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Abstract 
This paper discusses a novel technique and implementation to perform non-
linear control for two different forced model state oscillators and actuators. 
The paper starts by discussing the Duffing oscillator which features a second 
order non-linear differential equation describing complex motion whereas the 
second model is the Van der Pol oscillator with non-linear damping. A first 
order actuator is added to both models to expand on the chaotic behavior of 
the oscillators. In order to control the system without comprising lineariza-
tion, Lyapunov non-linear control was used. A control Lyapunov function 
was tailored to the system. This led to improved maneuverability of the con-
troller and the performance of the overall system. The controller was found to 
be highly efficient in system tracking and had swift response time. Simulations 
were performed on both the uncontrolled and controlled cases. Both simula-
tion results ultimately confirmed the effectiveness of the proposed controller. 
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1. Introduction 

Duffing and Van der Pol Oscillators are typical examples of nonlinear dynamic 
systems and thus we will use them as a reference to test the implemented con-
trollers. Both oscillators are good examples of periodically forced oscillators with 
non-linear elasticity. A Duffing oscillator can be represented by the mathemati-
cal model shown in Equation (1); on the other hand a Van der Pol Oscillator 
mathematical model is shown in Equation (2). 

3 0x x x xδ α β+ + + =                            (1) 
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( )2 1 0x x x xα+ − + =                            (2) 

A forced or driven oscillator means that a driving function of cos wt  is add-
ed to Equations (1) and (2). The updated mathematical model will become as 
shown in Equations (3) and (4) representing the Duffing and the Van der Pol 
Oscillators respectively. 

3 cosx x x x P wtδ α β+ + + =                          (3) 

( )2 1 cosx x x x P wtα+ − + =                          (4) 

In our application, we apply an actuator for the oscillators and this yields the 
updated mathematical model that will be used in our calculations. Equation (5) 
represents a driven Duffing oscillator with an actuator. Equation (7) on the other 
hand, represents a driven Van der Pol Oscillator again with an actuator. Mathe-
matical models of the forced Duffing and Van der Pol systems are shown respec-
tively. 

3 cosx x x x P wt uδ α β+ + + = +                       (5) 

From Equation (5) the state space was deduced to be as shown below: 

1 2
3

2 1 2 1 cos
x x
x x x x P wt uβ δ α

   
=   − − − + +   





              (6) 

( )2 1 cosx x x x P wt uα+ − + = +                       (7) 

From Equation (7) the state space was deduced to be as shown below: 

( )
21

2
1 2 12 1 cos

xx
x x x P wt ux α

  
 =   − − − + +   





              (8) 

where α , β , δ  and, w  are all given constants [1]. u  is the given actuator. 
Equation (9) represents the mathematical model of the actuator. 

u u gβ+ =                                (9) 

In a previous work [2], we presented a technique to control a chaotic Duffing 
Oscillators using recursive back stepping Control [3]. In this paper, we will con-
tinue on the work that was presented earlier by showing a solution for the Van 
der Pol oscillator as well. The work presented in this paper will also deal with the 
mathematical model when an actuator is added as shown in Equations (6) and 
(8). The next section will list and describe some of the related works that have 
been done in this field. The following section will describe our proposed method 
with some of the generated results. The paper is then ended with a conclusion 
and a future work. 

2. Related Work 

There are numerous applications for Duffing and Van der Pol Oscillators. For 
example, the Duffing oscillator has been used to do chirp signal detection [4]. It 
is also widely used in the signal communication domain such as in the secure 
communication field as shown in [5] and weak signal detection as shown in [6] 
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and [7]. It has also found its ways to marine applications such as ship propeller 
blade number recognition as shown by Wang et al. in [8]. Van der Pol oscillator 
has had less application examples than the Duffing oscillator nevertheless it still 
found its way into numerous domains such as in the medical field where was 
used in the modelling of the cardiac pulse as shown in [9]. Another example is 
the use of the Van der Pol oscillator in the modeling of the dust density wave 
fields as shown in [10]. 

There has been some work done on the control of a Duffing Oscillator. Kuo et 
al. [11] used a fuzzy sliding controller. The control rules were based on the Lya-
punov stability theorem, simulation results proved that it can successfully con-
trol the system even with the presence of chaos. Alexander Jimenez-Triana et al. 
[12] also presented chaos control for a Duffing system but this time using im-
pulsive parametric perturbations. The presented approach has been established 
based on Melnikov’s method [13] and the authors confirmed the success of the 
proposed method using numerical simulations. 

The authors in [14] investigated the dynamic characteristics of the Van der 
Pol system with added delay. The authors found that Hopf bifurcation occurs 
from trivial equilibrium when the delay passes through critical values. The au-
thors then found the critical values and their relationship with the system para-
meters. The authors proved their results using numerical results. Yang [15] et al. 
studied chaos control in a Van der Pol system with nonlinear force and two 
forcing excitations. The authors proved their results using numeral simulation. 
The authors concluded that chaotic motions are controllable by adjusting the 
phase difference and the amplitude of the second excitation force. Lastly, Van 
der Pol system control was also done using bifurcation such as the work that was 
done by M. Xiao et al. [16]. 

3. Proposed Method and Chaos Analysis 
3.1. Duffing Analysis 

Equation (5) represents the forced Duffing oscillator alongside an actuator. Let 
the error e  be defined as the desiredx x− . This means that desirede x x= −  . 

Let r  be defined as shown in Equation (10) thus r  can be defined as shown 
in Equation (11) and finally v  and v  are defined as shown in Equations (12) 
and (13) respectively. 1γ  and 2γ  are constants representing tunable parame-
ters. 

1 2r e eγ γ= +                              (10) 

1 2r e eγ γ= +                               (11) 

21
2

v r=                                 (12) 

v rr=                                    (13) 

Substituting r  and r  in Equation (13) will yield 
( ) ( )1 1 2v e e e e kvγ γ γ γ= + + = −     (Lyapunov variable). 
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This means that ( )1 2 .
2
kv e eγ γ−

= +   

Rearranging Equation (5) will yield the following: 
3 cosx x x x P wt uδ α β= − − − + +  , substituting the variables and rearranging 

will yield to Equation (14) as shown below. 

31 1
desired

2 2

cos
2 2
k ku e e e x x x x P wtγ γ δ α β
γ γ

= + + + + + + −              (14) 

Now if we suppose that 41
2

v r=  and we follow the same procedure, u  will 

be generated as shown in Equation (15). 

31 1
desired

2 2

cos
4 4
k ku e e e x x x x P wtγ γ δ α β
γ γ

= + + + + + + −              (15) 

The system performance was captured at the values below as shown in Table 1. 
The following figures show the results of the presented control system. Figure 

1 shows a Duffing Actuator Position on Velocity with a stable trajectory for 
Duffing equation with sinusoidal drive using the Grapher application. On the 
other hand, Figure 2 shows the Duffing Actuator Position on Velocity Unstable 
Chaotic trajectory for Duffing equation with sinusoidal drive also using the 
Grapher application. In both cases, it is assumed that x  is θ  and y  is v . 
Figure 3 shows a Duffing Stable solution at 25 in poles with comparison to a 
reference sinusoidal drive. Figure 4 on the other hand shows a Duffing uncon-
trollable system when compared to a reference sinusoidal drive. Looking at the 
position trajectory in Figure 5, it can be noticed that it is uncontrollable position 
with a sinusoidal drive using the Grapher application, it is also assumed here 
that that x  is θ  and y  is v . Finally Figure 6, shows an unstable velocity in 
comparison to the reference sinusoidal drive. 
 
Table 1. System Performance captured at these specific values. 

α δ β 1γ  2γ  k 

0.0003 0.03 0.0002 1 0.7 190 

 

 
Figure 1. Duffing Actuator Position on Velocity Stable. 
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Figure 2. Duffing Actuator Position on Velocity Unstable. 

 

 
Figure 3. Duffing Stable at 25. 
 

 
Figure 4. Duffing uncontrollable. 

3.2. Van der Pol Analysis 

The same principle and logic is applied again to the Van der Pol analysis. Equa-
tion (16) and Equation (17) represent the solution when v  is assumed to be  

21
2

r  and 41
2

r  respectively. 



M. Alghassab et al. 
 

31 

 
Figure 5. Duffing uncontrollable position. 

 

 
Figure 6. Duffing Unstable Velocity. 
 

( )21 1
desired

2 2

1 cos
2 2
k ku e e e x x x x P wtγ γ α
γ γ

′ ′= + + + + − +′ −           (16) 

( )21 1
desired

2 2

1 cos
4 4
k ku e e e x x x x P wtγ γ α
γ γ

′ ′ ′= + + + + − + −           (17) 

Table 2 shows the system best performance. 
Using the same flow for showing the results for the Van der Pol system. Fig-

ures 7-12 shows the same series of plots as the Duffing system. Figure 7 shows 
the Van der Pol Actuator Position vs. Velocity with a stable trajectory for a Van 
der Pol equation with sinusoidal drive. On the other hand, Figure 8 shows Van 
der Pol Actuator Position vs. Velocity Unstable Chaotic trajectory for a Van der 
Pol equation with sinusoidal drive. Again, in both cases it is assumed that x  is 
θ  and y  is v . Figure 9 shows a Van der Pol Stable solution at 25 in poles 
with comparison to a reference sinusoidal drive. Figure 10 on the other hand, 
shows a Van der Pol uncontrollable system when compared to a reference sinu-
soidal drive at pole 7.5. Looking at the position trajectory in Figure 11, it can be 
noticed that it is uncontrollable position with a sinusoidal drive, it is also as-
sumed here that that x  is ( ): is the positionθ θ  and y  is v . Finally Figure 
12, shows an unstable velocity in comparison to the reference sinusoidal drive. 
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Table 2. System Performance captured at these specific values. 

α β 1γ  2γ  k  

0.2 1.2 3 0.5 40 

 

 
Figure 7. Van der Pol Actuator Position on Velocity Stable. 
 

 
Figure 8. Van der Pol Actuator Position on Velocity Unstable. 
 

 
Figure 9. Van der Pol Stable at 25. 
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Figure 10. Van der Pol Uncontrollable. 
 

 
Figure 11. Van der Pol Uncontrollable Position. 
 

 
Figure 12. Van der Pol Unstable Velocity. 

3.3. Energy Calculations 

The potential and kinetic energies are studied in this section. The same analyti-
cal process is used as sections “a” and “b” earlier. The kinetic and the potential 
energy equations are shown in Equation (18) and (19) prospectively. 
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21. .
2

K E mV=                              (18) 

21. .
2

P E kx=                                (19) 

Using the same analysis as before the kinetic energy solution for both Duffing 
and Van der Pol oscillator, respectively, can be expressed as shown in Equations 
(20) and (21). 

( )3 2 2 2 2
2

1 3
2d
ku z xx xx x x xu x x x x x e e e

x
δ α β δ α β α α = + + + − + + − + + +  

       



(20) 

( ) ( ) ( )2 2 2 2 21 1 1 2
2d
ku z e e x xx xx xu x x x x x x e

x
α α α α α = + + + − + + − − − − +  

         

  
(21) 

Using similar analogy, the potential energy for a Duffing and Van der Pol os-
cillator, respectively, can be expressed as shown in Equations (22) and (23). 

( ) ( )2 21 1
2d
ku z k x x kxx kx e e e

kx
α α α = + − + + + + +  

    



         (22) 

( )2 31
2d
ku z k x kxx k x x kx e e e

kx
δ α β α α = + + + + + + +  
     



        (23) 

The dissipation energy for both the Duffing and the Van der Pol oscillators 
can be expressed as shown in Equation (24). 

2D cx=                             (24) 

This will yield dissipation energy solution as shown in Equations (25) and (26) 
representing the Van der Pol and Duffing respectively. 

( ) ( )2 21 2 1 2
2 2d

ku z c x x cxx e e e
cx

α α α = + − + + + +  
   



          (25) 

( )2 31 2 2 2
2 2d

ku z c x c xx c xx e e e
cx

δ α β α α = + + + + + +  
   



        (26) 

The system best performance was then recorded at the values below: 
Table 3 shows the Duffing forced; 
Table 4 shows the Van der Pol forced; 
Table 5 shows the Duffing unforced values; 
Table 6 shows the Van der Pol unforced values. 
Using these solutions the results are shown in Figures 13-15. Figure 13 shows 

 
Table 3. System Performance captured at these specific values. 

α Σ β1 β2 γ 

1 0.1 1.5 1 1 

 
Table 4. System Performance captured at these specific values. 

σ1 σ2 γ1 γ2 β 

1 −0.1 1 1 0 
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Table 5. System Performance captured at these specific values. 

σ1 α β1 β2 γ 

0.2 1 1 0.5 0 

 
Table 6. System Performance captured at these specific values. 

α σ2 σ2 γ β 

1 0.1 −0.1 1 0 

 

 
Figure 13. Duffing Energy change rate. 
 

 
Figure 14. Forced Van der Pol. 
 
the energy exchange rate in the unforced Duffing oscillator. This figure shows 
the kinetic, mechanical, and the potential energies as well as the dissipated pow-
er. Figure 14 on the other hand, shows the energy exchange in a forced Van der 
Pol oscillator. Again this figure shows the mechanical, input energy, and the dis-
sipated energy. Finally, Figure 15 shows the energy exchange in an unforced 
Van der Pol oscillator. Figure 15 shows the kinetic, mechanical, and the poten-
tial energies as well as the dissipated power. 
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Figure 15. Unforced Van der Pol Energy. 

4. Conclusion 

In this paper, we presented a novel nonlinear control method that was applied to 
forced Duffing and Van der Pol oscillators that were experiencing chaotic beha-
vior to a prescribed performance. The oscillators had an actuator applied to 
them. We also presented the energy exchange in forced Duffing and Van der Pol 
oscillators. The paper illustrated the usefulness of the presented method in the 
unstable areas. The presented controllers achieved two objectives: we first stabi-
lized both the Duffing oscillator and the Van der Pol oscillators. Secondly, we 
presented the transient performance of the system. Robustness can be added to 
the system as a future work. This can be achieved by incorporating states esti-
mator, or parameters estimator or even both. These added estimators can be in-
tegrated into the design by introducing more virtual control constraints and 
changing the corresponding Lyapunov function. As an additional future work, 
we would like to incorporate the effort of this work into another work that we 
did earlier and more specifically to the photovoltaic system control with the 
presence of an electric vehicle and a home load as we showed in [17] [18] and 
[19]. 
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