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Abstract 
Quasi-PID control method that is able to effectively inhibit the inherent 
tracking error of PI control method is proposed on the basis of a rounded 
theoretical analysis of a model of switching power amplifiers (SPAs). To avoid 
the harmful impacts of the circuit parameter variations and the random dis-
turbances on quasi-PID control method, a single neuron is introduced to en-
dow it with self-adaptability. Quasi-PID control method and the single neu-
ron combine with each other perfectly, and their formation is named as sin-
gle-neuron adaptive quasi-PID control method. Simulation and experimental 
results show that single-neuron adaptive quasi-PID control method can accu-
rately track both the predictable and the unpredictable waveforms. Quantita-
tive analysis demonstrates that the accuracy of single-neuron adaptive quasi- 
PID control method is comparable to that of linear power amplifiers (LPAs) 
and so can fulfill the requirements of some high-accuracy applications, such 
as protective relay test. Such accuracy is very difficult to be achieved by many 
modern control methods for converter controls. Compared with other mod-
ern control methods, the programming realization of single-neuron adaptive 
quasi-PID control method is more suitable for real-time applications and rea-
lization on low-end microprocessors for its simple structure and lower com-
putational complexity. 
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1. Introduction 

Generating and amplifying waveforms with medium power (i.e., from 1 or 2 W 
to 1 or 2 kW) have many important applications in various industrial fields, such 
as protective relay test, and audio process. The task of generating and amplifying 
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a waveform is tracking the command signal of the waveform in current form 
and voltage form. An amplifier designed for current tracking is called as a cur-
rent amplifier, and that designed for voltage tracking is called as a voltage am-
plifier. 

Apparently, it is easy to generate and amplify a wave-form accurately with low 
power (i.e., less than 1 or 2 W), but, with medium power, the accuracy is difficult 
to control. So, linear power amplifiers (LPAs) [1] that consist of high-power 
transistors are widely used to retain the linear relationships between the com-
mand signals and the output waveforms to acquire a high tracking accuracy. 
However, with the development of power electronics technology, switching 
power amplifiers (SPAs) based on converters (including rectifiers and inverters) 
are also used in a good many waveform generation and amplification occasions, 
such as active power filters (APFs), and low-fidelity audio amplifiers. 

Compared with LPAs, SPAs have those advantages: 1) SPAs do not need the 
digital-to-analog converters that are sometimes very expensive; 2) the nominal 
capacity of a switching device is usually much higher than that of a high-power 
transistor, and thus there is no need to parallel or cascade several devices to ob-
tain a high output power in SPAs, implying a high performance-price ratio of 
SPAs; 3) unlike LPAs, which need at least 3 stages to obtain a high amplifying 
gain, traditionally, SPAs need only 1 amplifying stage, meaning that the basic 
architecture of SPAs is much simpler; 4) the efficiency of SPAs is much higher 
than that of LPAs because the devices operate in a high-speed switching state; 5) 
it is easy to isolate the digital signals from the high-power output signals in SPAs 
by photoelectric couplers. 

Although SPAs have the advantages above, the tracking accuracy of SPAs is 
harder to control than LPAs. To improve the tracking accuracy of SPAs, the au-
thors tested some modern control methods for converter controls. Repetitive 
control method [2] [3] [4], which is based on the internal model principle and is 
a high-performance feed forward control strategy, can effectively track the peri-
odic signals and eliminate the periodic disturbances or distortions. However, 
when the command signal is nonperiodic or unpredictable, the dynamic re-
sponse becomes slow, and the tracking accuracy degrades significantly. Deadbeat 
control method [5] [6], which is a superior predictive control strategy, has ex-
cellent dynamic response and good transient tracking accuracy. However, the 
actual tracking accuracy depends greatly on its predictive model, the choice of 
which is empirical and subjective, and thus it is difficult to ensure the optimality 
of the predictive model. Moreover, the predictive model is sensitive to the un-
certainties of the control object, e.g. the parameter variations of the load, which 
sometimes influence the tracking accuracy. Sliding mode control method [7] [8] 
[9] shows a good robustness against system parameter variations once the oper-
ating point enters the predefined sliding surface. However, it is difficult to de-
sign an optimal sliding surface that can adapt to all types of situations. In addi-
tion, it is based on an ideal assumption that the sliding velocity of the operating 
point is infinitely fast, which is unattainable in practical implementations due to 
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the switching frequency limitations of the devices and other factors. These prob-
lems always induce oscillations in the output waveforms. Moreover, without 
complex improvements, it may suffer from great switching frequency variations. 
In short, these control methods are more suitable for generating and amplifying 
deterministic waveforms to deterministic loads (e.g. in frequency converters), or 
tracking various frequency components with relatively low accuracy (e.g. in 
APFs). Their applications in high-accuracy and variable-load fields are usually 
limited. 

In the process of testing the control methods above to find out the most fa-
vorable one for generating and amplifying waveforms with unpredictable cha-
racters to variable loads with high-accuracy, the authors discovered an interest-
ing control method, which inherits certain characteristics of both PID control 
method and deadbeat control method. Because it is more similar to PID control 
method, it is called quasi-PID control method. Further study shows that quasi- 
PID control method can be integrated with a single neuron perfectly, so the 
self-adaptability to variable loads and self-adjustment to random errors can be 
achieved conveniently. It is called single-neuron adaptive quasi-PID control 
method, and this paper focuses on discussing its derivation details and its appli-
cation in SPAs for protective relay test. 

2. Modeling of an SPA 

The SPA discussed in this paper is based on a single-phase full-bridge topology 
and an independent DC source (shown in Figure 1), which can be combined as 
independent blocks to obtain multiple-channel outputs. 

2.1. Open-Loop Model 

In Figure 1, Q1-Q4 are insulated-gate bipolar transistors (IGBTs), D1-D4 are 
fast-recovery free-wheeling diodes, L and C are inductor and capacitor of LC 
output filter, R is a load resistor, dcV  (a constant) is average voltage of DC 
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Figure 1. Circuit topology of an SPA. 
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source, Li  is inductor current, Ri  is load current, R Rv i R=  is load voltage 
and modu  is modulation signal. The snubber circuits of SPA are omitted for 
simplicity, the design of which can be found in [10]. 

Figure 2 illustrates the principle of generating the bipolar pulse width mod-
ulation (PWM) signals, where cV  is the amplitude of the isosceles-triangle car-
rier, sT  is the carrier period and also the switching period and the sampling pe-
riod (the sampling frequency 1s sf T= ). According to the equivalent-area prin-
ciple [11] [12], the area of the curved-edge trapezoidal pulse ABCDE should be 
equal to the net area of the PWM pulses, i.e. 1 2 3– –B B B BS S S S= . Because sT  
is very small, the area of ABCDE is close to the area of the rectangle A'C'DE (the 
shadowed area AS ). AS  and BS  can be written as 

modcA sS u T=                                       (1) 

1 2 3 on off offB B B B dc dc dcS S S S V t V t V t= − − = − −             (2) 

where modcu  is the ordinate of the intersection point B, [ ]on 0, st T∈  and 
[ ]off 0, 2st T∈  are the turn-on time and turn-off time of Q1 and Q4. From 

A BS S= , the following relationship is obtained: 

( ) ( )modc on 2 2s dc su t T V T= −                    (3) 

where the relationship on off– 2st T t=  is considered. The prerequisite for accu-
rate tracking is that the average output voltage abv  between points a and b 
(seen in Figure 1) should be equal to modcu , thus 
 

 
Figure 2. Principle of generating the bipolar PWM signals. 
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[ ]modc bon bon,  2, 2ab tv s su t K t T Tν = = ∈ −               (4) 

where ( )bon on – 2 sst t T=  and ( )2 V stv dc sK V T= . tbon is called biased turn-on 
time (with an offset – 2sT ), and tvK  is called time-to-voltage transfer coeffi-
cient. It is easy to know that: 1) if ( )on bon0 2st t T= = − , then ab dcv V= − ; 2) if 

( )on bon2 0st T t= = , then 0abv = ; 3) if ( )on bon 2s st T t T= = , then ab dcv V= . So, 
Equation (4) excellently describes the whole process of turn-on and turn-off, and 
is the correct open-loop model of SPA. 

2.2. Closed-Loop Model 

To realize the closed-loop control, the output of SPA should be fed back to affect 

modu , and there are 2 ways to do so: 1) let ( )mod –ie i ie R Ru K e K i i∗= = ; 2) let 

( )mod –ve v ve R R Ru K e K v v i∗ ∗= = ⋅  is the current command signal, Rv∗  is the vol-
tage command signal, ie  is the output current deviation, ve  is the output vol-
tage deviation, ieK  is the current error amplification coefficient and veK  is 
the voltage error amplification coefficient. Because modu  can be assigned with 
either ie iK e  or ve vK e , the SPA in Figure 1 can realize either current tracking 
or voltage tracking, though it is supplied by a voltage source. Given that most of 
the references are dedicated to discussing voltage tracking [13] [14], and that the 
control method of current tracking can be transplanted to voltage tracking with 
slight modifications as discussed, this paper concentrates on discussing current 
tracking only. 

2.3. Continuous Model in Frequency Domain 

bont  in Equation (4) is the output of the controller and the output of SPA needs at 
least 1sampling period sT  to be fed back to the controller, so the continuous 
model of SPA in frequency domain can be constructed as shown in Figure 3. The 
3 blocks enclosed by the dash-dotted frame are the general model of SPA, which 
considers SPA, LC output filter and load resistor together: 

( ) ( )
( ) 2

bon

sT s
R tvI s K eG s

T s RLCs sL R

−

= =
+ +

                 (5) 

( )RI s∗ , ( )RI s  and ( )bonT s  are the Laplace transforms of Ri
∗ , Ri  and bont , 

( )C s  is the transfer function of the controller, and F is the proportional coeffi-
cient of feedback channel. 

Although it is easy to write out the closed-loop transfer function according to 
Figure 3, it is difficult to design the controller due to the pure-delay term sT se−  
which leads the system to be a non-minimum phase system [15]. Further, al-
though the system can be turned into a minimum phase system by expanding 

sT se−  into a power series and taking a finite number of the fore terms, this 
would suffer a great loss of the system bandwidth. Therefore, it is wise to design 
the controller from another angle, i.e., in time domain. 

2.4. Discrete Model in Time Domain 

For digital simulation in time domain, G(s) must be discretized in time domain.  
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Figure 3. Continuous model of SPA in frequency domain. 
 
The first step is to transform G(s) in s domain to G(z) in z domain by virtue of 
the relationship between Laplace transform and z transform: 

( ) ( ) 2
1 1 ss s T sT s T s

tvK ee eG z G s
s s RLCs sL R

−− −  − −
= Ζ = Ζ    + +   

         (6) 

where Z[·] denotes performing z transform on the expressions in the square 
brackets. To maintain the invariability of the system step response after z trans-
form, a zero-order holder, i.e., ( )1 sT se s−− , is introduced to Equation (6). G(z) 
is very complex if expressed with parameter symbols, so, instead, it is expressed in 
numerical type with detailed values of the parameters substituted into the expres-
sion and calculated (the values of the parameters are listed in Appendix A): 

( ) ( )
( )

4 2 4 3

1 2
bon

2.479 10 1.845 10 .
1 1.315 0.412

RI z z zG z
T z z z

− −

− −

× + ×
= =

− +
          (7) 

The second step is to perform inverse z transform on G(z) to get the differ-
ence equation: 

( ) ( ) ( ) ( )
( )

4
bon

4
bon

1.315 1 0.412 2 2.479 10 2

1.845 10 3
R R Ri k i k i k t k

t k

= − − − + × −

+ × −
     (8) 

where k is the integer index of the discrete time series, 0,1, 2,3,k =  . It is as-
sumed: ( ) ( ) ( ) ( ) ( )bon bon bon–1 2 0 and  1 2 3 0R Ri i t t t= − = − = − = − = . 

3. Quasi-PID Control Method 

The Kirchhoff voltage and current equations of the SPA in Figure 1 are as fol-
lows: 

( ) d2 1
d

L
dc L R

ip V L i r v
t

− = + +                    (9) 

d d
d d

R R
L R R

v ii C i RC i
t t

= + = +                   (10) 

where Q Lr r r= +  ( Qr  is the equivalent switching resistance of IGBT, Lr  is the 
winding resistance of L) and p is a unipolar two-valued-logic switching function: 

1 4 1 4

2 3 2 3

2 3 2 3

1 4 1 4

 and  ON   or    and  ON
1

 and  OFF and  and  OFF

 and  ON  or    and  ON
0

 and  OFF and  and  OFF

Q Q D D

Q Q D D
p

Q Q D D
Q Q D D

  
  
  = 
 
 
 

           (11) 

when the symmetric regular sampling method is adopted in the modulating 
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process as shown in Figure 2, it is easy to write out the duty cycle 

on modc 1 .
2 2 2

c ie i

s c c

t u V K e
D

T V V
+

= = ≈ +                 (12) 

The duration time for 1p =  is ont  and that for 0p =  is offt . 
Given that sT  is very small, the integration of current differential Ldi  with-

in a sT  is equal to the summation of small current variations, which is ap-
proximate to inductor current variation Li∆ . Thus, by integrating both sides of 
Equation (9) over a sT , an expression is obtained: 

( ) ( )

( ){ ( ) }

( ) ( ) ( )

0 0

off on

1d 2 1 d

1 2

2 1

s sT T
L L dc L R

dc L R dc L R

s s ie i dc
dc L R L R

c

i i p V i r v t
L

V i r v t V i r v t
L
T T K eVD V i r i R i r i R
L L V

 ∆ ≈ = − − + 

   = − − + + − +   

 
 = − − + = − +  

 

∫ ∫

   (13) 

when Li  is increasing, i.e., 0Li∆ ≥ , from Equation (13)
 

( ) 0c L R
i i

ie dc

V i r i R
e e

K V
∗+

≥ = ≠                   (14) 

where ie∗  is defined as the inherent tracking error. Likewise, when Li  is de-
creasing, i.e., 0Li∆ ≤ , Equation (14) becomes 0i ie e∗≤ ≠ . Here, 0ie∗ ≠  indi-
cates that ei is fluctuating around a nonzero value, that is to say, the non-static- 
error tracking cannot be realized. 

To counteract the nonzero ie∗ , the authors creatively construct a modified 
current command signal: 

( )ˆ .c L R
R R i R

ie dc

V i r i R
i i e i

K V
∗ ∗ ∗ ∗ +
= + = +                 (15) 

By replacing the Ri
∗  in ( )–i i R Re e i i∗=  in Equations (12) and (13) with R̂i

∗ , 
the modified duty cycle D̂  and the modified inductor current variation L̂i∆  
are written as 

( )ˆ 1 1ˆ
2 2 2 2 2

ie R R ie i L R

c c dc

K i i K e i r i RD
V V V

∗ − +
= + = + +               (16) 

( )
( )

ˆ
ˆ .ie R R dcs i s ie dc
L L R

c c

K i i VT e T K V
i i r i R

L V LV

∗ −
 ∆ ≈ − + =
  

       (17) 

According to Equation (17), whether L̂i∆  is increasing or decreasing, ie  is 
fluctuating around 0 now, and thus the inherent tracking error is eliminated. 

If the coefficient of ie  in Equation (17) is intentionally forced to be equal to 
1, then 

c c s
ie

s dc dc

LV LV fK
T V V

= =                       (18) 

and this leads to a concise form of Equation (17): 

ˆ .L ii e∆ ≈                            (19) 
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In practice, the duty cycle is the final control quantity of SPAs, and it needs to 
be discretized for digital control, which entails the discretization of Equation 
(16): 

( ) ( ) ( ) ( ) 1ˆ
2 2 2

ie i L R

c dc

K e k i k r i k R
D k

V V
+

= + +              (20) 

and the incremental type, i.e., ( ) ( ) ( )ˆ ˆ ˆ 1D k D k D k∆ = − −  is 

( ) ( ) ( ) ( ) ( )

( ) ( )

ˆ 1 1
2 2

1 .
2

ie
i i L L

c dc

R R
dc

K rD k e k e k i k i k
V V

R i k i k
V

∆ = − − + − −      

+ − −  

      (21) 

Similarly, Equation (10) is discretized as 

( ) ( ) ( ) ( )1L R R R
s

RCi k i k i k i k
T

= − − +                 (22) 

where the first-order backward difference is adopted to approximate the first- 
order differential. The incremental type of Equation (22), i.e., 

( ) ( ) ( )– –1L L Li k i k i k∆ =  

is 

( ) ( ) ( ) ( ) ( ) ( )2 1 2 1 .L R R R R R
s

RCi k i k i k i k i k i k
T

∆ = − − + − + − −       (23) 

And the discretized type of Equation (19) is 

( ) ( ) ( ) ( )ˆ 1 .L L L ii k i k i k e k∆ = − − ≈                 (24) 

Substitute Equation (24) into Equation (23), Equation (23) can be rearranged 
as 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 .R R i R R R
s

RCi k i k e k i k i k i k
T

− − = − − − + −      (25) 

Then substitute Equations (24) and (25) into Equation (21), Equation (21) 
becomes 

( ) ( ) ( ) ( )

( ) ( ) ( )
2

ˆ 1
2 2

2 1 2 .
2

ie
i i i

c dc

R R R
dc s

K r RD k e k e k e k
V V

R C i k i k i k
V T

+
∆ = − − +  

− − − + −  

         (26) 

A widely used type of PID control method [15] is 

( ) ( ) ( ) ( ) ( )
0

1 .
k

D
P I s

j s

Ku k K e k K e j T e k e k
T=

= + + − −  ∑       (27) 

where ( )u k  is the control quantity, ( )e k  is the error between the real output 
and the expected output (command signal), KP, KI and KD are P, I and D para-
meters. The incremental type of Equation (27), i.e., ( ) ( ) ( )– –1u k u k u k∆ =  is 

( ) ( ) ( ) ( )

( ) ( ) ( )

1

2 1 2 .

P I s

D

s

u k K e k e k K T e k

K e k e k e k
T

∆ = − − +  

+ − − + −  
          (28) 
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A term-to-term comparison between Equations (26) and (28) discloses that 
the first 2 terms are in accordance with each other, and the third term of Equa-
tion (26) is composed of ( )Ri k  while that of Equation (28) is composed of 
( )e k . Therefore, Equation (28) is not a real PID controller, yet it does have a 

structure similar to that of a PID controller. Due to this, Equation (28) is called 
as quasi-PID control method. From the comparison, it is easy to write out the 
quasi-PID parameters: 

( ) 2
ˆ,  ,  

2 2 2 2
sie s

P I D
c dc dc dc

r R fK Lf R CK K K
V V V V

+ −
= = = =           (29) 

where the quasi-D parameter is denoted as ˆ
DK  to be distinguished from DK . 

Accordingly, Equation (26) is simplified as 

( ) ( ) ( ) ( )

( ) ( ) ( )

ˆ 1

ˆ
2 1 2 .

P i i I s i

D
R R R

s

D k K e k e k K T e k

K i k i k i k
T

∆ = − − +  

+ − − + −  
            (30) 

Considering that the control quantity in Equation (8) is ( )bont k , ( )D̂ k∆  
must be converted to ( )bont k∆ : 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

bon bon bon on

2

ˆ1

1

ˆ 2 1 2 .

s

P s i i I s i

D R R R

t k t k t k t k T D k

K T e k e k K T e k

K i k i k i k

∆ = − − = ∆ = ∆

= − − +  

+ − − + −  

           (31) 

4. Single-Neuron Adaptive Quasi-PID Control Method 

Equation (29) shows that all 3 quasi-PID parameters are related to the circuit 
parameters L, sf , dcV , r, R and C. These “known” parameters actually vary 
with loads, operating conditions and disturbances. For example: (i) the fluctua-
tion of the output power would lead to the fluctuation of dcV , so the presump-
tion that dcV  is a constant should be discounted; (ii) the resistance of R is al-
ways drifting with the load temperature; (iii) the nonlinear variations of Qr  and 

Lr  may make r ripple nonlinearly. All these issues would influence the accuracy 
of the quasi-PID parameters and further degrade the tracking accuracy. In addi-
tion, the dead-time embedded in turn-on time and the side effect of snubber 
circuits may introduce extra errors. The authors found that quasi-PID control 
method can be integrated with a single neuron perfectly, and so the adaptive on-
line adjustment of the quasi-PID parameters can be realized conveniently, mak-
ing the dynamic compensations for the aforementioned detrimental influences 
and extra errors feasible. 

4.1. Adaptive Control Structure 

The structure of single-neuron adaptive quasi-PID control method is presented 
in Figure 4, where ( )1x k , ( )2x k  and ( )3x k  are the 3 inputs of the single 
neuron: 
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Figure 4. Structure of single-neuron adaptive quasi-PID control method. 
 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

2

3

1

2 1 2

i i

i R R

R R R

x k e k e k

x k e k i k i k

x k i k i k i k

∗

= − −
 = = −
 = − − + −

               (32) 

And ( )1w k , ( )2w k  and ( )3w k  are the 3 connection weights: 

( ) ( ) ( )2
1 2 3

ˆ,  ,  .P s I s Dw k K T w k K T w k K= = =              (33) 

The single neuron sums the 3 weighted inputs up by its adder component “Σ” 
to form a total input signal: 

( ) ( ) ( ) ( )
3

in bon
1

.j j
j

S k w k x k t k
=

= = ∆∑                 (34) 

Substitute Equations (32) and (33) into Equation (34), it is seen that Equation 
(34) actually realizes the same calculation of Equation (31). 

The 3 connection weights in Equation (34) should be normalized to maintain 
their relative magnitudes to promote the robustness of simulation and actual 
control. The normalization can be carried out by virtue of vector norms. There 
are 3 commonly used vector norms [16]: 1) 1-norm, the summation of the abso-
lute values of the elements; 2) 2-norm, the square root of the quadratic sum of 
the elements; 3) ∞-norm, the maximum value of the absolute values of the ele-
ments. Comparisons show that 2-norm is of the greatest computational com-
plexity, and simulations show that it does not give a better control effect than 
1-norm. Although ∞-norm is of the lowest computational complexity, it always 
makes one of the 3 normalized connection weights equal to 1, causing the cor-
responding input to have the greatest impact on the control quantity and thus 
inducing oscillations on the output waveform during the first 1 or 2 power fre-
quency periods. Therefore, 1-norm is the best choice, and the normalized type of 
Equation (34) based on 1-norm is 

( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( )

3 3 3

in norm 3
1 1 11

1

j j
j j j j

j j j
n

n

w k w k
S k x k x k w x k

w k w k= = =

=

= = =∑ ∑ ∑
∑

   (35) 

where ( ) ( ) ( ) ( )1 2 3, ,k w k w k w k=   w  is the connection weight vector, ( )
1

kw  
is the 1-norm of ( )kw , and jw  is defined to replace the coefficient of ( )jx k  

 

2 ( )x k  

3 ( )w k  

2 ( )w k  

1( )w k  

– 

3 ( )x k  

– + 

+ 
+ 

i ( )e k  + R ( )i k∗  

1z−  

12z−  

2z−  

Σ  ( )f ⋅  bon ( )t k  
– 

( )G z  
R ( )i k  

1( )x k  
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for short. 
The single neuron takes ( ) ( )in normS k  through excitation function ( )·f  to 

generate the normalized control quantity: 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) [ ]

( ) ( ) ( )

in norm

bon norm in norm in norm in norm

in norm

5 5,

  5,5

5 , 5
sl

S k

t k f S k K S k S k

S k

 ∈ ∞
 ∆ = = ∈ − 

− ∈ −∞ −

 (36) 

where a linear proportional function with amplitude limitations is chosen as 
( )·f , and slK  is the slope of the linear segment of ( )·f . The choice of this ex- 

citation function lies on 2 considerations: (i) limiting the amplitude of the con- 
trol quantity is indispensable to prevent the control quantity from overreaching; 
(ii) ( ) ( )in normS k  has already been the required control quantity, further pro- 
cesses with complex excitation functions (such as the sigmoid function or the 
radial basis function) may not only deprive its physical meanings but induce 
unnecessary computational complexities, so it is better to choose a simple func-
tion to slightly adjust its amplitude. It should also be noted that the amplitude 
limitations of ( )·f  are set as ±5 instead of ±1 (±1 are the amplitude limitations 
defined in normalization theory). The reasons are: 1) avoiding pure decimal- 
fraction computations on fixed point microprocessor used in this paper, which 
may introduce large rounding errors to the calculated data; 2) slightly loosening 
the amplitude limitations to enhance the fault tolerance of the algorithm. 

In Equation (8), the coefficients of ( )bon – 2t k  and ( )bon – 3t k  are far 
greater than those of ( )– 1Ri k  and ( )– 2Ri k  because the variables and their 
coefficients are all actual values. Seeing that Equations (35) and (36) are in nor-
malized types, Equation (8) cannot be calculated with them if not normalized 
accordingly. So 2 steps are taken to normalize ( )bont k  and ( )Ri k : (i) according 
to Equations (4) and (36) [ ]bon – 2 , 2s st T T∈ , ( ) ( ) [ ]bon norm –5,5t k ∈ , when 

–41 10  ssT = × , ( ) –5 5
bon –5 10  s,5 10  st k − ∈ × ×  , so ( ) ( ) ( ) –5

bon bon norm 10t k t k= × ; 
(ii) the peak-to-peak values of the output current in this paper are designed as 
±10A, so ( )Ri k  is normalized by being divided by 10A, and the result is the 
per-unit value ( ) ( ) ( )norm 10RRi k i k= . Based on the 2 steps above, Equation (8) is 
normalized as 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
norm norm norm

bon norm bon norm

13.15 1 4.12 2

                   0.2479 2 0.1845 3 .
R R Ri k i k i k

t k t k

= − − −

+ − + −
      (37) 

4.2. Adaptive Learning Algorithm 

The general learning rule [17] for connection weight adjustment is as follows: 

( ), ,g dη λ∆ = −w w x x w                     (38) 

where w  is the connection weight vector, ∆w  is the incremental vector of w , 
0η >  is the learning rate, x  is the input vector, d (a scalar quantity) is the 

expected output and is called the teacher signal, function ( )·g  is the learning 
signal and 0λ ≥  is a real constant. 
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Argument 1: If ( ), ,g d d y e= − =w x  (e is the error between d and the ac-
tual output y, e and y are scalar quantities) and 0λ = , then ( )–d yη∆ =w x , 
which is perceptron learning rule based on least mean square standard. This 
learning rule includes d, so it is a supervised learning rule with teacher guidance, 
and theory [18] verifies that it is asymptotically stable. The expanded type is 

( ) ( ) ( ) ( ) ( ) ( )j j j jw k d k y k x k e k x kη η∆ = − =            (39) 

where, in this paper, ( ) ( ) ( )normRd k i k∗= , ( ) ( ) ( )normRy k i k= , ( ) ( )ie k e k=  and 
1, 2,3j = . Simulations show that this learning rule possesses outstanding stabil-

ity but lacks “independence” or “self-learning enthusiasm”. When illustrated on 
the output waveform, the phenomenon is that the steady-state errors of the out-
put waveform are very small while the response speed is fairly slow. 

Argument 2: If ( ), ,g d u=w x  ( u  is the control quantity and a scalar quan-
tity) and 0λ = , then uη∆ =w x , which is Hebb learning rule. This learning 
rule does not include d, so it is an unsupervised learning rule without teacher 
guidance, and theory [18] verifies that it is unstable under certain conditions. 
The expanded type is 

( ) ( ) ( ) ( ) ( )1j j j j jw k w k w k u k x kη∆ = − − =            (40) 

where, in this paper, ( ) ( ) ( )bon normu k t k= . Simulations show that this learning 
rule has strong “independence” and “self-learning ability”, and its learning speed 
is very fast. So the output waveform has a fairly high response speed. However, 
because of the lack of teacher guidance, the steady-state errors are relatively 
large. 

To better illustrate the 2 arguments above, a periodic square waveform is cho-
sen as an example. The reasons for the choice are: 1) for periodic waveform, 
comparisons can be made between different waveforms or among different seg-
ments of the same waveform; 2) for square waveform, it has rising and falling 
edges and smooth segments, so the steepness of the former can be used to com-
pare the response speed while the smoothness of the latter can be used to com-
pare the steady-state errors. The simulated output waveform using perceptron 
learning rule is presented in Figure 5(a), which shows that the rising and falling 
edges are not steep (i.e., the response speed is slow) but the smooth segments are 
very flat (i.e., the steady-state errors are very small). The simulated output 
waveform using Hebb learning rule is presented in Figure 5(b), which shows 
that the rising and falling edges are steeper than those in Figure 5(a) (i.e., the 
response speed is faster), but there exist oscillations and great overshoots in the 
smooth segments (i.e., the steady-state errors are large); the oscillations seem to 
grow larger, implying the likelihood to become unstable. 

Given that the strong point of perceptron learning rule is the weak point of 
Hebb learning rule and vice versa, the authors creatively combine them together 
and propose the perceptron-Hebb learning rule: 

( ) ( ) ( ) ( ) ( ) ( )1 .j j j j jw k w k w k e k u k x kη∆ = − − =          (41) 

The simulated output waveform using the new learning rule is presented in  
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(a) 

 
(b) 

 
(c) 

Figure 5. Comparison of the simulated output waveforms using 3 learning rules. (a) 
Perceptron learning rule, (b) Hebb learning rule, (c) perceptron Hebb learning rule. 
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Figure 5(c), which shows that the rising and falling edges are steeper than those 
in Figure 5(a) and the smooth segments are flatter than those in Figure 5(b), 
meaning that both the response speed and the steady-state errors are im-
proved—the new learning rule inherits the strong points of the two but gets rid 
of their weak points to a large extent; moreover, the possible unstability of Hebb 
learning rule never exists. 

4.3. Control Flow and Stability Analysis 

The control flow of single-neuron adaptive quasi-PID control method for simu-
lation or actual control is summarized in Figure 6. It is shown that Equations 
(32), (41) and (36) are the 3 most important computational procedures of the 
flow chart, but they introduce only a small amount of floating additions and 
multiplications. These calculations are of relatively low computational complexi-
ties, meaning that the control method is very suitable for real-time control and 
for realization on low-end microprocessors. 

From Equation (33), it is seen that ( )0jw  is actually initialized by quasi-PID 
parameters, which, as mentioned above, would vary during operation. So ( )0jw  
is eventually initialized by values with small unpredictable errors. Therefore, it is 
necessary to analyze the impacts of the inaccuracy of the initial ( )0jw  on sys-
tem stability. Considering the great complexity of the calculation process, only 
the conclusive results are presented. 
 

 

k = 0, initialize wj(0) according to Equation (33), choose ηj and Ksl, 
let xj(k) = 0, y(k) = 0, u(k) = 0 

Realize control: (i) for simulation, u(k) = tbon(norm)(k) is substituted 
into Equation (37) to calculate y(k) = iR(norm)(k); (ii) for actual 
control, u(k) = tbon(norm)(k) is converted into an integer, with which 
the timer of the microprocessor times the duty cycle of PWM 
signals and SPA generates the correspondent y = iR 

Get the calculated or sampled y(k) and d(k) = *
R(norm) ( )i k , 

calculate xj(k) according to Equation (32) 

Update wj(k) according to Equation (41) 

k = k + 1, calculate u(k + 1) according to Equation (36) 

Run out of waveform data? 

End 
Yes 

No 

Start 

 
Figure 6. Flow chart of single-neuron adaptive quasi-PID control method 
for simulation or actual control. 
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By performing z transforms on Equations (36) and (37) respectively, then 
solving the resultant simultaneous equations, the system function 

( ) ( ) ( ) ( ) ( )norm normR RH z I z I z∗=  can be obtained. After rationalizations of both 
the numerator and the denominator polynomials of ( )H z , the denominator 
polynomial becomes the characteristic polynomial that is in the following form: 

( ) 5 4 3 2
5 4 3 2 1 0chF z a z a z a z a z a z a= + + + + +             (42) 

where 0 1 5, , ,a a a  are the coefficients acquired from rationalizations. In terms 
of Jury criteria [19], the constraint conditions for system stability are as follows: 

1) The first criterion requires ( )1 0chF > , and it is fulfilled straightforwardly 
because 0 1 5, , ,a a a  are all positive numbers; 

2) The order of ( )chF z  is 5, an odd number, so the second criterion requires 
( )–1 0chF < , the calculation of which gives the in equation 

1 2 30.00634 0.1268 0.2536 2.3454 slw w w K− − + <           (43) 

3) The third criterion requires 0 5a a< , the calculation of which gives the in 
equation 

30.1845 1slK w <                       (44) 

4) … 
The punctuation “…” means the curtailment of the subsequent calculations. 

From calculations, it is found that as long as the choice of slK  fulfills both Eq-
uation (43) and Equation (44), the curtailed in equations are fulfilled as well; 
what’s more, all the in equations have some margins to retain their inequalities, 
which not only gives the choice of slK  certain freedom, but also makes the im-
pacts of the small unpredictable errors caused by variations of quasi-PID para-
meters on the initializations of ( )0jw  negligible. In short, the initializations of 

( )0jw  according to Equation (33) and the choice of slK  according to in equa-
tions (43) and (44) can ensure the system stability. 

5. Simulation and Experimental Results 

In this section, the effectiveness of single-neuron adaptive quasi-PID control 
method is illustrated by 4 groups of simulation and experimental results. Section 
5.1 tests the sheer ability of quasi-PID control method to counteract the inherent 
tracking error without the aid of the single neuron. The next 3 sections concen-
trate on testing the adaptabilities of single-neuron adaptive quasi-PID control 
method to different loads, operating conditions and disturbances. 

5.1. Ability to Counteract the Inherent Tracking Error 

A5A (RMS), 50 Hz sinusoidal waveform is chosen for the test. Here, in order to 
compare the actual performances of quasi-PID control method with the current 
command signal Ri

∗  (with Ri
∗ , the control method is actually the PI control 

method [20]) and with the modified command current signal R̂i
∗ , the single 

neuron is temporarily thrown off. The results are presented in Figure 7, and it is 
clear that the simulated waveforms and the experimental ones are alike. Figure 7  
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(a) 

 
(b) 

Figure 7. Ability of quasi-PID control method to counteract the inherent tracking error. 
(a) Simulation result, (b) experimental result. 
 
shows that the output waveform with Ri

∗  is fluctuating around the expected 
output waveform and is distorted in the vicinity of the peaks, which illustrates 
the existence and the detrimental effects of the inherent tracking error; however, 
the one with R̂i

∗  satisfactorily inhibits the fluctuations and distortions, which 
means the inherent tracking error is effectively counteracted. At the end of this 
subsection, it should be pointed out that the experimental waveforms in Figure 
7(b) are obviously thicker than those in Figure 10(f), even the one with R̂i

∗ , 
which is the visible representation of the impacts of the circuit parameters drift 
and the random disturbances as mentioned in Section 4. These unpredictable 
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errors can only be eliminated or compensated by the adaptability of the single 
neuron. 

5.2. Adaptability to Load Variations 

A ± 5 A (peak-to-peak value), 50 Hz square waveform (its characteristics were 
discussed in Subsection 4.2) is chosen to test the tracking speed (the response 
speed) and the tracking accuracy (the steady-state errors) of single-neuron adap-
tive quasi-PID control method. Normally, to current tracking, the load resistor R 
is of a few ohms, so 2 situations, R = 3 Ω and 10 Ω, are chosen for the test. The 
reason for the choice of this load difference (10 Ω − 3 Ω = 7 Ω) is that if the 2 
values of R are fairly close, the results would be too close to distinguish. Howev-
er, this choice gives rise to a problem. The maximum output power of the pro-
totype machine in this paper is designed as 100 W. If the ±5 A square waveform 
is outputted to R = 3 Ω, the maximum output power is at least 75 W, and if out-
putted to R = 10 Ω, the maximum output power would be up to 250 W, which is 
unrealizable for the prototype machine. Thus, only the simulation results are 
presented (shown in Figure 8). 

A comparison of Figure 8(a) and Figure 8(b) shows that the steepness of 
the rising and falling edges and the smoothness of the smooth segments are 
alike except the overshoots, so the tracking speed and the tracking accuracy 
are almost invariant for different values of R, which illustrates the good adap-
tability of single-neuron adaptive quasi-PID control method to different load 
resistors. 

5.3. Adaptability to System Parameters Drift 

As mentioned in Section 4, there are many types of system parameters drift, so, 
for brevity, the drift of the load resistor R at different temperatures is chosen as a 
test example, where it is assumed that R varies from 3 Ω to 5 Ω with temperature 
increase. In practice, this variation is actually very slow, but for convenience the 
variation of R is further assumed to be abrupt because the fast variation can en-
compass the slow variation as its special case. A5A (RMS), 50 Hz sinusoidal 
waveform is again chosen for the test instead of the square waveform, because 
as to a square waveform, choosing the abrupt variation point at the rising or 
falling edge would seem to be too special while choosing at the smooth seg-
ment would lack representativeness. It is unsafe to abruptly vary the load re-
sistor by a switch or a relay on-line on the prototype machine, and the switch 
may introduce side effect to the circuit, so again, only the simulation results 
are presented (shown in Figure 9). 

Figure 9(a) shows that R varies abruptly from 3 Ω to 5 Ω at 0.042 s, and the 
induced disturbance on the output waveform is nearly undetectable. For clear 
presentation, the dynamic tracking error ei is presented in Figure 9(b) to illu-
strate the disturbance. Figure 9(b) indirectly illustrates the rapid adjustment 
of single-neuron adaptive quasi-PID control method towards the abrupt dis-
turbance. 



X. M. Sun 
 

36 

 
(a) 

 
(b) 

Figure 8. Adaptability of single-neuron adaptive quasi-PID control method to different 
load resistors. (a) R = 3 Ω, (b) R = 10 Ω. 

5.4. Adaptability to Waveforms with Different Frequency 
Components 

Different types of output waveforms contain different frequency components, 
the content and duration of which, in practice, may be unpredictable. Although 
the predesigned sampling frequency sf  determined by the hardware fixes the 
theoretically maximum bandwidth of the open-loop system ( )  2sf , the con-
troller may lead to a great loss of the predesigned bandwidth of the close-loop 
system. From many simulations and experiments, the authors found that most 
of the control methods (such as those mentioned in Section 1) are more suitable 
for generating and amplifying sinusoidal waveforms or specified waveforms only,  
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(a) 

 
(b) 

Figure 9. Adaptability of single-neuron adaptive quasi-PID control method to abrupt 
load variation. (a) The simulated actual output waveform, (b) dynamic tracking error. 
 
since the frequency components of these waveforms are predetermined and the 
parameters of the controller can be directly adjusted towards these frequency 
components to acquire a relatively high and stable tracking accuracy; however, 
for waveforms with unpredictable frequency components, the tracking accuracy 
of these control methods may decline uncontrollably if there exist some fre-
quency components not preconsidered during the design process of the control-
ler due to the poor adaptability of these control methods. Thus, in this subsec-
tion, the adaptability of single-neuron adaptive quasi-PID control method to 
different types of waveforms, with and without unpredictable frequency com-
ponents, is tested, and the simulation and experimental results are presented in 
Figure 10. 
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(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 
(f) 
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(g) 

 
(h) 

 
(i) 
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(j) 

Figure 10. Adaptability of single-neuron adaptive quasi-PID control method to wave- 
forms with and without unpredictable frequency components. (a) Simulated square wave- 
form, (b) experimental square waveforms of phases A and B, (c) simulated triangular 
waveform, (d) experimental triangular waveforms of phases A and B, (e) simulated 
sinusoidal waveform, (f) experimental sinusoidal waveforms of phases A and B, (g) a fault 
current waveform recorded by DFR, (h) experimental fault current waveform of (g), (i) a 
fault voltage waveform recorded by DFR, (j) experimental fault voltage waveform of (i). 
 

Figures 10(a)-(f) show that the simulation waveforms and the experimental 
waveforms match with each other closely, and Figures 10(g)-(j) show that the 
experimental fault current waveform and the experimental fault voltage 
waveform match the corresponding ones recorded by digital fault recorder 
(DFR) satisfactorily. The waveforms in Figures 10(a)-(f) contain invariable 
(deterministic) frequency components that can be obtained by Fourier series 
expansion, and the waveforms in Figures 10(g)-(j) contain variable (unpre-
dictable) frequency components, the unpredictability of which is generated by 
the random characteristics of the faults in electrical power systems. These 
figures illustrate excellent adaptabilities of single-neuron adaptive quasi-PID 
control method to waveforms with deterministic and unpredictable frequency 
components from qualitative angle. A new comparison of Figure 10(f) and 
Figure 7(b), which is correspondent to the one in Subsection 5.4, shows that 
the sinusoidal waveform in Figure 10(f) is slimmer and smoother than that in 
Figure 7(b), demonstrating that single-neuron adaptive quasi-PID control 
method adaptively inhibits the circuit parameters drift and the random dis-
turbances. 

However, merely assessing the accuracy of the output waveforms from a 
qualitative angle, i.e., from the subjective impression, is very superficial, espe-
cially when the waveform is too complex to discriminate its subtle discrepan-
cies. Therefore, a quantitative criterion for accuracy assessment is constructed, 
which is able to assess the accuracy of the waveforms by making point-to- 
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point comparisons between the actual output waveform and the expected one 
and then give a score. This quantitative criterion is mean square error 
( ) ( )2

–MSE R RMSE e E i i∗ =   
, where the notation [ ]·E  signifies the mathe-

matical expectation computation. For discrete time series, [ ]·E  is estimated 
by a statistical quantity: 

( ) ( ) ( ) ( )
2

norm norm
1

1ˆ 100%
N

MSE R R
k

i k i k
N

ε ∗

=

 ≈ − × ∑           (45) 

where N is the length of the time series. As an example, Equation (45) is per-
formed on the experimental fault current waveform in Figure 10(h), which is  
a waveform with unpredictable frequency components, and the result is 
ˆ 0.11%MSEε ≈ . For comparison, the same fault current waveform is generated by 

quasi-PID control method (without the single neuron), and the result is 
ˆ 2.9%MSEε ≈ ; by PI control method, ˆ 5.7%MSEε ≈ ; by repetitive control method, 
ˆ 4.5%MSEε ≈ ; by deadbeat control method, ˆ 2.4%MSEε ≈ ; by sliding mode con-

trol method, ˆ 2.2%MSEε ≈ . It is clear that with the introduction of the quasi-D 
term, quasi-PID control method gains a relatively high accuracy by compensat-
ing the inherent tracing error of PI control method, which, to some extent, is al-
ready comparable to the accuracies of deadbeat control method and sliding 
mode control method. And the improvement owing to the single neuron is more 
impressive, and this high accuracy has made the applications of SPAs in some of 
the high-accuracy fields possible. For example, the regenerated fault current and 
fault voltage in Figure 10(h) and Figure 10(j) can be used for protective relay 
test or other similar tests [21], the accuracy requirement of which is generally 
prescribed as ≤1.5%; this means that by virtue of single-neuron adaptive quasi- 
PID control method SPAs can also be used in protective relay test equipment so 
as to make the equipment small in volume and weight but high in performance. 

6. Conclusions 

1) Quasi-PID control method that is directly derived from the circuit topology of 
SPA can effectively inhibit the inherent tracking error, and its derivation process 
reveals an important fact: the quasi-D term is not a real D term in PID control 
method, so PID control method is actually not suitable for the control; because 
the real D term may serve as a weird disturbance causing system unstability, that 
is why few references reported such an application. 2) Although quasi-PID con-
trol method may suffer from quasi-PID parameters variations caused by circuit 
parameters drift and random disturbances, it can be combined with a single neu-
ron to form single-neuron adaptive quasi-PID control method to maintain its 
excellence. 3) Simulation and experimental results illustrate that single-neuron 
adaptive quasi-PID control method is able to accurately track both the predicta-
ble and the unpredictable waveforms, and the quantitative analysis demonstrates 
that its accuracy is higher than most of the modern control methods and is 
comparable to that of LPAs. 4) Compared with many modern control methods, 
the programming realization of single-neuron adaptive quasi-PID control me-
thod is very simple, and the computational complexity is very small. 
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Appendix A. Circuit Components List 

Digital Signal Processor (DSP): TMS320 LF2407A 
IGBT Module: PM30CSJ060 
Fast-Recovery Free-Wheeling Diode: HFA04TB60 
DC Energy-Storage Capacitor: 4700 μF 

dcV : 67 V 
L: 1.8 mH 
C: 37.6 μF 
R: 0 - 4 Ω 

sT : 1 × 10−4 s 

sf : 10 kHz 
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