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Abstract 
This paper gives a method that maps the static magnetic field due to a system 
of parallel current-carrying wires to a complex function. Using this function 
simplifies the calculation of the magnetic field energy density and inductance 
per length in the wires, and we reproduce well-known results for this case. 
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1. Introduction 

This paper points out a convenient way to calculate the magnetic field due to 
parallel, current-carrying wires. Defining a coordinate system such that the wires 
run along the z-direction, the magnetic field due to a current-carrying wire will 
be in the x-y-plane. We construct a complex function, ( )f x iy+ , from the com- 
ponents of the magnetic field: x yf B iB= − . The magnetic field due to a con-
stant set of currents is determined from Ampere’s law, which we will show is 
equivalent to the statement that  

( ) 0d ,encc
f Iξ ξ µ=∫                         (1) 

where x iyξ = + , encI  is the sum of currents enclosed by the contour c in the 
x-y-plane, and 0µ  is the permeability of free space. We show that the form for 
the function f that reproduces the known magnetic field from a constant current 
i in a single wire at the position ( )0 0,x y  is 

( ) ( )
0

0

,
2π

I
f

i
µ

ξ
ξ ξ

=
−

                       (2) 

where 0 0 0x iyξ = + . The principle of superposition holds for Ampere’s law, so if 
there are many current-carrying wires, the magnetic field is the sum of magnetic 
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fields from each wire. 
These ideas are based on constant currents. In this magnetostatic case, induc-

tance can be simply calculated. Once inductance is calculated, then it can be 
used to determine circuit behavior in the case when there are slowly varying 
currents. To be precise, in this paper, we will define inductance as relating cur-
rents to total energy stored in a magnetic field according to: 

,

1 .
2 jk j k

j k
U L I I= ∑                         (3) 

jkL  is the inductance matrix (including self-inductance and mutual induc-
tance), U is the total energy stored in the magnetic field, and kI  is the current 
carried in wire-k. We find the self-inductance per length of a wire is 

0 0
2 2

12π d ln .
2π4π

nn
a

L r r
l ar

µ µΛ Λ = =  
 ∫                  (4) 

Λ and a are long and short distance cut-offs respectively. The mutual inductance 
per length of two wires is 

0 ln ,
2π

nj

nj

L
l r

µ  Λ
=   

 
                       (5) 

where njr  is the distance from wire n to wire j. These are standard results [1] [2]. 
Measurements and calculations of the self-inductance of actual thin wires of length 
l  and radius ρ  are consistent with (4) with 2l eΛ =  and a ρ= . The meas-
ured mutual inductance of two thin wires separated by a distance d is also consis-
tent with (5) with ( )2 exp 1l d lΛ = − +  [3]. 

We would like to mention that there are similar techniques using stream func-
tions in fluids to understand vortices [4], and also some magnetic field problems in 
the absence of currents [5]. 

2. Relation between Ampere’s Law and a Contour Integral 

Ampere’s law in SI units in integral form is 

0d ,encc
Iµ⋅ =∫ B r                         (6) 

where encI  is the current puncturing the area enclosed by path c, with the sign 
of the current given by the right hand rule. 

If the path c is in the x-y plane, Ampere’s law formally looks like 

( ) 0d d ,x yc
B x B y Iµ+ =∫                      (7) 

with positive currents I moving in the positive z-direction. 
Consider a complex function ( )f ξ , with x iyξ = + , such that  
( ) x yf B iBξ = − . Then substituting f into the contour integral ( )d

c
f ξ ξ∫ , where 

the contour c in the complex plane is identical to the path of the line integral in (7) 
(meaning the same x- and y-values are traversed in the line integral as in the com-
plex contour integral), yields 

( ) ( ) ( )d d d d d .x y x yc c c
f B x B y i B y B xξ ξ = + + −∫ ∫ ∫ 

            (8) 
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Therefore, 

( ){ } 0d Re d .encc c
f Iξ ξ µ⋅ = =∫ ∫

B r  

The imaginary part of the complex integral (8) is 

( )d d .x yc
B y B x−∫  

This can be written in terms of a parameter t that parameterizes the contour as 

2

1

d d d .
d d

t
x yt

y xB B t
t t

 − 
 ∫                       (9) 

The integrand is formally ( )x y y x zB v B v v− = − ×B . This integrand is propor-
tional to the z-component of the Lorentz force, qv= ×F B , on a charge q. If we 
return to the original complex integral (8), the integral will remain the same on 
any change of the contour c so long as the enclosed singularities (places where f 
is not analytic) remain the same. In particular if the only singularities are iso-
lated poles in f, and if we consider the contours kc  as being an infinitesimal 
circle surrounding a pole at k k kx iyξ = +  (in the same direction, clockwise or 
counterclockwise as the contour c), then the complex integral (8) can be written 
as [6] 

( ) ( )d d .
kc c

k
f fξ ξ ξ ξ=∑∫ ∫  

Clearly the real and imaginary parts of contour integral can then be written in 
the same way, in particular 

( ) ( )d d d d ,
k

x y x yc c
k

B y B x B y B x− = −∑∫ ∫ 

              (10) 

where kc  is now interpreted as an infinitesimal circle around a current-carrying 
wire (the current being the place where the magnetic field becomes non-analytic) 
positioned at ( ),k kx y . 

Each of the integrals in the sum in (10) can be parameterized and written in 
the form of (9). We can imagine each of these integrals is then proportional to 
the time integral of the z-component of the force on a test charge moving 
around an infinitesimal circle surrounding the current-carrying wire. For a sin-
gle wire, the magnetic field is either parallel or antiparallel to the circle sur-
rounding the wire, and hence the Lorentz force is zero. In the case of multiple 
wires, however, this is not the case. Consider two wires, which we can denote as 
wire-1 and wire-2. Consider a small circle around wire-1, 1c . Let 1B  be the 
magnetic field due to the current in wire-1 and 2B  be the magnetic field due to 
the current in wire-2. The magnetic field along the path 1c  can be written as 

1 2= +B B B . Lets consider the integral 

2

1
d d ,

t

t
t× = ×∫ ∫

r B v B  

where t parameterizes the circular path 1c , with t2 and t1 being the value of the 

parameter t at the beginning and end of one circle around the wire, and d
d
r
t

=v . 

This integral can then be written as 
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2 2 2

1 1 1
1 2d d d

t t t

t t t
t t t× = × + ×∫ ∫ ∫v B v B v B  

The first integral on the right hand side of the above equation is zero, by the ar-
gument presented for the single wire. Let us consider the second integral on the 
right hand side of the above equation. If 1c  has a radius which is very small 
compared to the distance from wire-1 to wire-2, then 2B  is approximately uni-
form over the circle 1c . Hence the integral is approximately 

( ) ( )2 2

1 1 1
2 2 2d d d 0,

t t

t t c
t t r× ≈ × = × =∫ ∫ ∫v B v B B  

since the integral of dr  is zero over a closed path. A similar argument can be 
made in the case of many wires. Therefore in the case of a magnetic field due to 
multiple wires 

d 0,
ic

× =∫ r B                         (11) 

and this means that in (10), 

( )d d 0.
k

x yc
B y B x− =∫                      (12) 

This means that the imaginary part of the complex integral (8) should vanish. 
We should note that there is an important condition for (12) to hold. We 

needed to have the radius of the circles around each of the wires be much small-
er than the distance between the wires, so the magnetic field due to one wire 
could be considered uniform at a different wire. If a is the radius of a wire and d 
is the shortest distance between wires, then the condition for our theory to hold 
is that 

.a d                            (13) 

We are left with 

( ) 0d d
c c

f Iξ ξ µ= ⋅ =∫ ∫ B r                    (14) 

as our condition on f to be x yB iB− . This proves (1). 
The residue theorem for contour integrals is [6] 

( )d 2π ,
c

f iRξ ξ =∫                       (15) 

where R is the sum of the residues of f enclosed in c. The formula for the residue 
of a function ( )f ξ  at a pole of order n at aξ =  is 

( ) ( ) ( ) ( )
1

1
1 d

1 ! d

n
n

n
a

R f a a f
n ξ

ξ ξ
ξ

−

−
=

  = −      −  
           (16) 

For (14) to hold, we must have 

02π .iR Iµ=                          (17) 

A simple form of f which satisfies (14) and (17) for a wire carrying current I in 
the z-direction at ( )0 0,x y  is 

( ) ( )
0

0

,
2π

I
f

i
µ

ξ
ξ ξ

=
−

                     (18) 

where 0 0 0x iyξ = + . Taking the real and imaginary parts of ( )f ξ , and com-
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paring with x yf B iB= − , we find 

0 0 ,
2πx

I y y
B

r r
µ −

= −  

0 0 ,
2πy

I x x
B

r r
µ −

=                        (19) 

where ( ) ( )2 22
0 0r x x y y= − + − . 

We note that in cylindrical coordinates, ˆ ˆ ˆsin cosx yφ φ φ= − + , where  

0sin y y
r

φ −
=  and 0cos x x

r
φ −
= . We see that (19) is precisely the field  

0

2π
I
r

µ φ=B  that one expects according to Ampere’s law. 

The reader can easily see that (18) is not unique in yielding an integral whose 
residue obeys (17). In fact adding any analytic function to (18) will give an iden-
tical result and the condition 0⋅ =B∇  will hold as well. Also, there is the pos-
sibility of higher order-poles with the same residue. For the purpose of this pa-
per, we will choose (18) because it yields the expected field for a single wire. We 
would also like to note that a second order pole gives a 2-dimensional dipole 
field for the magnetic field. Now, it is straightforward to generalize (18) to any 
number of wires carrying current in the z-direction, at the positions ( ),j jx y . 
We simply write 

( ) 0 ,
2π

j

j j

I
f

i
µ

ξ
ξ ξ

=
−∑                      (20) 

and then take the real and imaginary parts of this to find the x and y compo-
nents of the magnetic field. 

3. Energy Density and Inductance 

Energy density in a magnetic field is 2

0

1
2Bu B
µ

= . So for the magnetic field in 

the x- and y-directions, we can write *

0

1
2Bu f f
µ

= . The total energy stored in 

the magnetic field is then 
* 3

0

1 d ,
2

U f f
µ

= ∫ r                       (21) 

where the integral is over all space. The total energy stored in a magnetic field 
that is created by a system of currents jI  is related to the inductances accord-
ing to 

,

1
2 jk j k

j k
U L I I= ∑                        (22) 

where jI  is the current in wire j. jkL  is the mutual inductance of wires j and k 
and is symmetric in its indices. kkL  is the self inductance of wire k. 

Suppose we add a current nI  to the system of currents in the z-direction. Let 

0U  be the energy stored in the magnetic field in the absence of current nI  and 
let U be the energy stored in the magnetic field in the presence of nI . We can 
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then write 

0 1 1 1
2 2 2nj j jn j nn n nj j nn n

j n j nn

U U
L I L I L I L I L I

I ≠ ≠

−
 = + + = + ∑ ∑         (23) 

Let 0f  be the function ( )f ξ  in the absence of nI  and let f  be the func-
tion ( )f ξ  in the presence of nI . Then 

22 3
0 0

0

1 d
2

U U f f
µ

 − = − ∫ r                    (24) 

and 

( )
0

0 .
2π

n

n

I
f f

i
µ
ξ ξ

= +
−

                       (25) 

Plugging (25) into (24), then dividing by nI , we find that 

*
30 0 0

* * 2

1 d
4π 2π

n

n n n n

U U f f iI
I i ξ ξ ξ ξ ξ ξ

 −
 = − +

− − − 
∫ r             (26) 

Plugging in the definition of f from (20), we find that 

( )( )

( )( )

30 0
2 * *

30
2 * *

1 . . d
8π

1 d .
8π

j
j nn j n

n
n n

U U I c c
I

I

µ
ξ ξ ξ ξ

µ
ξ ξ ξ ξ

≠

 −  = +
 − − 

+
− −

∑ ∫

∫

r

r

            (27) 

Comparing (27) with (23), we arrive at a formulae for both the self inductance 
and the mutual inductance. The self inductance is 

( )( ) ( )( )
30 0

2 2* * * *

1 1d d d ,
4π 4πnn

n n n n

l
L x y

µ µ
ξ ξ ξ ξ ξ ξ ξ ξ

= =
− − − −∫ ∫r      (28) 

and the mutual inductance is 

( )( ) ( )( )

( )( ) ( )( )

30
2 * * * *

0
2 * * * *

1 1 d
8π

1 1 d d ,
8π

nj
j n j n

j n j n

L

l x y

µ
ξ ξ ξ ξ ξ ξ ξ ξ

µ
ξ ξ ξ ξ ξ ξ ξ ξ

 
 = +
 − − − − 
 
 = +
 − − − − 

∫

∫

r

         (29) 

where l  is the length of the wires. 
The self-inductance, Equation (28), can be directly integrated. We note that 

( )( ) ( ) ( )2 2* * 2
n n n nx x y y rξ ξ ξ ξ− − = − + − = . Where we set the origin of the 

coordinate system to the position of wire n and then convert to polar coordi-
nates. Performing the integration in polar coordinates, we arrive at the induc-
tance per length of the wire being 

0 0
2 2

12π d ln .
2π4π

nn
a

L
r r

l ar
µ µΛ Λ = =  

 ∫                 (30) 

Here we introduced long range and short range cutoffs for the integration, Λ and 
a  respectively, and the self-inductance is only written to logarithmic accuracy, 
as per usual [1]. 2l eΛ =  and a ρ= , where ρ  is the radius of the wire, gives 
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good agreement with experiment in the case of long, thin wires [3]. 
The integral for the mutual inductance can also be done, but is a little more 

involved. Here again, we find it helpful to set the origin of the x-y coordinate 
system to the position of wire n, and then convert to polar coordinates. Let 

eir θξ =  and ei
j jr φξ = . Then the integral (29) becomes 

( ) ( )
2π0

2 0 0

1 1d d .
8π e e

nj
i i

j j

L
r

l r r r rφ θ φ θ

µ θ
∞

− − −

 
= + 

− −  
∫ ∫            (31) 

We first perform the integral over θ. We do this via residues [6]. In the first  

integral on the right hand side of (31), write e iu θ−= , and then dd u
iu

θ =
−

, and  

the integral becomes a contour integral over a unit circle in the complex-u plane, 
traversed in the clockwise direction, call this contour-c. In the second integral on  

the right hand side, we write eiu θ= , so dd u
iu

θ = , and the integral becomes the  

integral over a unit circle in the complex-u plane, traversed in the counterclock-
wise direction. We’ll call this contour c. Performing these contour integrals, we 
find that the integral over θ in (31) is 

( ) ( )
2π

0

4π
1 1d
e e 0

j
i i

j j j

r r
r

r r r r r r
φ θ φ θθ

− − −

  >+ =  
− −    <

∫            (32) 

In place of jr , for generalization purpose, we introduce the distance njr  which 
is the distance between wires n and j. The mutual inductance per length is given 
by 

0 0d ln ,
2π 2πnj

nj

r
nj

L r
l r r

µ µΛ  Λ
= =   

 
∫                    (33) 

where we introduced a long range cutoff Λ for the integral over r . Again this is 
written only to logarithmic accuracy. In the case of two parallel wires separated 
by a distance d , ( )2 exp 1l d lΛ = − +  gives good agreement with experiment 
[3]. 

4. Conclusion 

We note that these results for inductance are well known, but illustrate our me-
thod. In a future paper, we hope to apply this formalism to the calculation of 
inductance in different systems. We would also like to mention that the similar-
ity between our formalism and the velocity stream function in fluid flow, with 
currents being replaced by vorticity [4] leads naturally to a nice qualitative pic-
ture of the magnetic field around arrays of wires, or around arrays of currents. 
In the future, we would to examine the interplay between the energy density of 
currents in a solid and the force between parallel current carrying wires. It is our 
belief that the magnetic field may break into an array of vortices similar in 
structure to the currents around magnetic flux lines in type II superconductors, 
depending on the solid [7] [8]. 
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