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ABSTRACT

A circularly orbiting electromagnetic harmonic wave may appear when a 1S electron encounters a decelerating stop-
ping positively charged hole inside a semiconductor. The circularly orbiting electromagnetic harmonic wave can have
an interaction with a conducting electron which has a constant time independent drift velocity.
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1. Introduction

The general theory of relativity has predicted the bending
of light [1] which is an electromagnetic wave [2]. The 1S
orbital of the electron is said to have a spherical form at
the overview of some simple molecules [3] and a sphere
may be considered as consisting of circles. Therefore, if
an electron is a particle which is one of the particle-wave
dual properties of the electron [3] then a 1S electron may
have a circular orbit. When an electron encounters a
positively charged hole or a positively charged positron
then a beam of light emerges of which is also known as
the annihilation of electron and positron [4]. If the posi-
tively charged hole or the positively charged positron is
decelerating and stopping while encountering the nega-
tively charged electron of the 1S orbital, then the law of
the conservation of momentum predicts that the K wave
vector of light which is proportional to the momentum of
the emerging light or the emerging electromagnetic wave
should be tangential to a circular orbit [5]. According to
Fourier’s theorem every periodic function can be de-
composed into its harmonic functions [6]. Therefore,
light which is an electromagnetic wave and having a pe-
riodic nature can be decomposed into its harmonic func-
tions.

The Hamiltonian function has started in Classical Me-
chanics as the sum of the kinetic energy and the potential
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energy [7]. For a system of an electron interacting with
an electromagnetic wave the Hamiltonian is given in
terms of the A vector potential, the curl of which is the B
magnetic field and in terms of the scalar potential the
gradient of which is related to the electric field E of an
electromagnetic wave [3].

The Einstein relativistic energy relation [7] is already
used as a Hamiltonian to derive the Klein-Gordon equa-
tion [4]. More recently relativistic Hamiltonians are dis-
cussed in the references [8-12].

In this article the interaction Hamiltonian of an elec-
tromagnetic field with an electron is derived by the use
of the Lorentz force equation [7], the relativistic mo-
mentum relation [7] and the Hamilton equation [7].

2. The Representation of a Circularly

Orbiting Harmonic Electromagnetic Wave
The parametric representation of a circle [5] with the
time parameter is given by

R =(|R|cosat)i+(|R]|sinat)] 6))

The tangential vector K with respect to a circle [5]
would have the following parametric representation

K = (-|K]sinet )i +(|K|coswt) j )

One can check that the inner product of R with K is
equal to zero meaning that K is perpendicular to R

JEMAA



374 The Interaction of a Circularly Orbiting Electromagnetic Harmonic Wave with an Electron Having a Constant Time
— Independent Drift Velocity

K-R=0 3)

A circularly orbiting harmonic wave [13] would have
an electric field given by

where the inner product of the wave vector K with the
radius vector r is given by

E =|E|Re{exp[i(K-r-t) ]}k ©

and a magnetic field given by

= |B|9‘ie{exp[i (K-r —Qt)]} [ +|B|3m{exp[i (K-r —Qt)}}j (5)
given by X
[(h/l)v;m(oe/c) Al ®

K-r:(—|K|sina)t)x+(|K|cosa)t)y (6)

In quantum physics [3] one often needs the field A such
that

VxA=B @)

where the kinetic part of the Hamiltonian of the interac-
tion of the electron with an electromagnetic field [3] is

To find the field A which satisfies Equation (7) and
Equation (5) one may write the following equation [14]

A = Mj+ Nk Q)]

Then for the k component of the field A one may write

N(x,y,z)=—|A| 3mjE exp[i ((—|K|sina)t)u +(|K|cosat) y—Qt)Jdu (10)
X

which results in

xp[i (|K|cosa)t) y—iQt—i (|K|sina)t)(x— X, )}

N(x,y,z)=|A|fIm{e

i(|K[sinet) }

_ |exp i(|K|cosa)t)y—i§2t—i(|K|sina)t)(X—x)
N(x, y,z):|A|Jm{ [ [KJsinet) o)) (11)
and for the j component of the field A one may write
M (X,Y,2) = —|A|9%ej exp|i((~[K|sinot) x+ (|K|coset) y - 0t |du (12)
which results in
M(x,y,z)= —|A|2)%e{(z— Zo)exp[i((—|K|sinwt)x+(|K|cosa)t)y—Qt)]} (13)
3. The Interaction Hamiltonian of the o m,Vv (15)
Circularly Orbiting Harmonic Wave with - V2
an Electron Having a Constant Time 1—07

Independent Drift Velocity

When one starts from the following Lorentz force equa-
tion [3,7]

1% E 0 —v v | B
e
mod? X; |=-¢€| E; _E Vi 0 -v (| B;| (14
X E, ViV 0 || B,

and using the following relativistic momentum relation [7]

X:

Ei
e t
Xk 0ty Ek
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t
{m,/p +mec’

From which one can find the following expression for

the velocity in terms of the relativistic momentum

V=

(16)

Y
\p*+mc?

Using Equation (16) in Equation (14) and then dividing

by m,and integrating with respect to time one finds

0 -p. p;|[B oH /op,
P 0 —p || B |dt=|dH/dp, (17)
-p; B 0 || B, oH /op,
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where the Hamilton equation [3,7]

%:a_H (18)
dt  op

is used in Equation (17). Assuming that one may integrate
firstly with respect to the components of the momentum
then one can find the following relativistic expression for
the Hamiltonian

N T A
(U J

o i

The first term of Equation (19) is a dyadic which in-
volves an integration with respect to time of the electric

field. And &, is the Levi-Civita pseudotensor [6]. Using
the following series expansion for the electric field [7]

Tr-at)' (K-r-ot)

2
E:|E|{l_(K-r—Qt) LK
2!

and having the following condition
Kr-ot«l (21)

which is equivalent to the following relation for the cir-
cularly orbiting electromagnetic wave

(=|K]sinet) x+(|K|cosat) y < 1+ Ot (22)
Then the electric field can be approximated by the

g +-~}k (20)

following relation

E:|E|{l_(K.r)2—2K.er+(Qt)2}k o)

2

Taking the relation (6) for K-r in Equation (23) one
obtains

E= |E|{1—%[|K|2 (sin a)t)2 x> —2|K|2 sin wt cos a)t-xy+|K|2 (cos a)t)2 y? J}k

—|E|{[(—|K|sina)t)x +(|K|cosat)y |t +%ta2}k (24)

Integrating Equation (24) with respect to time one obtains

[Edt =|E| {t ~Likp (l—Lsinzwt
2" 2 4o

ij +|K|2 (%(Sin a)t)zjxy}k

+|E|{_1|K|2 (£+L5m 260tj y? +|K|[—Lcosa)t +L25in a)tj xQ}k
22 40 ® »

—|E|{|K|(£sina)t+%cosa)tj yQ+let3}k (25)
10} w 6

To simplify the natural logarithmic term in Equation
(19) for the Hamiltonian one may assume that
2

P

2.2
mc

<1 (26)

Then one has

12
ln[p-+(p2+mgcz)]/2}——ln P + mng 1+ pz
i 1 102C2

p’ p’
~1 +mcll+———||=1 . +m,C+ 28
n|:p| 0 [ 2m§cz j:| n|:p| 0 ZmOC:| ( )
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2 2
In| m,c Py pz ~ | |=In(m,c)+1In 1+ﬁ+%
m,C 2mgc mec  2mgc

(29)
2mcp; + p’
= 1n(m0c)+h{n—;mgc2 } (30)

Taking the following series expansion for the natural
logarithm [7]

2 3 4
In(14X) = x—X?+X?—XT+...|x| <1 (3

And assuming that
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|2m0cpi + p2| < 2mgc’ (32)

Then Equation (27) can become equivalent to the fol-
lowing equation

ln[pi (p +mc) } In(myc)+

2m,cp; + p’
Oﬁ (33)

2mgc

H :—miOZi:(IEidt) P> e [Bedt) p

m, 5%

For an electron with a constant time independent drift
velocity or a constant time independent momentum of the
following form

p=pi+pJ+pk (34)

The Equation (19) for the Hamiltonian then becomes

1 1
In(m —p+——p’ 35
{n )+ m,C P 2m;c? P } G

Having the condition (21) the magnetic field (5) can be approximated by [7]

— B[ 1= LK (sin@t)’ X2 =2 K|’ sin ot cos ot - xy +|K[* (cos wt)’ - y* [ Vi
Blf1-2 [

(36)
. 1 . . .
—|B|{[(—|K|sma)t)x+(|K|cosa)t)y}Qt+EQQt2}| +[B][(~]K|sinet)x+(|K]coset) y]
And the integral of Equation (36) with respect to time becomes
_[Bdt —|B|{t——|K| [——Esm%)tjx +|K| ( o s1na)t) J y}l
+|B|{——|K| ( +Ls1n2wtjy +|K|(—lcosa)t+isma)t) XQ} (37)
4w 0] w
—|B|{|K|(lsin ot +L2cos a)tj yQ Lo }i +w[st ot —ysin at]]
w 0] 6 w
Considering the particle-wave duality of the electron function W [3] using the Hamiltonian Equation (35)
one may write the following wave equation for a wave
ehn oY eh h o A
-— Edt)]—-— B In ( f—————V* |¥=E¥
5 (fea) 2 S, (Jet) 2 (o)L &
Making the replacement E = +i/7§ , [15], one obtains the following equation
en ov h 0 I .. 0
-— E.dt B, dt In( V' |¥=iA—V¥
m, i Z.:(I & )8 X ng" (I ) { n(mc)+ im,c dx,  2mJc’ } % ot 9)

4. Conclusions

Starting from the Lorentz force equation and using the
Hamilton’s equation of motion and by using the relativis-
tic expression of the momentum a Hamiltonian is found
which may describe the interaction of an electromagnetic
field (in general) with an electron having a constant time
independent drift velocity. The found Hamiltonian has
terms involving the integration with respect to time of the
electric and magnetic fields. For a circularly orbiting
electromagnetic field the approximate expressions of the
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integrated electric and magnetic fields with respect to time
are found in this article.
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