Journal of Applied Mathematics and Physics, 2017, 5, 194-223
http://www.scirp.org/journal/jamp

ISSN Online: 2327-4379

ISSN Print: 2327-4352

@,
0:0‘ Scientific

Q: Publishing

4

Periodic Solutions of Some Polynomial
Differential Systems in R*

Makhlouf Amar, Bousbiat Lilia

Department of Mathematics, University of Annaba, Annaba, Algeria

Email: amarmakhlouf@yahoo.fr, liliabst@gmail.com

How to cite this paper: Amar, M. and
Lilia, B. (2017) Periodic Solutions of Some
Polynomial Differential Systems in R*.
Journal of Applied Mathematics and Phys-
ics, 5, 194-223.
http://dx.doi.org/10.4236/jamp.2017.51019

Received: December 20, 2016
Accepted: January 23, 2017
Published: January 26, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.

This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

DOI: 10.4236/jamp.2017.51019

Abstract

We provide sufficient conditions for the existence of periodic solutions of the
polynomial fourth order differential system

X x) (h(t) P(X y,u,v)

y h, (t P, (X VU,

3_/ =A y + 2() +& Z(quv) , where Ais a4 x 4 constant matrix,
Ul ol ()] R yuv)

v v) (h(t) P, (X, y,u,v)
R,P,,P, and P, are polynomials in the variables x, y; u, v of degrees n,

h, (t):hi (t+2n) with 1=1,2,3,4 being periodic functions and ¢ is a

small parameter.
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1. Introduction

One of the main problems in the theory of differential systems is the study of
their periodic orbits, their existence, their number and their stability. As usual a
limit cycle of a differential system is a periodic orbit isolated in the set of all pe-
riodic orbits of the differential system.

The goal of this paper is to study the existence of the periodic orbits of the
polynomial fourth order differential system

X x) (h(t) R (X y,u,v)
y| AlY] |h(t) P, (X, y,u,v)
i =A J + hg(t) +& F’S(X,y,u,v) , (1.1)
v v) Lh(t) P, (X, y,u,v)

where A is 4 x 4 a constant matrix, B,P,,P, and P, are polynomials in the

January 26, 2017


http://www.scirp.org/journal/jamp
http://dx.doi.org/10.4236/jamp.2017.51019
http://www.scirp.org
http://dx.doi.org/10.4236/jamp.2017.51019
http://creativecommons.org/licenses/by/4.0/

M. Amar, B. Lilia

variables x, y; u, v of degrees n, N (t)=h (t+2n) with i=1,2,3,4 being pe-
riodic functions and ¢ is a small parameter.

There are many papers studying the periodic orbits of the fourth order diffe-
rential systems and equations (see for instance [1]-[11]). But our main tool for
studying the periodic orbits of the system (1.1) is completely different to the
tools of the mentioned papers, and consequently the results obtained are distinct
and new. We shall use the averaging theory, more precisely Theorem 6 and 7.
Many of the quoted papers dealing with the peiodic orbits of four-order diffe-
rential equations use Schauder’s or Leray-Schauder’s fixed point theorem, or the
nonlocal reduction method or variational methods.

To obtain analytically periodic solutions is in general a very difficult work,
usually impossible. Here with the averaging theory we reduce this difficult prob-
lem for the differential system (1.1) to find the zeros of a nonlinear system of
four equations with four unknowns. It is known that in general the averaging
theory for finding periodic solutions does not provide all the periodic solutions
of the system. To explain this idea, there are two main reasons. First, the aver-
aging theory for studying the periodic solutions of a differential system is based
on the so-called displacement function, whose zeros provide periodic solutions.
This displacement function in general is not global and consequently it cannot
control all the periodic solution, only the ones which are in its domain of defini-
tion and that are hyperbolic. Second, the displacement function is expanded in
power series of a small parameter ¢, and the averaging theory only controls the
zeros of the dominant term of this displacement function. When the dominant
term is &£, we talk about the averaging theory of order & For more details, see
for instance [12] and the references quoted there.

The method of averaging is a classical tool that allows studying the dynamics
of the nonlinear differential systems under periodic forcing. The method of av-
eraging has a long history that starts with the classical works of Lagrange and
Laplace, who provided an intuitive justification of the method. The first forma-
lization of this theory was done in 1928 by Fatou [13]. Important practical and
theoretical contributions to the averaging theory were made in the 1930’s by
Bogoliubov and Krylov [14], in 1945 by Bogoliubov [15], and by Bogoliubov and
Mitropolsky [16] (English version 1961). For a more modern exposition of the
averaging theory see the book of Sanders, Verhulst and Murdock [17]. For more
information about averaging theory, see Section 2 of this paper.

In [18], the authors studied the bifurcation of limit cycles from the periodic
orbits of a linear differential system in R* in resonance 1:n perturbed inside a
class of piecewise linear differential systems which appear in a natural way in
control theory. In [19], the authors studied the limit cycles of the fourth-order
differential equation

K= (A+ )X+ (1+ Ap) K= (A + p) X+ Apx = eF (X, %, %, X, 1),
where ¢ is a small enough parameter and F € C® is a 2m-periodic function

in the variable £ In [20], the authors studied the autonomous case of the pre-

vious equation, (Ze. Fdoes not depend on #) using another approach. In [21], the
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authors provide sufficient conditions for the existence of periodic solutions of
the fourth-order differential equation
K +(1+ p? )%+ pPx = gF (%, %% X),

where p is a rational number different from 0, ¢ is small and Fis a nonlinear
function. In [22], the authors provide sufficient conditions for the existence of
periodic solutions of the fourth-order differential equation

K +0gX+ px = eF (t, X, %, %,X),
where p, g and ¢ are real parameters, ¢ is small and Fis a nonlinear non-
autonomous periodic function with respect to ¢ The five previous cited papers
used averaging method.

In [23] we studied the system (1.1) in dimension 3 using averaging method, 7.e.

the following system

X=-y+eP(xy,2)+h(t),

y=x+Q(x,y,z)+hy(t),

2=az+&R(xy,z)+h(t),
where a is a real number, P, Qand R are polynomials in the variables x, y; z of
degrees n, h (t) =h, (t + 271',) with 1=1,2,3 being periodic functions and ¢ is
a small parameter. In this paper our objective is to provide the existence of peri-
odic solutions of system (1.1).

Our main results on the periodic solutions of the differential system (1.1) are

the following theorems.

-1 0

One considers system (1.1) with A= , our result is the fol-

0

o O +» O
o O O
= O O O

lowing.
Theorem 1. One defines

(X1 Yor Ug: Vo)

— o= )" (c0s(t) R (a(t).b(t).o(t).d (1)) +sin(t) Py (a(t).b(1). (1), (1))t
f(xo,yo,uo,m

= L[ (-sin(t) B (a(t).b(0).¢(1).d 1)+ cos(t) Py (a(t) b(0).o(1).d 1))
E(XOvyo’Uo'Vo)

= L[ (cos(t)Py(a(t) (1) c(¢), (1)) sin (1) Py (a(1).b(2).c(1).d (1),
f(xo.yo,uo,m

= L [ (-sin(t)P, (a(0).b(t) (1) d (1)) 005 (1) Py (2(t) b (1) (), 9 (1)),
where

a(t)=cos(t)x, —sin(t)y, + j;(cos(t —s)h (s)-sin(t-s)h,(s))ds,
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b(t) =sin(t)x, +cos(t)y, +j;(sin(t—s)hl(s)Jrcos(t—s)h2 (s))ds,
c(t) =cos(t)u, —sin(t)v, +j;(cos(t—s)h3(s)—sin(t —-s)h,(s))ds,
d (t) =sin(t)u, +cos(t)v, +L§(sin(t —s)hy(s)+cos(t—s)h,(s))ds.

If

Lf“(c )=sin(s)h, (s))ds =
J'Ozn( sin (s)+cos(s)h, (s))ds =
IOZTI(

cos( )—sin(s)h,(s))ds =
Iozn(—sin(s)h3( s)+cos(s)h, (s ))ds—
then for every (XS + Yo Ug, Vo ) solution of the system
Fe (X1 Yo, Ug: Vo) =0, k=1,2,34,

satistying

o EFFE)
a(XOa yO’u07V0)

the difterential system (1.1) has a periodic solution

<

(%0.¥0.p Vo )= XoYOUOVo J
(
(
(
(

)
)
)
)

the periodic solution given by

) [0 -G e ) sin(t 5 s)) 0
y(t)|_ sin(t)x; +cos(t)y; +L§(sin(t—s)hl(s)+cos(t—s)h2(s))ds
:E:; cos(t)uy —sin(t)v; +J';(cos(t—s)h3 (s)-sin(t—s)h,(s))ds

sin(t)ug +cos(t)v; +f;(5|n(t -s)hy(s)+cos(t—s)h,(s))ds

X=-y+h(t),
y=x+h,(t),
U=-v+h(t),
v=u+h,(t),

when & — 0.

Note that this solution is periodic of period 2.

(1.2)

, which tends to

0 -1 00
. . 0 00 e
One considers system (1.1) with A= 00 4 ol We distinguish three
0 0 0 u

%%
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cases for different parameter values 4 and g :

Casel: A#0 and u=0.

Case2: A=0 and p4#0. (Or A#0 and x=0).
Case3: A=pu=0.

Our results for these three cases are the following ones.
Theorem 2. Casel

One defines

F (%0 Yo)

1 (cos(t)P(a(t),b(t),c(t),d(t))+sin(t)P2(a(t),b(t),c(t),d(t)))dt,

27t
F, (Xo' yo)
= [ (=sin ()R (a(t),b(t),c(t),d (1)) +cos(t) P, (a(t)b(t).c(t),d (t)) ),

2170

where
a(t) = cos (t) X, ~sin (t) o + [, (cos(t ~s)1 (s) ~sin(t—s)h, (s))ds,
bi(t) =sin (t) %, +cos(t) Yo + J,(sin (t - )1y (s) + cos(t—s)h, (s)) ds
c(t)=e™u, + [ hy (s)ds,
d(t) =ev, + [ h, (s)ds.
Ir

Jozn(cos( s)h, (s)+sin(s)h,(s))ds=0, (1.3)
jozn(—sin( s)hy (s)+cos(s)h,(s))ds =0,

uo _ jZﬂeﬂ,(Zn S)h3 (S)dS,

1
1

2n n—s
. 1-e*™ .[o e )h4 (s)ds,

then for every (XS Yo ) solution of the system

Fi (%, ¥0)=0, k=12,

satistying

#0,
(XO' yO) (xoyo)(xa’ys)J

the differential system (1.1) has a periodic solution ; , which tends to

the periodic solution given by

198 00’ Scientific Research Publishing
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cos(t)x; —sin(t) y, +_[;(cos(t =s)h(s)-sin(t-s)h,(s))ds
Xg; sin(t) x; +cos(t) y, +ﬁ(sin (t—s)h,(s)+cos(t—s)h,(s))ds
y — it
uEt; B 1_eem J'Ozneﬂ(z“’s)hg(s)ds+ﬁeﬂ("5)h3(s)ds
v(t
% j;"e”(z"'s)h3 (s)ds+ j;e”(t's)h4 (s)ds

of the differential system
X=-y+h(t),
y =x+h,(t),
U=Au+h(t),
V= v+h,(t),

when & — 0.
Note that this solution is periodic of period 2.
Theorem 3. Case 2 (/1 = 0)
One defines

]'I(Xo'yo'uo)
1

= Ozn(cos(t)Pl(a(t),b(t),c(t),d(t))+sin(t)P2(a(t),b(t),c(t),d(t)))dt,

where
a(t)=cos(t)x, —sin(t)y, + j;(cos(t —s)h,(s)—sin(t—s)h,(s))ds,
b(t)=sin(t)x, +cos(t)y, +j;(sin(t—s)hl(s)+cos(t—s)h2(s))ds,
c(t) =y + [ hy(s)ds

d(t) =e*v, + [ h, (s)ds.

I
2n
J, " (cos +S'”( )h, (s))ds =0,
2n
J, (=i (s)+cos(s)h,(s))ds =0,
(1.4)
J hy(s)ds =0,
1 2n_y(2ns
Vo = 7=z Jo €7 (s) s
then for every (X;, Yo Ug ) solution of the system
Fi (X9, YouUg ) =0, k=1,2,3,
*3%: Scientific Research Publishing 199
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satistying

a(XO’yO’uO)

#0,
(XOvVO:UO):(XavVSvUS)

the differential system (1.1) has a periodic solution , which tends to

the periodic solution given by

0 cos(t)xg—sin(t)yg+j;(cos(t—s)m(s)—sin(t—s)hz(5))ds
y(t) ) sin(t)xg+cos(t)yg+E(sin(t—s)hl(s)+cos(t—s)hz(s))ds
u(t) u;+J';h3(s)ds
V(t) e’ on u(zm-s) q u(ts)p q

T J'O e L (s) s+joe , (s)ds

of the differential system

Xx=-y+h(t),
y=x+hy(t),
u =h3(t)*
V:yv+h4(t),

when & — 0.
Note that this solution is periodic of period 2.
Theorem 4. Case3

One defines

F1 (%01 Yol Vo)

=5 (eos(R (a(1) b(1)e(1).d (1)) +sin ()P, (a(t) (1) (1) d (1))
F (Xm yo,uo,vo)
= 521, (-sin(0R (2(1)b(t).¢(1), 0 (1)) +c0s(1)P, (a(1) b(1). (1) A (1),

75 (% Yot ¥) = o= [1"(P. (1) (1) (1), 4 (1),

(%, yO,uo,vo)=%J'Ozn(&(a(t),b(t),c(t),d(t)))dt,
where

a(t)=cos(t)x, —sin(t)y, +L§(cos(t—s)hl(s)—sin(t—s)h2 (s))ds,
b(t)=sin(t)x,+cos(t)y, +J'(:(sin(t—s)hl(s)+cos(t—s)h2 (s))ds,

c(t) =u, + ['hy(s)ds,

200
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d(t)=v, + ['h, (s)ds

If
J'Ozn(cos (s)+sin(s)h,(s))ds =
I(;n( sin(s)h, (s)+cos(s)h, (s ))d ws)
Jo (s )ds‘
[, (s)ds =0,

then for every (XS,VS,US,VS) solution of the system
Fo (%, YorUg: Vo) =0, k=1,2,3,4,

satistying

get| 22 5 i) 0
(Xo’yO’UO’VO) (%Yo Uo Vo )=(16.5.45.

the differential system (1.1) has a periodic solution

the periodic solution given by

® cos(t)x; —sin(t)y; +j;(cos t—s)h(s)—sin(t—s)h,(s))ds
yt) | sin(t)x§+cos(t)y§+ﬁ(sn t—s)h(s)+cos(t—s)h,(s))ds
W) ||
o) 0 I?hS(S)dS

Vo + [ hy (s)ds

of the differential system
x=-y+h(t),
y=x+h,(t),
u=h(t),
v=h,(t),
when & — 0.
Note that this solution is periodic of period 2m.

0100
. . 0 0O

One considers system (1.1) with A= 0 0 4 1l Our result are the fol-
0 0 0 24

lowing.
Theorem 5. One defines

F (% Yo)
1

==l (cos(t)P(a(t),b(t),c(t),d(t))+sin(t)P2(a(t),b(t),c(t),d(t)))dt,

%%
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F2 (%1 Yo)
- 2iﬂjj"(—sin ()R (a(t).b(t).c(t).d(t))+cos(t) P, (a(t),b(t),c(t),d (1)))dt,
where
a(t) = cos (t) %, —sin(t) o + [, (cos(t ~s)1 (s) ~sin(t—s)h, (s))ds,
bi(t) =sin(t) %, +cos(t) y, + [ (sin(t ~s)1 (5) + cos (- s)h, (5))ds,
o(t) =e™u, +tevy + [ (hy(5)+ (t—s)h, (s))ds,
d(t)=e™v, + [ "I, (s)ds.
I
J; (cos(s) (s) +sin(s)h (s))ds =0,
Ji"(=sin(s)hy(s) + cos (s (5))ds =0,

2 n T—S 1 n n-S o
Uy :ﬁﬁ e*®"*h, (s)ds +mj§ et )(h3(s)—sh4(s))ds, (1.6)

%jzne’l(z”’s)h4 (s)ds,

V, =
0 1_g¥ o

then for every (XS Yo ) solution of the system
Fe (%, ¥o)=0, k=12,

satistying
de{ggf» ]
o Y0 sy )
x(t,€)
the differential system (1) has a periodic solution Zgg , which tends to the
v(t,¢)

periodic solution given by
cos(t)x; —sin(t)y, + _[;(cos(t -s)h (s)-sin(t-s

sin(t)xg +cos(t)y, + I;(sin (t—s)h,(s)+cos(t—s

~

=
>

—_~
w

~—

~—
o
w

§E3 L (ny(5)+ (t- 5)h, () ds + . "el(tS)e(ﬂi(_s)l_ ()
:8 . 2me?™ .foznel("s)h[l (s)ds

(=

eZM, 2n A(t-s) li(t—s)
el & ()5 [, (s)es

of the differential system

K2
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X==y+h(t),
y=x+hy(t),
(1),

V=Av+h,(t),

U=Au+v+h,

when & — 0.

Note that this solution is periodic of period 2.

2. Basic Results on Averaging Theory

In this section we present the basic results on the averaging theory that we shall
need for proving the main results of this paper.
We consider the problem of the bifurcation of T-periodic solutions from dif-

ferential systems of the form
x=F,(t,x)+eF (t,x)+£°F, (t.x,&). (2.1)

with £=0 to £#0 being sufficiently small. Here the functions
Fo. R iRxQ > R" and F,:RxQx(-¢,&)—>R" are C* functions, T-pe-
riodic in the first variable, and ( is an open subset of R". The main assump-

tion is that the unperturbed system

X =Fy(t,x), (2.2)

has a submanifold of periodic solutions. A solution of this problem is given us-
ing the averaging theory. For a general introduction to the averaging theory see
the books of Sanders and Verhulst [17], and of Verhulst [24].

Let X(t,z,&) be the solution of the system (2.2) such that x(0,z,&)=2z. We
write the linearization of the unperturbed system along a periodic solution
x(t,z,0) as

y=D,F(t.x(t,2,0))y. (2.3)

In what follows we denote by M, (t) some fundamental matrix of the linear
differential system (2.2), and by &:R* xR"™* — R* the projection of R" onto
its first k coordinates; ie. §(X1,~~-, X, ) =(X,*, X ). We assume that there ex-
ists a k -dimensional submanifold Z of Q filled with T-periodic solutions of
(2.2). Then an answer to the problem of bifurcation of T-periodic solutions from
the periodic solutions contained in Z for system (2.1) is given in the following
result.

Theorem 6. Let W be an open and bounded subset of R, and let
B:CI(W)—>R"™ bea C* function. We assume that

i) Z= {Za = (a,ﬂ(a)),a eCl (W)} cQ and that for each 1,€Z the so-

lution x (t, za) of (8) is T-periodic;

(ii) for each 1, € Z there is a fundamental matrix Mza (t) of (9) such that
the matrix M;:(O)— l\/l;a1 (T) has in the upper right corner the kx(n—k)

zero matrix, and in the lower right corner a (n—k)x(n—k) matrix A, with
det(A,)=0.

K2
035: Scientific Research Publishing
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We consider the function F :Cl (W) — R
1 -
F(a)= 5(?ng; ()Rt x(t,za))dtj. (2.4)

If there exists aeW with F(a)=0 and det((dF/da)(a))#0, then
there is a T-periodic solution go(t,g) of system (2.1) such that (/1(0,8) -1,
as € —>0.

Theorem 6 goes back to Malkin [25] and Roseau [26], for a shorter proof see
[27].

We assume that there exists an open set V with ClI (V)C Q such that for
each zeCl(V), x(t,z,0) is T-periodic, where X(t,z,0) denotes the solu-
tion of the unperturbed system (2.2) with X(O, Z, 0) =72z. The set ClI (V) is
isochronous for the system (2.1); Ze. it is a set formed only by periodic orbits, all
of them having the same period. Then, an answer to the problem of the bifurca-
tion of T-periodic solutions from the periodic solutions X(t, z, 0) contained in
CI(V) is given in the following result.

Theorem 7. (Perturbations of an isochronous set)

We assume that there exists an open and bounded set ' with Cl (V ) cQ
such that for each 7€ CI(V), the solution x(t,2,0) is T-periodic, considering
a function F:Cl(V)—>R" defined by

F(2)= [ M (1) Rt x(t2))at (2.5)

If there exists an aeV with F(a)=0 and det[(%—fj(a)jio, then
7

there exists a T-periodic solution ¢(t,&) to system (2.1) such that »(0,e)>a as
e—0.
For the proof of theorem T please see Corollary 1 of [27].

3. Proof of Theorems

3.1. Proof of Theorem 1

We shall apply Theorem 7 to the differential system (1.1). It can be written as
system (2.1) taking

X —y+h(t) R (X y,u,v)
h, (t P (%Y.,
x=|”’ A=t F (t,x)= Xy (1) and F(t,x)= 2 (6 yuv)
u —v+h(t) P, (X y,u,v)
v u+h,(t) P, (X, y,u,v)
We shall study the periodic solutions of system (2.2) in our case the system
(11 .
By using
x(t) X, h(s)
(1) _ett| Yo | [l M, (s) ds,
u(t) Uy | *° h(s)
v(t) A h, (s)

204
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we obtain

RNERY

it can be written as

x(t)) (cos(t) —sin(t) 0 0
y(t)|_|sin(t) - cos(t) yot O | .l O |
u(t) o | 0 |”° " |cos(t)|® |-sin(t)]|"°
v(t) 0 sin(t) cos(t)

[ (sin(t-s)hy(s)+cos(t—s)h, (s))ds

y(2n)| _| y(0)
u(2m) u(0) |
v(2r) v(0)

We obtain the periodicity conditions given in the theorem 1 by (1.2).
The set of periodic solutions has dimension 4. To look for the periodic solu-
tions of our system (1.1) we must calculate the zeros z=(X,,Y,,U,V,) of the

system F(z)=0, where F(z) is given by (2.5). The fundamental matrix
M (t) of the differential system (2.3) is

cos(t) -sin(t) 0 0
m =m0 N S !
0 0 sin(t)  cos(t)

Now computing the function 7 (z) we find the system

-}Z(XOvYOvUOlVo):Ol
-7:2()(0’ yo’uovvo) =0,
-7:3(XOi y01u07V0):O’
‘7:4()(0’ yo’uovvo) =0,

where A,F,,F;, and F, have been defined in the statement of Theorem 1.
The zeros (XS, y;,u;,vg) of the system (3.2) with respect to the variables X,
Yo» U, and V, provide periodic solutions of system (1.1) with ¢#0 being

sufficiently small if they are simple, 7.e. if

K2
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A Fy T )

det
G(XO, yo'uo’vo) (

# 0.

XOvYOvUOvVo):(XEvYSxUS:VS)

For simple zero (xg, Yo, Ug, VS) of system (3.2) we obtain a 2x -periodic solu-
x(t, &)
y(te)
u(t,e)
v(t,e)

small which tends to the periodic solution given in the statement of theorem 1 of

tion of the differential system (1.1), for £#0 being sufficiently

the differential system (1.1)5:0 when & — 0.
This completes the proof of Theorem 1.

3.2. Proof of Theorem 2

We shall apply Theorem 6 to the differential system (1.1). It can be written as
system (2.1) taking

X —y+h(t) P(xy.u,v)
Sy, L] xahy(t) I B(xy.uv)
x=| [ t=tF (t,x)= vy (1) and F,(t,x) P, (%, youv) |
v u+h,(t) P, (X y,u,v)
We shall study the periodic solutions of system (2.2) in our case the system
(1.1), -
By using
x(t) % h(s)
y(t) —eh Yo " eA(th) h2 (S) ds,
u(t) Uy | 707 hy(s)
v(t) Yy h(s)
we obtain

) cos(t)xo—sin(t)y0+j;(cos(t—s) s)—sin(t—s)h,(s))ds
y(t) _ sin(t)xOJrcos(t)yO+jt sin(t—s)h, (s)+cos(t—s)h,(s))ds
)
)

(
(

u(t e u0+fe (), (s)ds
( )

t
! e v0+J'0e“(t “h, (s)ds

X

, (3.3)

it can be written as

x(t) cgs(t) —sin(t) 0

t sin cos
o |7 | T
v(t) 0 0 0
. j;(cos(t—s) hy(s)=sin(t-s)h,(s))ds
N 8 - .[;(sin(t—s) hy (s)+cos(t—s)h,(s))ds

t .[t e S)h3 (S)ds
je"‘ “h, (s)ds
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These solutions are 2n — periodic if and only if

x(2m) x(0)
y(2m)|_| y(0)
u(2m) u(0) |
v(2m) v(0)

We obtain the periodicity conditions given in the theorem 2 by (1.3). Since
U, and Vv, arenow fixed then the set of periodic solutions has dimension 2. To
look for the periodic solutions of our system (1.1) we must calculate the zeros
z2=(%,Y,) of the system F(2)=0, where F(z) is given by (2.4). The fun-
damental matrix M (t) of the differential system (2.3) is

cos(t) -sin(t) 0 O
M ()= M, (1) = smo(t) cos(,)(t) e(it 8
0 0 0 e

Now computing the function 7 (z) we find the system

{'ﬁ(xmyo):oy
]:z(xmyo)zo!

where F and F, have been defined in the statement of Theorem 2.

(3.4)

The zeros (xg,y;‘) of the system (3.4) with respect to the variables X,,Y,
provide periodic solutions of system (1.1) with &£=0 being sufficiently small if

they are simple, Ze. if

(%, 7)

det
3(%o» Yo)

#0.

(Xovyo)=(x3~)'5)

For simple zeros (XS, yg) of system (3.2) we obtain a 2z -periodic solution
x(t,¢)
y(te)
u(t,e)
v(t,¢)

which tends to the periodic solution given in the statement of theorem 2 of the

of the differential system (1.1), for £#0 being sufficiently small

differential system (1.1) ~ when & —0.
This completes the proof of Theorem 2.

3.3. Proof of Theorem 3

We shall apply Theorem 6 to the differential system (1.1). It can be written as
system (2.1) taking

x e 2 (1.0
Ayl | xny (1) R (X y.uv)
x=| =R (tx)= (1) and F (t,x) P (% y,uv) |

v v +hy(t) P, (X y,u.v)

%%
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We shall study the periodic solutions of system (2.2) in our case the system

(11),,,
By using
x(t) X, h(s)
y(t) :eAt Yo eA(l—s) hz(s) ds
u(t) Uy | -0 hy(s)|
v(t) A h,(s)
we obtain
“(0 cos(t)xo—sin(t)yo+f;(cos(t—s)hl(s)—sin(t—s)hz(s))ds
y(t)| sin(t)xo+cos(t)y0+f;(sin(t—s)m(s)+cos(t—s)hz(s))ds 35)
ut)| u0+_[;h3(s)ds o
V) ey, + f;e”(t's)hA (s)ds

it can be written as

x(t)) (cos(t) —sin(t) 0
y(t)|_|sin(t) - cos(t) - 0,
u(t) o | o |1
v(t) 0 0 0
oy [Bleos(t-9n(s)-sin(t-s)n (s))es
o], | LEmsme)cos(t-s)n (s))es
e?zt 0 J.;h3(S)dS
) ;e“("s)h4 (s)ds

These solutions are 2n — periodic if and only if

x(2m) x(0)

y(2r)| _| v(0)
u(2m) u(o) |
v(2n) v(0)

We obtain the periodicity conditions given in the theorem 3 by (1.4). Since
V, is now fixed then the set of periodic solutions has dimension 3. To look for
the periodic solutions of our system (1.1) we must calculate the zeros
Z=(X,Yo:Uy) of the system F(z)=0, where F(z) is given by (2.4). The
fundamental matrix M (t) of the differential system (2.3) is

cos(t) —sin(t) 0 0
M ()=m, ()= o) 9
0 0 0 eyt

Now computing the function F(z) we find the system
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-7'—1(X01yovuo):0,
F (XOI yw“o) =0, (3.6)
0

E(XOV yw“o):

where F,F, and F, have been defined in the statement of Theorem 3.
The zeros (XS Yo u;) of the system (3.5) with respect to the variables X, Y,

and U, provide periodic solutions of system (1.1) with £#0 being suffi-
ciently small if they are simple, Ze. if

0(F 75, F5)

det
6(x0,y0,u0)(

#0.
Xo:Yo.Uo)={6.3 43 )

For simple zeros (XS, Yo u;‘) of system (3.5) we obtain a 2m -periodic solu-
x(t,€)
y(t.e)
u(t,e)
v(t,e)

small which tends to the periodic solution given in the statement of theorem 3 of

tion of the differential system (1.1), for £#0 being sufficiently

the differential system (1.1)5:0 when ¢ —0.
This completes the proof of Theorem 3.

3.4. Proof of Theorem 4

We shall apply Theorem 7 to the differential system (1.1). It can be written as
system (2.1) taking

X -y +h(t) P (X y.u,v)
X = 5 A=t F(tx)= X;gh(ztgt) and F,(t,x) = ZE’X‘)V,E:;
v h, () P, (X y,u,v)

We shall study the periodic solutions of system (2.2) in our case the system

%%
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(2.2),-
By using
xgt; X, hl((s))
y(t At y0+teAls h, (s s
u(t) ’ Uo J.o hy (s) %
v(t) A h, (s)
we obtain
(0 cos(t) x, —sin(t) y0+_ft cos(t—s)h, (s)—sin(t—s)h,(s))ds
y(t) _ sin(t) x, +cos(t) y0+j (sin(t—s)h,(s)+cos(t—s)h,(s))ds 37
uEt; Uy + ['ha (s)ds o
v(t
v, +I;h4 (s)ds
it can be written as
209
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X(t)) (cos(t) —sin(t) 0
y(t)|_|sin(t) cos(t) |01,
u(t) 0 0 0 o) Y
v(t) 0 0 0
b [Jleos(t=s)h(s)sin(t=s)n (5))as
+ 0 V, + J“;(Sin(t_S)r.ll(s)—ircos(t_S)hz(S))ds
o Uy + ['hy (s)ds
1 0 J.(tjh3( )d
Vo + [ he (5)ds

These solutions are 2n — periodic if and only if

x(2m) x(0)
y(2m)|_| y(0)
u(2m) u(0) |
v(2m) v(0)

We obtain the periodicity conditions given in the theorem 4 by (1.5).
The set of periodic solutions has dimension 4. To look for the periodic solu-
tions of our system (1.1) we must calculate the zeros z=(X,,Y,,U,V,) of the

system F(z)=0, where F(z) is given by (2.5). The fundamental matrix
M (t) of the differential system (2.3) is

cos(t) —sin(t)
sin(t)  cos(t)
0 0
0 0

M (t)=M, (t)=

o », O O
m O O O

Now computing the function F(z) we find the system

(XOIyO’uO’VO)_O
(Xo’yo’uovvo)
(Xo’y01u07vo)
(Xo’yo’uovvo)

1

0
0,
0

1

where F,F,,F; and F, have been defined in the statement of Theorem 4.

The zeros (X;, Yo u;,v;‘) of the system (3.8) with respect to the variables X, ,
Yo» U, and Vv, provide periodic solutions of system (1.1) and &#0 being
sufficiently small if they are simple, 7.e. if

0(F. 70 75 Fa)

det
8(x0,y0,u0,v0)(

#0.
X0.Y0:Up vVo):(XS,yS,us ,vg)

For simple zeros (x;;, Yo u;,vg) of system (3.8) we obtain a 2= -periodic so-

x(t,€)

te
lution th g; of the differential system (1.1), for £#0 being sufficiently

v(t, e
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small which tends to the periodic solution given in the statement of theorem 4 of
the differential system (1.1) _  when &—0.
This completes the proof of Theorem 4.

3.5. Proof of Theorem 5

We shall apply Theorem 6 to the differential system (1.1). It can be written as
system (2.1) taking

%%
035: Scientific Research Publishing

X —y+hy (1) R(xyuv)
h, (t P, (X, y,u,
x=|” t=tF(t,x)= X+ (1) and F,(t, x) » (x y,u,v) :
u Au+Vv+hy(t) P, (X, y,u,v)
v V+h, (1) P, (X y,u,v)
We shall study the periodic solutions of system (2.2) in our case the system
(1.1)5:0.
By using
x(t) X, h(s)
y(t) e Yo +J'eA(t—s) h, (s) ds,
u(t) Uy hy(s)
v(t) A h, (s)
we obtain
0 cos(t) x, —sin(t) y0+f cos(t—s)h, (s)—sin(t—s)h,(s))ds
X(t
y(t)| sin(t) x, +cos(t) y0+f0 sin(t—s)h, (s)+cos(t—s)h,(s))ds (39)
“Et; e*‘u0+te”vo+.[;e‘(t‘ (hy(s)+(t=s)h,(s))ds ’
v(t
ey, + [ ", (s)ds
it can be written as
x(t)) (cos(t) —sin( t)
y(t) _| sin(t) % + cos(
u(t) 0
v(t) 0
. costsh1 )—sin(t—s)h,(s))ds
0 I(sm(t s)hl( )+cos(t—s)h,(s))ds
gn Vot -
i (hy )+ (=) () s
.[Oe (“9)h, (s)ds
These solutions are 2m — periodic if and only if
x(2r)) (x(0)
y(2n)|_|y(0)
u(2n) | |u(0)|
v(2r)) (v(0)
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We obtain the periodicity conditions given in the theorem 5 by (1.6). Since
U, and V, are now fixed then the set of periodic solutions has dimension 2. To
look for the periodic solutions of our system (1.1) we must calculate the zeros
z=(X%,,Y,) of thesystem F(z)=0,where F(z) is given by (2.4). The fun-
damental matrix M (t) of the differential system (2.3) is

cos(t) —sin(t) 0 O

sin(t cos(t 0 0
M (t): M, (t): O( ) O( ) ettt |
0 0 0 e*

Now computing the function 7 (z) we find the system

-7:1()(01 y0)=0,
3.10
{}—z(xo:yo)zol 10

where F and F, have been defined in the statement of Theorem 5. The ze-
ros (X;, y;) of the system (3.10) with respect to the variables X;,y, provide
periodic solutions of system (1.1) and &0 being sufficiently small if they are

simple, Ze. if

(%, %)

det
(%1 o)

# 0.

(xO,yo):(xavyS)

For simple zeros (XS, yg) of system (3.10) we obtain a 2z -periodic solution
x(t,€)
y(t.€)
u(t,e)
v(t,e)

which tends to the periodic solution given in the statement of theorem 5 of the

of the differential system (1.1), for £+ 0 being sufficiently small

differential system (1.1)5:0 when ¢ — 0.

This completes the proof of Theorem 5.

4. Applications
4.1. Application of Theorem 1

Consider the differential system (1) where

0 -10 O
A 1 0 0 O
0 0 0 -1f
0 01 0
R(0) (sin(0)
h, (t) _ cos(t)
hy(t) | |sin(t)
h,(t)) (cos(t)

and

K2
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ROGYUV)) ([ x+y -y
Bxyouv) | | xsyxp
P(X Y. uv)| | x+y+u+v|
(% y,uv)) (x+y+u+v
We can easily verify conditions (1.2)
jozn(cos(s)sin( s)—sin(s)cos(s))ds =0,

)
—sin’ (s) +cos’ (s))ds =0,
)

j (cos(s)sm() sin(s)cos(s))ds =0,
[ (~sin? (s)+ cos? (s))ds =0,
Computing the functions 7, F,, F and F, wefind

1 3 3
j'—l(xovymuovvo):E“‘Xo"‘gyo"‘zxoyo’

1 1 1 5
E(Xo-yo-uolvo):_z_gxo —§X§+yo +§y§.

Fy(Xo: YosUg: Vg ) = Xg +Ug +1,
-7:4(Xm yO'uO’VO): Yo +Vo -1
The stability of the periodic solutions associated to a simple zero of F is
controlled by the eigenvalues of the jacobian matrix.
The system F =F,=F =%, =0 has four solutions (XS, yg,ug,vg) given
by

J1 4 V139 19 VI39) [ 1 4 V139 19 V139
2510’2510’ "2'5 10 /)

[ 1 4 V139 19 \/13] (_3 4 139 19 139}
’ 2’5

2 5 10 2'5 10 2 5 10 10
F (%0, Yor Ugs Vo)
F5 (X1 Yo U, V.
and the eigenvalues of the jacobian matrix of 2 (X YorUo: ) at these solu-
F5 (X1 Yos Ugs Vo )
F (Xo’ yo*“o’vo)
V139 V139 2 3139 2 3139
8 8 5 40 5 40
tions are §+ 3v139 , 3+ 3v139 - V139 and —v139 , which
5 40 5 40 8 8
1 1 1 1
1 1 1 1

have all at least two positive real parts. Since

0(F P 75 Fa)

det
(X1 Yo:UgsVp) (

Xo:YOvUOvVo):(XEVVS U5 ,VS)

at these four solutions (XS, Yo, Ug ,VS) is 1,89,0,71,1,89,0,71, respectively, then

%%
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(ts
the differential system (1.1) has four periodic unstable solutions Z: E(:ji
v (t.2)
(1)
with k =1,2,3,4, tending to the unstable periodic solutions Z‘k‘ 8 where
()

3o+ 202 ey

§18 ) —sm(t)+(_£+\/§]cos(t)

o) | e o

i)+ § 4028 st

o)+ 202 ey

{:8} 55 o

S

)+ 128 st

__Cos(t)+[—+\/]1§_9jsin(t)

o B

o) |- {3 5 o

)+ 4028 st

_%Cos(t)+£4+\/fjsin(t)

i) o B

£ 2

0)+{ 32 st

214
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of the differential system

X=-y+sin(t),
y = x+cos(t),
U=-v+sin(t),

)
v=u+cos(t)
when ¢ = 0.

4.2. Application of Theorem 2

Consider the differential system (1.1) where

0 -1 00
A 1 0 0O ’
0 0 30
0 0 0 5
h(t)) (sin(t)cos(s)
h (t) cos’(t)
h(t)| | cos(t)
h, (t) cos(t)
and
P (X y,uv) X—Y+Xy
P(X y,uv)| | x+y-—xy
P (X, y,u,v) T x+ysu |
P, (X, y,u,v) X+Yy

We can easily verify conditions (1.3)
I;n(cosz(s)sin(s)—sin(s)cosz(s))ds =0,

f;"(—sinz (s)cos(s)+cos® (s))ds =0,

. o3
° 10’
vo—_2
° 26

Computing the functions F, F, we find

7 7 4
‘E(Xo’yo)zg"‘_xo__yo’

6 3
7 7 4
-};(XOaYO):g"'EXo +§y01

2
The system J =%, =0 has one solution (XS, yg) given by (_E’Oj and

F (%0 Yo)

the eigenvalues of the jacobian matrix of (
P (%1 Yo)

J at this solution are

%%
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5 1
—+—14/233
4 12

, which have two positive real parts. Since

5 1
———14/233
4 12
det m = %, then the differential system (1.1) has an unsta-
%0 Yo 058 58)
x(t,¢)
t!
ble periodic solution :Et :3 , tending to the unstable periodic solution
v(t,e)
-1 1
———Zcos(t
N 3 30 2(1)
X(t
y(t) i %sin(t)cos(t)
u(®) _—SCOS(t)+iSin(t)
v(t) 10 10
;—gcos(t) +%sin (1)

of the differential system
X =—y+sin(t)cos(t),

y = x+cos’ (t),

U =3u+cos(t),

v =5v+cos(t),

when ¢ —0.

4.3. Application of Theorem 3

Consider the differential system (1.1) where

0 -1 00
Ao 1 0 00 ’
0 0 0O
0 0 0 3
h (t) sin(t)cos(s)
h,(t) | |sin®(t)cos(t)
hy (t) - cos(t)
h, (t) sin(t)
and
P (X y,uv) X—Yy+Xy
P, (X, y,u,v) X+ Y — Xy
P (X y,u,v) T x+y-u?+3ul
P, (X, y,u,v) X+Yy

We can easily verify conditions (1.4)

216
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[ (cos? (s)sin(s) + sin* (s)cos(s))ds = O,
Jf"(—sinz(s)cos(s)+0052(s)sin3(s))ds:O,
.[02“ cos(s)ds =0,

1
10°
Computing the functions F, F, and F; we find

15 49 127
-7'—1(X01yo’uo)=ﬁxo _Eyo +ﬁ'

47 17 737
};(XO’VO'UO):EX" +Ey° +%’

Vo =

1
‘7:3()(0’ Ymuo):_ug +3U0 _E!
The system F =F,=7F=0 has two solutions (XS, yg,u;) given by

(—%,—%,%(3—\/7)), (—%,—%,%(3+\ﬁ)j and the eigenvalues of the ja-

1
F (X0 Yor Ug) mmer
cobian matrix of | 7, (X, Yo,U,) | at these solutions are |1-I 242894 ,
F5 (%1 Yoo U
2 (X1 Yo, Up) NG
141 \2294
48
1-1 242894 , which have all at least two positive real parts. Since
N
oA, F,F —
det M is 22997 , 22997 respectively, then
0(Xg: YorUp) (101,55 1152 1152

x
=

<
=~

the differential system (1.1) has two unstable periodic solutions

c

=
— =+ -
M M M &
— — — —

<
=

with k=1, 2, tending to the unstable periodic solutions

1 1. 2 ., _ism o
x(t) §+§S|:(t)cos(t)_§czs (0-15 4 (t)cos’ (1)
Y1(t) _ g_gsm(t)cos(t)—gcosz(t)+Ecos4(t)
&8 1%(3—\/7>J;sin(t)
Ecos(t)+ﬁsin(t)

%%
035: Scientific Research Publishing 217



M. Amar, B. Lilia

%+ésin(t)cos(t)—§cosz(t)—%sin(t)cose‘(t)
X, (t
YZE'(; i %—%sin(t)cos(t)—gcosz(t)+%cos4(t)
328 (3+f) sin(t)
%cos(t)+%sm(t)

of the differential system
X =—y+sin(t)cos(t),
y = Xx+sin®(t)cos(t),
U =cos(t),
V=3v+sin(t)
when ¢ — 0.
4.4. Application of Theorem 4

Consider the differential system (1.1) where

0 -1 00
Az 1 0 0O ,
0 0 0O
0 0 0O
R(D)) [ sin(y)
h, (t) cos(t)
hy (t) - sin(t)
h,(t)) (sin(t)cos(t)
and
R(Xy,uv)) (3x%—xy*+y?
POy, uv) | | 3y —yx* +x°
P (% y,u,v) | u
P (X y,u,v) v

We can easily verify conditions (1.5)

I;"(ZSin(s)cos(s))ds =0,
f;"(—sinz (s)+cos® (s))ds =0,
jznsin s)ds =

jsm cos(s)ds=0

Computing the functions F F, F, and F, we find

1 1 1
};(Xo’yf)luo’vo):__ 4X3 4

5 = XoYe

3 1
Xo — 8X§ 8y§

1 1 3
'7:2()(0’ yO’UO'VO):_ZXoyo _ngyo _ZY(? "3 Yoo
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F5 (%o, Yo, U, Vo) =g +1,

1
Fo(Xo: Yo, Ug: Vo) = Vg +Z.

The system F =F,=F,=F,=0 has three solutions (X;, y;,u[;,vg) given

%%
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by (0,0, —1,_71), (—%,0, —1,—%}, (—1,0,—1,—%) and the eigenvalues of the
-1 (L
-ﬁ(XO!yovuo’Vo) 8 16
— . T (Xo1 Yor Ug: Vo ) . -3| |5
jacobian matrix of (%, Yorlly Y, ) at these solutions are s " 161’
F4 (%0, Yo Ug: Vo ) ! .
1 1
-1
8
-3
3| which have all at least two positive real parts. Since
1
1
oo ST T)
(XO’ yo,uO,VO) (Xod’o:uovV0)=(X3:Y5vU6-V3)
at these three solutions (XS Yoo US,VS) is %, —%,6—34 , respectively, then this
X (L)
tl
differential system has three unstable periodic solutions zk Et z) , where k=1,
k 1
v (t¢)
2, 3 tending to the unstable periodic solutions
x (1) —cos(t)
V(1) | _ °
0 ()| —cos(t)
11
v, (t —_Zcos?(t
(1) 750 (t)
0
X, (t) -
yz () sin((t)
0, (1) =| —cos(t)
2 11 .,
v, (1) 7508 (1)
W (0 —cos(t)
’ 1.
AL _ Esm(t)
s () —cos(t)
vy (t
(1) 1 1o (t)
4 2
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of the differential system

X=—y+sin(t),
y =x+cos(t),
U=sin(t),

v=sin(t)cos(t),
when ¢ — 0.

4.5. Application of Theorem 5

Consider the differential system (1.1) where

0 -1 00
1 0 00
A= )
0 0 21
0 0 0 2
h(1) (~sin(t)
h,(t)| | —cos(t)
hy(t) || sin(t)
h, (t) sin(t)
and
RO6yuv)) ([ y-xy
POxy,uv)| | —xy?
P(X Y, UV) | | x+y+u
P (X y,u,v) X+y

We can easily verify conditions (1.6)

I;"(—Zcos(s)sin (s))ds =0,

[ (sin? (s) - cos® (s))ds = 0,

.
°" 25’

1
VOZ—E.

Computing the functions F and F, we find

7 6
E(Xo’yo):_gyo _gxoyo'

1 5 1 5
-7'—2()(0: yo) =E_§Xo +§X§ —gyé.

The system F =7, =0 has two solutions (x;;,y; ) given by (1,0),(4,0)

F (%1 Yo)
Fy (%1 Yo)

and the eigenvalues of the jacobian of [ J at these solutions are

%%
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MR NG
81 , 81 , which have all zero real parts. Since
—I143| | =151
8 V3 8 V51
det M for these solutions (X;,yg ) is i,ﬂ,respectively,
(XO’VO)m,yo)z(xg,yg) 64" 64
x(t,¢)
e | Y(te) .
then this differential system has two periodic solutions u(te) |’ tending to
v(t,e)
the two periodic solutions
cos(t)
% (t) 0
ACN 7
u(t) | 2—Scos(t)—2—55m(t)
v, (1) 1 2 .
~Zcos(t)—=sin(t
5cos( ) 5sm( )
4cos(t)
X (t) 3sin(t)
Y2 () |_| -1 7
u(t) | Ecos(t)—gsm(t)
V(1) —%cos(t)—%sin(t)
of the differential system
x=-y-sin(t),
y = x—cos(t),

U=2u+v+sin(t),
V=2v+sin(t)

when ¢ — 0.
In this case we can say nothing about the stability of these solutions.

5. Conclusion

This study leads us to consider the general case when A is an 7 X n matrix,
P ---P, are polynomials in the variables X,---,X, of degree nand

h(t+2r)=h(t), with i=1---n. In the next work, we shall generalize the stu-
died system (1.1) in R".
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