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ABSTRACT 

A circularly orbiting electromagnetic harmonic wave may appear when a 1S electron encounters a decelerating stop-
ping positively charged hole inside a semiconductor. The circularly orbiting electromagnetic harmonic wave can have 
an interaction with a conducting electron which has a constant time independent drift velocity. 
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1. Introduction 

The general theory of relativity has predicted the bending 
of light [1] which is an electromagnetic wave [2]. The 1S 
orbital of the electron is said to have a spherical form at 
the overview of some simple molecules [3] and a sphere 
may be considered as consisting of circles. Therefore, if 
an electron is a particle which is one of the particle-wave 
dual properties of the electron [3] then a 1S electron may 
have a circular orbit. When an electron encounters a 
positively charged hole or a positively charged positron 
then a beam of light emerges of which is also known as 
the annihilation of electron and positron [4]. If the posi-
tively charged hole or the positively charged positron is 
decelerating and stopping while encountering the nega-
tively charged electron of the 1S orbital, then the law of 
the conservation of momentum predicts that the K wave 
vector of light which is proportional to the momentum of 
the emerging light or the emerging electromagnetic wave 
should be tangential to a circular orbit [5]. According to 
Fourier’s theorem every periodic function can be de-
composed into its harmonic functions [6]. Therefore, 
light which is an electromagnetic wave and having a pe-
riodic nature can be decomposed into its harmonic func-
tions. 

The Hamiltonian function has started in Classical Me-
chanics as the sum of the kinetic energy and the potential 

energy [7]. For a system of an electron interacting with 
an electromagnetic wave the Hamiltonian is given in 
terms of the A vector potential, the curl of which is the B 
magnetic field and in terms of the scalar potential the 
gradient of which is related to the electric field E of an 
electromagnetic wave [3]. 

The Einstein relativistic energy relation [7] is already 
used as a Hamiltonian to derive the Klein-Gordon equa-
tion [4]. More recently relativistic Hamiltonians are dis-
cussed in the references [8-12].  

In this article the interaction Hamiltonian of an elec-
tromagnetic field with an electron is derived by the use 
of the Lorentz force equation [7], the relativistic mo-
mentum relation [7] and the Hamilton equation [7]. 

2. The Representation of a Circularly  
Orbiting Harmonic Electromagnetic Wave 

The parametric representation of a circle [5] with the 
time parameter is given by 

  cos sint R R i R t j        (1) 

The tangential vector K with respect to a circle [5] 
would have the following parametric representation 

  sin cost  K K i K t j       (2) 

One can check that the inner product of R with K is 
equal to zero meaning that K is perpendicular to R 
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0 K R                   (3) 

A circularly orbiting harmonic wave [13] would have 
an electric field given by 

  exp Ωe i t    E E K r kR          (4) 

and a magnetic field given by 

     exp Ωt m exp Ωe i i t          B B K r i B K r jR I                    (5) 

 
where the inner product of the wave vector K with the 
radius vector r is given by 

  sin cost x t y   K r K K       (6) 

In quantum physics [3] one often needs the field A such 
that 

 A B                  (7) 

where the kinetic part of the Hamiltonian of the interac-
tion of the electron with an electromagnetic field [3] is  
 

given by 

    2

02

i e c

m

  Aħ
             (8) 

To find the field A which satisfies Equation (7) and 
Equation (5) one may write the following equation [14] 

M N A j k                 (9) 

Then for the k component of the field A one may write 

      
0

, , exp sin cos Ω d
x

x

N x y z m i t u t y t u       A K KI                    (10) 

which results in 

 
    

 
0exp cos Ω sin

, ,
sin

i t y i t i t x x
N x y z m

i t

 



        
  

K K
A

K
I  

 
    

 
0exp cos y Ω i sin

, ,
sin

i t i t t x x
N x y z m

i t

 



        
  

K K
A

K
I                  (11) 

and for the j component of the field A one may write 

      
0

, , exp sin cos Ω d
z

z

M x y z e i t x t y t u       A K KR                 (12) 

which results in 

         0, , exp sin cos ΩM x y z e z z i t x t y t        A K KR               (13) 

3. The Interaction Hamiltonian of the  
Circularly Orbiting Harmonic Wave with 
an Electron Having a Constant Time  
Independent Drift Velocity 

When one starts from the following Lorentz force equa-
tion [3,7] 

2

0 2

0
d

0
d

0

i i k j i

j j k i

k k j i

j

k

x E v v
e

m x e E v v B
ct

B

x E v v

      
               
             B

 (14) 

and using the following relativistic momentum relation [7] 

0

2

2
1

m v
p

v

c





               (15) 

From which one can find the following expression for 
the velocity in terms of the relativistic momentum 

2 2
0

cp
v

p m c


 2
            (16) 

Using Equation (16) in Equation (14) and then dividing 
by and integrating with respect to time one finds 0m

0 0
2 2 2

0 0 0

0
d

d 0 d
d

0

i i k j it t i

j j k i j
t t

k k j i k

j

k

x E p p B
e e

H p

x E t p p B t H p
t m m p m cx E p p B

         
                                       H p



 

              (17) 
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where the Hamilton equation [3,7] 

d

d
i

i

x H

t p





              (18) 

is used in Equation (17). Assuming that one may integrate 
firstly with respect to the components of the momentum 
then one can find the following relativ
the Hamiltonian 

 

istic expression for 

   2 2 2
0ln dji k j i

0

di i k
j

e

0i i k

e
H E t p

m



      

 
The first term of Equation (19) is a dyadic which in-

volves an integration with respect to time of the electric 
field. And 

B p p p m c t


 


                  (19) 
m 

kji  
the following series expansio

is the Levi-Civita pseudotensor [6]. Using 
n for the electric field [7] 

     2 4 6

1
2!  

 

4! 6!

t t t            
K r K r K r

E E k                      (20) 

and having the following condition 

              (21) 

which is equivalent to the following relation for the cir-
ularly orbiting electromagnetic wave 

1t K r   

c

  sin cost x  K K  1t y t    (22) 

following relation 

Then the electric field can be
 

 approximated by the  

   2 2

1
2

2 t t        
  

K r
E E k     (23) 

n (6) for in Equation (23) one 
obtains 

K r

Taking the relatio K r

   2 2 22 22 21
1 sin sin cos cos

2
t t t xy t y            

E E K K k  2x  K

    2 21
s

2
t
   

k                           (24) 

 
Integrating Equation (24) with respect to time one obtains 

 

sin x cot   E K K yt t 

 2 2 221 1 1
d sin 2 sin

2 2 4 2

t
t t t x

 
         

    
E E K K t xy 

 k  

2 21 1
sin 2

t
t y

2

1
cos sin

2 2 4

t
t t x 

  
          

    
K k   E K

2 3
2

1 1
sin cos

6

t
t t y t 

 
      

  
E K k                          (25) 

 
To simplify the natural logarithmic term in Equation 

(19) for the Hamiltonian one may assume that 
2

2 2
0

Then one has 

1
p

m c
                  (26) 

 
1 2

2
1 22 2 2 2 2

0 2 2
1i

p
m c

m c
      

0
0

ln lnip p m c p
            
 

(27) 
2 2

0 02 2
00

ln 1 ln
22i i

p p
p m c p m c

m cm c

    
         

     

 
2 2

0 02 2 2 2
0 00 0

ln 1 ln ln 1
2 2

i ip pp p
m c m c

m c m cc m c  m

    
         

 
(29) 

 
2

0
0 2 2

0

2
ln ln 1

2
im cp p

m c
m c

 
   

 
        (30) 

Taking the following series expansion for the na
logarithm [7] 

tural 

 
2 3 4

ln 1 1
2 3 4

x x x
x x x          (

And assuming that 

31) 
 (28) 
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2 2
0 02 2im cp p m c  2           (32) 

Then Equation (27) can become equivalent to the fol-
lowing equation 

   
2

1 22 2 2 0
0 0 2 2

0

i

c
  (33) 

2
ln ln

2i

m cp p
p p m c m c

m

      

For an electron with a constant time i
velocity or a constant time independent momentum of the 
fo

ndependent drift 

llowing form 

i j kp p p  p i j k             (34) 

The Equation (19) for the Hamiltonian then becomes 

      2
0

1 1
lnj 2 2

0 0 0 02i i kji k i
i i kj

d d
e e

H E t p B t
m m c m c

p m c p p
m

 
     

 
 

Having the condition (21) the magnetic field (5 pproximated by [7] 
 

                 (35) 

) can be a

   

       t y j
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B B K K K i
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And the integral of Equation (36) with respect to time becomes 
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Considering the particle-wave duality of the electron 

one may write the following wave equation for a wave 
function Ψ [3] using the Hamiltonian Equation (35) 

     
2

2
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Ψ
d d ln Ψ Ψ

2i kji k
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e e
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        

  
ħ ħ ħ ħ
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Making the replacement E i
t

 

ħ , [15], one obtains t ollowing equation 


he f
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e e
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m i x m i x im c x tm c
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   
         

  
ħ ħ ħ ħ

ħ

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. Conclusions 

St orce equa
Hamilton’s equation of motion and by using the relativis- 
tic expression of the momentum a Hamiltonian is found 
which may describe the interaction of an electromagnetic 

eld (in general) with an electron having a constant time 
ocity. The found Hamiltonian has 

ntegration with respect to time of the 

integrated electric and magnetic fields with respect to time 
icle. 

REFERENCES 
[1] R. d’Inverno, “Introducing Einstein’s Re

don Press, Oxford, 1995. 

[2] H. D. Young and R. A. Freedman, “University Physics,” 

       (39) 

 
4

arting from the Lorentz f tion and using the 
are found in this art

fi
independent drift vel
terms involving the i
electric and magnetic fields. For a circularly orbiting 
electromagnetic field the approximate expressions of the 

lativity,” Clare-

9th Edition, Addison-Wesley Publishing Company, Inc., 
Boston, 1996. 

[3] S. Gasiorowicz, “Quantum Physics,” 2nd Edition, John 
Wiley & Sons, Inc., Hoboken, 1996. 

Copyright © 2011 SciRes.                                                                              JEMAA 



The Interaction of a Circularly Orbiting Electromagnetic Harmonic Wave with an Electron Having a Constant Time  377
Independent Drift Velocity 

alker, “Mathematical Methods of 
Physics,” 2nd y Publishing Com-
pany, Inc., Bos

[4] W. E. Burcham and M. Jobes, “Nuclear and Particle 
Physics,” Addison Wesley Longman Ltd., Singapore City, 
1997.  

[5] T. M. Apostol, “Calculus,” Vol. I, 2nd Edition, John Wiley 
& Sons, Singapore City, 1967. 

[6] J. Mathews and R. L. W
Edition, Addison-Wesle
ton, 1970. 

[7] J. B. Marion and S. T. Thornton, “Classical Dynamics of 
Particles and Systems,” 4th Edition, Harcourt Brace & 
Company, San Diego, 1995. 

[8] G. Sardanashvily, “Geometric Quantization of Relativistic 
Hamiltonian Mechanics,” International Journal of Theo- 
retical Physics, Vol. 42, No. 4, 2003, pp. 697-704.  
doi:10.1023/A:1024490011716 

[9] M. Ilias and T. Saue, “An Infinite-Order Two-Component 
Relativistic Hamiltonian by a Simple One-Step Trans-
formation,” Journal of Chemical Physics, Vol. 126, No. 6, 

 and 
7, pp. 9585-9607.  

2007, Article ID: 064102. 

[10]  D. Alba, H. W. Crater and L. Lusanna, “Hamiltonian 
Relativistic Two-Body Problem: Center of Mass and Orbit 
Reconstruction,” Journal of Physics A: Mathematical
Theoretical, Vol. 40, No. 31, 200
doi:10.1088/1751-8113/40/31/029 

[11] C. Tix, “Strict Positivity of a Relativistic Hamiltonian Due 
to Brown and Ravenhall,” Bulletin of the London Mathe-
matical Society, Vol. 30, No. 3, 1998, pp. 283-290. 

[12] G. González, “Hamiltonian for a Relativistic Particle with 
Linear Dissipation,” International Journal of Theoretical 
Physics, Vol. 46, No. 3, 2007, pp. 486-491.  
doi:10.1007/s10773-006-9099-y 

[13] G. R. Fowles, “Introduction to Modern Optics,” 2nd Edi-
tion, Dover Publications, Inc., New York, 1989. 

[14] T. M. Apostol, “Calculus,” Vol, II, 2nd Edition, John 
Wiley & Sons, Singapore City, 1969. 

[15] W. S. C. Williams, “Nuclear and Particle Physics,” Clar-
endon Press, Oxford, 1997. 

 

 

Copyright © 2011 SciRes.                                                                               JEMAA 

http://dx.doi.org/10.1088/1751-8113/40/31/029
http://dx.doi.org/10.1088/1751-8113/40/31/029
http://dx.doi.org/10.1088/1751-8113/40/31/029

