the presence of infecting factors 
0.99 [14] 

Preplication 
The probability of replacing a dead cell  

by a normal healthy cell 
0.99 [12] 

Pnew-infection 
The probability of replacing each  

new healthy cell by an A1 infected cell 
10-5 [12] 

Pidentification The probability of identifying an infected A1 cell by CTLs 
55%, 75% and 95% respectively  
3, 4 and 5 weeks after infection 

Ad hoc 

PAB-identification The probability of identifying an HIVInfectious by Anti Bodies 0.95% Ad hoc 

PHIV-PR 
The probability of releasing an HIVInfectious  

particle from an A1 infected cell 
0.99 [19] 

PRe-activation 
The probability of reactivating an A0  
cell after a specified period of time. 

0.0005 [14] 

PPI & PRTI The effectiveness of PI and RTI antiretroviral drugs Varies between 0 to 0.9 [15] 

2.1.3. Consideration of Drug Resistance in the Model 
By using the antiretroviral drugs, the concentration of healthy CD4+T cells is in-
creased and both concentration of infected CD4+T cells and viral load are de-
creased. But at the same time, due to occurrence of virus’s mutation and due to 
appearance of new strains of HIV, after a period of time from start of treatment, 
the patient becomes drug-resistant and the effectiveness of these drugs will be 
reduced. Due to the reduction of drug effectiveness, trend of increasing (reduc-
ing) of concentration of healthy cells (concentration of infected cells and viral 
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load) stops and finally the concentration of these cells reaches to steady state lev-
el. The saturation of drug activity has been modeled through a negative expo-
nential function by Caetano Marco [28]. Therefore, to describe drug-resistant 
with considering the interactions between drug effectiveness and concentration 
of healthy cells, infected cells and viral load, following exponential equations has 
been defined. Since the PI (RTI) drugs has more effects on the concentration of 
viral load (healthy and infected cells), we defined two equations separately for 
describing RTI and PI drug resistance.  
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In the above equation, PPI (t) and PRTI (t) denote PI and RTI drug effectiveness 
at iteration number t, respectively. P0PI and P0RTI denote the initial value of PI 
and RTI drug effectiveness, respectively. V(t − 1), I(t − 1) and H(t − 1) denote 
the viral load, concentration on infected cells and the concentration of healthy 
cells at iteration number t − 1, respectively. V(ts), I(ts) and H(ts) denote viral 
load, concentration of infected cells and concentration of healthy cells at time of 
onset of treatment, respectively. 

2.1.4. The Inputs and Outputs of Proposed Model 
The RTI and PI antiretroviral drugs were considered as the inputs of our model. 
To consider these inputs, we used a parameter named effectiveness as PRTI and 
PPI for RTI and PI antiretroviral drugs, respectively [15] [29]. The time evolution 
of concentrations of normal healthy CD4+T cells, infected CD4+T cells (A1 + A2), 
CTLs, antibodies, dead cells and viral load, were considered as the outputs of our 
model. The curve of these variations has been drawn in the results section and 
each of them has been explained in detail. 

2.2. Optimizing the Therapeutic Schedule by Applying  
Genetic Algorithms 

After ensuring the validity of proposed CA model (according to the results ob-
tained in Section 3.2), an optimal therapeutic schedule was presented by using 
Genetic Algorithms (GA). An introduction of GA can be found in [30] [31]. 
Since for HIV infected patients, long-term medication is prescribed, these pa-
tients suffer from side effects of antiretroviral drugs. Therefore, the most impor-
tant advantage of using the obtained therapeutic schedule by GA is while main-
taining the quality of the treatment, leading to a reduction in both drug dosage 
and the side effects of antiretroviral drugs. As we mentioned before, in order to 
prevent the patients from occurrence of drug-resistant, most of physicians prefer 
to apply cART method for HIV infected patients [32]. Also, as we will prove in 
section3.1, the use of cART method with maximal drug effectiveness, leading to 
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better results (i.e. higher level of the steady state concentrations of healthy 
CD4+T cells, lower level of the steady state concentrations of infected CD4+T 
cells, as well as, lower level of viral load at steady state). For these reasons, the 
cART method with maximum drug effectiveness was used in our proposed the-
rapeutic schedule. In presenting the optimal therapeutic schedule, in order to 
simply the simulations, we assumed that antiretroviral drugs (both RTI & PI 
drugs) are administered or interrupted weekly.  

In GA, each of the therapeutic schedules was defined by a chromosome with 
m bits, that m defines the number of weeks of therapeutic schedule [33]. In this 
study, we assumed that each of therapeutic schedules contains a period of 32 
weeks (i.e. weeks in 8 months) and the treatment was started at 160th week. A 
chromosome is a 2-state variable. Therefore, for each of weeks (bits) of thera-
peutic schedules (chromosomes), following modes may occur: 

a) If the ith bit of a chromosome is set equal to zero, then it means that during 
the ith week of therapeutic schedule, no treatment is applied.  

b) If the ith bit of a chromosome is set equal to one, then it means that during 
the ith week of therapeutic schedule, cART method with maximum drug effec-
tiveness is applied. 

Therefore, one of the values 0 or 1, was assigned randomly to each of bits of 
chromosome. Then, corresponding to the assigned value, the values of drug ef-
fectiveness were adjusted in CA model. Accordingly, if the assigned value was 
equal to zero, then in CA model, the values of both P0RTI and P0PI was set equal to 
zero (i.e. P0RTI = P0PI = 0). And if the assigned value was equal to one, then in CA 
model, the values of both P0RTI and P0PI was set equal to 0.9 (i.e. P0RTI = P0PI = 0.9). 

In the GA optimization, the population size was set equal to 32 × 10 = 320. 
The reason of this choice was that each of chromosomes has 32 bits, and 10 dif-
ferent states can be assigned to each of bits. Therefore, with setting the popula-
tion size equal to 320, many different therapeutic schedules will be evaluated by 
GA and obtained optimal therapeutic schedule will be more reliable. The GA 
optimization procedure ran on 50 generations. The operations and parameters 
of genetic algorithms that were applied in our simulations are shown in Table 2. 
 
Table 2. The operators and parameters used for GA optimization. 

Parameter/Operator Value/Type Reference 

Generations 50 Ad hoc 

Population Size 320 Ad hoc 

Population Type Bit string [33] 

Number of design variables 2 Ad hoc 

Selection Fcn Selection tournament [33] [34] 

Crossover Fcn Crossover scattered [33] 

Crossover Fraction 0.8 Ad hoc 

Mutation Fcn Mutation uniform [33] 

Mutation rate 0.01 Ad hoc 

Elite Count 2 Ad hoc 
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The drug dosage and concentrations of healthy CD4+T cells and viral load at 
steady state due to applying a therapeutic schedule are the most important fac-
tors in evaluating the quality of that therapeutic schedule. Therefore, in order to 
evaluate the quality of each of chromosomes (therapeutic schedules), the fol-
lowing functions were calculated for each of chromosomes [33].  
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In the above equations, ts indicates the time of onset of treatment; te indicates 
the time of end of treatment. g

iH , g
iI  and g

iT  indicate the concentrations of 
healthy cells, viral load and drug dosage, respectively, that obtained from apply-
ing the therapeutic schedule related to ith chromosome of jth generation. Then 
for ith chromosome of jth generation, the following cost function was defined: 

g g g g
i i i iJ I H T= + +                      (6) 

A desirable therapeutic schedule is a schedule that by applying it, with mini-
mum drug dosage, the concentration of healthy CD4+T cells and viral load at 
steady state reaches to maximum and minimum level, respectively. Considering 
this description and according to functions described above, that is more worthy 
chromosome for which the calculated value of the cost function is smaller (i.e.  

( )( )Best arg min g
iJ= . Then the fitness function for ith chromosome of jth gen-

eration ( )g
iF  was defined as inverse of cost function: 

1g
i g
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=                          (7) 

Since the fitness function is defined as the inverse of cost function, therefore, 
the highest calculated value of cost function is related to the fittest chromosome. 
According to GA optimization procedure, all of the chromosomes of first gener-
ation are sorted according to the value of cost function that was calculated for 
each of them. Chromosomes with smaller calculated value of cost functions were 
transferred to the next generation as the fittest chromosomes of first generation.  

3. Simulation Results and Discussion 
3.1. Results Obtained from Simulating the Proposed CA Model 

In order to simulate the proposed CA model, a cell grid with size of 250 × 250 
was considered. According to the defined initial numbers for each type of cells, 
an initial numbers of normal healthy cells, infected cells (A1), infectious viruses, 
CTLs and antibodies were distributed randomly in the grid space. According to 
the defined rules in Section 2.1.1 and with considering the values of Table 1 for 
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parameters, we simulated the model for 600 iterations (each of iterations was 
considered as one week). The simulation was run 20 times with 20 different 
random initial configurations. Then the average of results obtained from 20 
times run the simulation was shown for each of iterations. First we assumed that 
any types of antiretroviral drugs are not used. For this purpose, the values of pa-
rameters PRTI and PPI were considered as zero. Figure 4 shows the results ob-
tained from this simulation. 

For validating the results obtained from proposed model, we compared our 
results with the standard reference AIDS curve which has been shown in Figure 
2. As this Figure 4 shows, the results obtained from our model are qualitatively 
in a good agreement with the reference curve. In the progress of AIDS, the con-
centrations of healthy and infected cells are of special importance. As long as the 
concentrations of healthy cells are higher than the threshold of AIDS (i.e. 20% of 
maximum number of healthy cells before infection occurs), the risk of death not 
threaten the patient. Therefore, from now on only the concentrations of healthy 
and infected cells will be investigated.  

In the next step, we studied the effects of applying medication on the concen-
trations of healthy and infected cells. As we mentioned before, due to occurrence 
of drug-resistance and as a result of HIV mutation phenomenon, combined an-
tiretroviral therapy (cART) method (the therapy method in which a combina-
tion of both of RTI and PI drugs is used) will be more effective in control of 
progression of AIDS. Therefore, in this study, the effects of applying cART me-
thod, with consideration of different values for drug effectiveness, are studied. 
The concentrations of healthy CD4+T cells and infected CD4+T cells (A1 + A2)  
 

 
Figure 4. Simulation results obtained from proposed CA model during 48 weeks after in-
itial infection (Here we have not considered any antiretroviral treatment in model). 
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obtained from simulating our CA model have been shown in Figure 5 and Fig-
ure 6, respectively. In our simulations, following conditions have been consi- 
dered: at first, we did not apply any medication and we called this situation as 
“without treatment”, then we considered applying cART method with minimum 
drug effectiveness (P0RTI = P0PI = 0.5), medium drug effectiveness (P0RTI = P0PI = 
0.7) and maximum drug effectiveness (P0RTI = P0PI = 0.9). It should be noted that 
in all these conditions the treatment has been started from 160th weeks. In order 
to normalize the obtained results, the following measures were taken: a) in Fig-
ure 5, the average number of healthy cells at each of iterations, divided into the 
initial number of healthy cells. b) in Figure 6, the average number of infected 
cells at each of iterations, divided into the initial number of healthy cells to de-
termine what fraction of normal healthy cells have became infected cells. 

As Figure 5 shows, in terms of without treatment, the concentration of 
healthy cells will decline below the threshold of AIDS after about 250 weeks. 
While, in terms of applying cART, the concentration of healthy cells at steady 
state, remain in higher level than the threshold of AIDS. Also, we can see from 
this figure that the greater drug effectiveness causes more increase in the level of 
concentration of healthy cells at steady state. When we considered minimum, 
medium and maximum drug effectiveness, in compare with the case in which no 
treatment method was considered, the concentration of healthy cells at steady 
state has been increased 28%, 46% and 53%, respectively. 
 

 
Figure 5. Fractions of concentrations of healthy CD4+T cells (H + HR) over weeks in 
presence of cART with different values of drug effectiveness. From up to down, the curves 
are related to applying cART with maximum drug effectiveness (P0RTI = P0PI = 0.9), cART 
with medium drug effectiveness (P0RTI = P0PI = 0.7), cART with minimum drug effective-
ness (P0RTI = P0PI = 0.5) and no treatment, respectively. The treatment has been started 
from 160th week. 
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As Figure 6 shows, applying cART method causes a significant reduction in 
the level of infected cells at steady state. When we applied the cART method 
with minimum, medium and maximum drug effectiveness, in compare with 
condition in which no therapy method has been applied, the level of infected 
cells have been decreased 24%, 37% and 41%, respectively. 

Since the viral load plays an important role in spread of infection, the level of 
infectious HIV particles was studied under following conditions: a) without 
treatment, b) with applying cART method with minimum, medium and maxi-
mum drug effectiveness. Figure 7 shows the level of load under conditions men-
tioned above. As this figure shows, by applying cART method with minimum, 
medium and maximum drug effectiveness in compare with the case of “no 
treatment”, the level of viral at steady state was reduced 55%, 65% and 69%, re-
spectively. Thus, the best result (i.e. the lowest level of infectious viral load) ob-
tained in presence of combined antiretroviral therapy with maximum drug ef-
fectiveness. Therefore, Comparing the results obtained in case of “without 
treatment” with other conditions in which a therapy method has been used 
shows that antiretroviral drugs, in addition to increasing the concentration of 
healthy cells, is leading to a reduction in the level of infectious viral load in the 
patient’s peripheral blood. 

3.2. Validating the Obtained Results from CA Model through  
Comparing with Clinical Data 

Clinical data collection in the field of AIDS is not a simple task. Gonzalez et al.,  
 

 
Figure 6. Fractions of concentrations of infected CD4+T cells (A1+A2) over weeks in 
presence of cART with different values of drug effectiveness. From up to down, the curves 
are related to applying no treatment, cART with minimum drug effectiveness (P0RTI = P0PI 
= 0.5), cART with medium drug effectiveness (P0RTI = P0PI = 0.7) and cART with maxi-
mum drug effectiveness (P0RTI = P0PI = 0.9), respectively. The treatment has been started 
from 160th week. 
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Figure 7. Number of infectious viral load over weeks in presence of cART with different 
values of drug effectiveness. From up to down, the curves are related to applying no 
treatment, cART with minimum drug effectiveness (P0RTI = P0PI = 0.5), cART with me-
dium drug effectiveness (P0RTI = P0PI = 0.7) and cART with maximum drug effectiveness 
(P0RTI = P0PI = 0.9), respectively. The treatment has been started from 160th week. 
 
compared the results obtained from their CA model with clinical data which had 
been published in some of the authentic articles [15]. So in present work in order 
to validation of the results obtained from proposed CA model, we also apply the 
clinical data that had been used by Gonzales et al. In [35] nine patients were se-
lected and were treated by applying cART. Treatment was started for these pa-
tients when the concentration of healthy CD4+T cells in their peripheral blood 
reached to 25% of concentration of this kind of cells in uninfected individual’s 
blood. These patients were followed over a period of eight months. The concen-
tration of healthy CD4+T cells per microliter of patient’s peripheral blood was 
measured three times: once, right at the time of onset of treatment, second time, 
three weeks after onset of treatment and third time, eight months (24 weeks) af-
ter onset of treatment. In this reference, the average number of healthy CD4+T 
cells per microliter of an uninfected individual’s peripheral blood has been re-
ported 970 ± 250 cells. In order to unify the scale of clinical data and results ob-
tained from CA model, the clinical data were normalized by dividing them to 
average concentration of healthy CD4+T cells per microliter of an uninfected in-
dividual’s blood that has been reported in this reference. Figure 8(a) shows data 
relating to each of these patients. In order to comply with the conditions under 
which clinical data were recorded, we considered following assumptions: 1) In 
our model also, the treatment was started when the concentration of healthy 
CD4+T cells reached to 25% of initial concentration of this kind of cells. This  
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(a) 

 
(b) 

Figure 8. Comparing the clinical data of patients, with results obtained from CA model 
in presence of cART method using different values of effectiveness of drugs (P0RTI = P0PI = 
0.5 & 0.9). Panel (a) circles depict concentrations of healthy CD4+T cells from nine pa-
tients who are treated with cART. These data have been collected at time of onset of 
treatment, 3 weeks and 24 weeks after initiation of treatment, respectively. Triangles de-
pict the average values obtained for every week. These data are reported in Table 2 of 
[32]. Panel (b) depicts the fraction of concentrations of healthy CD4+T cells obtained from 
CA model by applying cART method for every week. Red and green bars depict results of 
CA model using minimum and maximum effectiveness of drugs, respectively. Also, blue 
bars depict the average values of real clinical data which are divided by the average of 
healthy CD4+T cells concentration in blood from non-infected individuals (970 ± 250 
cells/µl). 
 
happened at 220th week. 2) The simulations were ran nine times (to show nine 
patients) and at each time, the cART was started at 220th week. During a period 
of 24 weeks, every three weeks, the concentration of healthy CD4+T cells ob-
tained from our model was recorded. 3) This procedure was done once with 
consideration of minimum and once again with maximum drug effectiveness. 

0 3 6 9 12 15 18 21 24 27
0

100

200

300

400

500

600

700

800

900

1000

Weeks after starting cART treatment

 
 

 
 

Real clinical data of 9 patients under cART



G. N. Golpayegani et al. 
 

98 

Figure 8(b) shows the comparison between the average of results obtained from 
our model and average of values obtained from clinical data. As can be observed 
in Figure 8(b), the highest compliance of clinical data with results obtained 
from proposed CA model arises when the drug effectiveness (P0RTI & P0PI) are 
considered minimal. 

In [36], ten patients were selected and were treated by cART method. These 
patents were followed over a period of 168 day (24 weeks). The viral load per 
milliliter of patient’s peripheral blood was measured at following times: right at 
time of onset of treatment and respectively, 21 days (3 weeks) and 168 days (24 
weeks) after onset of treatment. Figure 9(a) shows the recorded clinical data for 
each of 10 patients with an average of them at each measured time interval. In 
order to compare results obtained from our model with clinical data, following 
factors were considered in our model: 1) the simulation was ran 10 times (to 
show 10 patients) and at each time the cART therapy was started at 160th week. 
2) The concentrations of viral load obtained from CA model were recorded at 
same time intervals in which clinical data were measured. 3) This procedure was 
repeated once with minimum and once again with maximum drug effectiveness. 
Figure 9(b) shows the average of results obtained from our model in compare 
with real data. In order to unify the scale of clinical data and results obtained 
from CA model, we normalized both results and clinical data by dividing them 
to their values at the beginning of treatment. Therefore, we can show that the 
viral load at every week is what fraction of its value at the beginning of treat-
ment. As both Figure 9(a) and Figure 9(b) show, clinical data, as well as results 
obtained from our CA model, reflect this fact that due to use of cART method 
the viral load is declined sharply about 3 weeks after onset of treatment. This 
proves that cART method can inhibit the viral load in patient’s peripheral blood 
quickly and successfully. As Figure 9(b) shows, the highest compliance of clini-
cal data with our results arises when the drug effectiveness (P0RTI & P0PI) are con-
sidered maximal. 

3.3. Results Obtained from GA Optimization 

All steps of GA optimization were repeated for 50 generations. Figure 10(a) and 
Figure 10(b) show the average cost function and fitness function over genera-
tions, respectively. As Figure 10(a) shows, during the GA optimization over 
generations, the average cost function is decreasing and according to the inverse 
relation between cost function and fitness function, as Figure 10(b) shows, the 
average fitness function is increasing. Reduction in cost function and increase in 
fitness function during generation, are related to optimization of therapeutic 
schedule and leading to obtain the optimal schedule. In the last generation, the 
chromosome with smallest (biggest) value of cost function (fitness function) was 
presented as the best chromosome. Therefore, by applying the therapeutic sche-
dule related to fittest chromosome, the highest concentration of CD4+T cells, as 
well as, the lowest viral load at steady state and simultaneously the lowest drug 
dosage will be obtained. Figure 11 shows the optimal therapeutic schedule ob-
tained from GA optimization. 
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(a) 

 
(b) 

Figure 9. Panel (a) Circles depict number of copies of HIV-RNA/ml in blood of 10 pa-
tients who are treated with cART. These data are collected at the time of onset of treat-
ment, 3 weeks and 24 weeks after initiation of treatment. Squares depict the average val-
ues obtained for every week. These data are reported in [36]. Panel (b) shows the average 
results obtained from CA model by applying cART with different values of drug effec-
tiveness, for every week. Obtained values are divided to amount of viral load at time of 
start of treatment. Red and green bars are related to applying minimum and maximum 
drug effectiveness, respectively. Blue bars depict average of viral load obtained from clin-
ical data which are divided to average of viral load at time of onset of treatment. 

3.4. Validating the Results Obtained from GA Optimization 

In order to prove desirable performance of optimal therapeutic schedule ob-
tained from GA optimization, three different therapeutic schedules were defined 
and results obtained from applying these schedules were compared with each 
other. These therapeutic schedules are as below. In each of the therapeutic sche-
dules the treatment was started from 160th week. 
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(a) 

 
(b) 

Figure 10. Panel (a) depicts the average of cost functions calculated for all chromosomes 
related to each of generations. Panel (b) is related to average fitness function over genera-
tions during GA optimization. 
 
a) Full therapy with maximum drug dosage: in this case the cART with maxi-

mum drug dosage (i.e. PPI = PRTI = 0.9) was applied at every week.  
b) Best therapy with optimal drug dosage: in this case the optimal therapeutic 

schedule obtained from GA optimization was applied. 
c) Random therapy: in this case, the number of weeks in which cART with 

minimum drug dosage is applied, was set equal to the number of therapy 
weeks in the case of best therapy, but a random therapeutic schedule was ap-
plied during these weeks. 
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Figure 11. This figure depicts the value of drug effectiveness at each of the weeks related 
to optimum therapeutic schedule obtained from GA optimization. The cART therapeutic 
method has been started from 160th week. 
 

Figure 12 shows a comparison between levels of drug dosage, as well as, the 
concentrations of healthy and infected CD4+T cells at steady state resulting from 
applying these three therapeutic schedules. 

As Figure 12 shows, the steady state concentration of healthy CD4+T cells (in-
fected CD4+T cells) obtained from “Best therapy” is just 3.9% (2%) lower (high-
er) than the steady state concentrations of these cells obtained from “Full thera-
py”. Also, the level of drug dosage in “Best therapy” is 47% lower than the level 
of drug dosage in “Full therapy”. Therefore, the steady state concentration of 
healthy and infected CD4+T cells obtained from “Best therapy” is very close to 
the steady state concentrations of these cells obtained from “Full therapy”, while, 
the drug dosage obtained from applying “Best therapy”, in compare with apply-
ing “Full therapy”, is decreased significantly. By comparing results obtained 
from optimum therapy schedule and results obtained from random therapy 
schedule we find that by applying random therapeutic schedule, although the 
level of drug dosage is identical with the case in which optimum therapy sche-
dule has been applied, the steady state concentration of healthy (infected) CD4+T 
cells is 12.9% (9.4%) lower (higher) than the steady state concentrations of these 
cells obtained from optimum therapy.  

Therefore, by concluding our results we find that by applying full therapy 
schedule, although the quality of treatment is maintained, due to the high level 
of drug dosage, the patient will suffer from side effects of antiretroviral drugs. 
On the other hand, by applying random therapy schedule, although the level of 
drug dosage has been decreased, the quality of treatment also decreased. But by  

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weeks after start of treatment

D
ru

g 
ef

fe
ct

iv
en

es
s 

(P
0P

I &
 P

0R
TI

)

Optimum therapeutic schedule obtained from GA optimization 



G. N. Golpayegani et al. 
 

102 

 
Figure 12. Drug dosage and concentrations of healthy and infected cells obtained from 
applying three different therapeutic methods. The set of three bars located on the left, 
middle and right of the figure, are related to applying full therapy method, best therapy 
method and random therapy method, respectively. Blue bars and red bars depict the frac-
tions of steady state concentrations of healthy and infected cells, respectively. The green 
bars are related to the fractions of total drug dosage obtained from each of therapeutic 
method. 
 
applying optimal therapy schedule that obtained from GA optimization, while 
maintaining the quality of treatment, leading to reduction in both, level of drug 
dosage and the side effects of antiretroviral drugs. 

4. Conclusions 

In this study, by using genetic algorithms (GA), we found an optimum thera-
peutic schedule for HIV infected patients based on combined antiretroviral 
therapy (cART) method. In order to simulate the effects of therapy, two-dimen- 
sional cellular automata (CA) model was used. This CA model depicts the dy-
namics involved in the interactions between acquired immune system and HIV, 
in the peripheral blood of HIV infected individuals. This model was developed 
taking into account the following points: a) occurrence of mutation phenomena, 
b) existing time delay in the immune system, c) the role of latently infected cells 
in spread of infection, d) the effects of antiretroviral drugs such as reverse tran-
scriptase inhibitors (RTI) and protease inhibitors (PI), e) occurrence of drug re-
sistance in patients who are under antiretroviral therapy. 

For this purpose, first, we collected appropriate rules related to HIV infection 
in patient’s peripheral blood according to reference articles and base on expert 
knowledge including books and medical journals in the field of AIDS and we 
developed our CA model using these rules. At this step, by comparing the results 
obtained from our CA model with reference HIV curve, we showed that our re-
sults are in a good agreement with the existing reality in the interactions between 
acquired immune system and HIV. At next step, we studied the effects of cART 
by adding some new states and parameters to the proposed CA model. For this 
purpose, we considered a parameter named drug effectiveness for each of RTI 
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and PI drugs that were shown by PRTI and PPI, respectively. Occurrence of drug 
resistance was considered by a negative exponential equation. The concentra-
tions of healthy and infected CD4+T cells over the weeks and the level of viral 
load were obtained by consideration of different values for PRTI and PPI. Our re-
sults showed that by applying maximum effectiveness of RTI and PI drugs, 
compared with cases in which no treatment was applied, the steady state con-
centrations of healthy (infected) CD4+T cells were increased (decreased) 53% 
(41%). Also, the use of cART with maximum drug effectiveness led to a 69% re-
duction in the steady state level of viral load. In order to validate the results ob-
tained from our proposed CA model in the cases in which cART was applied, we 
used clinical data which are provided in authoritative articles. By comparing re-
sults obtained from our model with clinical data, we prove that the best com-
pliance between our results and clinical data arises when we consider minimum 
effectiveness for antiretroviral drugs. 

In the second phase of this study, we used GA optimization to provide an op-
timal therapeutic schedule of cART with maximum drug effectiveness based on 
structured interruptions. To prove the effectiveness of obtained therapeutic 
schedule from GA optimization, three different therapy schedules were defined 
as following: a) Full therapy, b) Best therapy with optimum drug dosage, c) 
Random therapy. According to each of these therapy schedules, cART with 
minimum drug effectiveness was applied or interrupted at each of weeks in the 
proposed CA model. Then the steady state concentrations of healthy and in-
fected CD4+T cells, and the amount of drug dosage obtained from applying each 
of these schedules were presented as our results. Our results showed that by ap-
plying the optimum therapeutic schedule obtained from GA optimization, the 
quality of treatment (i.e. high steady state concentration of healthy cells and low 
steady state concentration on infected cells) is very close when the full therapy 
schedule was applied. But the main point is that applying the optimum thera-
peutic schedule, compared with full therapy schedule, led to 47% reduction in 
the amount of drug dosage. Therefore, the optimum therapeutic schedule pro-
vides the high quality treatment, low amount of drug dosage and low side effects 
of antiretroviral drugs, simultaneously.  

The CA model that was developed for AIDS in this study, involves the biolog-
ical facts of this disease and it could depict all three patterns of progression of 
HIV infection properly. Most importantly, the effects of applying different anti-
retroviral drugs were also considered in this model. Therefore, as an application 
of the model developed in this study can be said, by using this model, physicians 
can evaluate the effects of applying different therapeutic methods on virtual pa-
tients through model, without requiring costly clinical trials on real patients. 
Also, by using Genetic Algorithms (GA), the best therapeutic schedule that pro-
vides the high quality treatment with low amount of drug dosage, can be ob-
tained through this model. Therefore, results obtained from this model can be 
useful for physicians. However, this model is still developing. Finding newer and 
more accurate rules, more accurate estimating of model parameters, adding new 
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states to show different aspects of disease, investigating more varied therapeutic 
methods and adjusting the drug dosage in the therapeutic schedule can be con-
sidered as future works. 
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