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Abstract 
We have measured weak antilocalization effects, universal conductance fluctuations, 
and Aharonov-Bohm oscillations in the two-dimensional electron gas formed in 
InGaAs/AlInAs heterostructures. This system possesses strong spin-orbit coupling 
and a high Landé factor. Phase-coherence lengths of 2 - 4 μm at 1.5 - 4.2 K are ex-
tracted from the magnetoconductance measurements. The analysis of the coherence- 
sensitive data reveals that the temperature dependence of the decoherence rate com-
plies with the dephasing mechanism originating from electron-electron interactions 
in all three experiments. Distinct beating patterns superimposed on the Aharonov- 
Bohm oscillations are observed over a wide range of magnetic fields, up to 0.7 Tesla 
at the relatively high temperature of 1.5 K. The possibility that these beats are due to 
the interplay between the Aharonov-Bohm phase and the Berry one, different for 
electrons of opposite spins in the presence of strong spin-orbit and Zeeman interac-
tions in ring geometries, is carefully investigated. It appears that our data are not ex-
plained by this mechanism; rather, a few geometrically-different electronic paths 
within the ring’s width can account for the oscillations’ modulations. 
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1. Introduction 

The electronic characteristic scale on which quantum interference can occur in a 
meso-scopic sample is the phase-coherence length Lφ . The study of decoherence in 
quantum-mechanical systems has gained much interest recently, because Lφ  is 
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relevant to spintronics, i.e., to spin-sensitive devices [1] [2] [3] [4] comprising materials 
with strong spin-orbit interactions. The variation of Lφ  with the temperature T  
serves to indicate the main scattering mechanism which limits phase coherence, be it 
electron-electron, electron-phonon, or spin-dependent, scattering processes. At low 
temperatures, though electron-electron scattering is the dominant mechanism respon- 
sible for dephasing. Theoretically, the dephasing rate, 1 φτ , due to this scattering 
vanishes linearly with T  as the temperature decreases towards zero, in agreement 
with the prediction of Altshuler et al. [5]. To determine experimentally the relevant 
dephasing mechanism and to estimate the coherence length, quantum-interference 
properties, such as weak localization and antilocalization [6] [7], universal conductance 
fluctuations [8], and Aharonov-Bohm oscillations [9] [10] [11], are measured and ana- 
lyzed. These quantum effects have different dependencies on the coherence length; 
their combined study provides a comprehensive picture of the processes leading to 
decoherence in weakly-disordered nanostructures. 

Here we focus on nanostructures in which the electrons are subjected to significant 
spin-orbit coupling, and report on studies of weak antilocalization (WAL) effects, uni- 
versal conductance fluctuations (UCF), and Aharonov-Bohm (AB) oscillations in the 
magnetoresistance data of mesoscopic samples of InGaAs/AlInAs. This material is well- 
known for its strong Rashba-type spin-orbit interaction [12] [13], characterized by the 
coupling strength soα  of about of 10−11 eV m [14] [15]. This value corresponds to a 
spin-orbit energy [16] ( )so F so 1.6 meVm vω α∗= ≈   (the Fermi wave vector of our 
samples is 6 11.58 10  cm−≈ × ). The Landé factor of our material is about 15, and hence 
the Zeeman energy is Z 0.87  meVBω ≈ × , where the magnetic field B  is measured 
in Tesla. 

The spin-orbit interaction, coupling the momentum of the electron to its spin, in 
conjunction with a Zeeman field gives rise to Berry phases [17]. The simplest illustra- 
tion of a Berry phase occurs when a spin 1/2 follows adiabatically a magnetic field 
whose direction varies in space [18] [19]. When that direction returns to its initial 
orientation the spin wave function acquires a geometrical phase factor. A spatially- 
inhomogeneous magnetic field can be produced by the joint operation of spinorbit 
coupling and a Zeeman field [16]. Because the Berry phase may modify periodicities 
related to the Aharonov-Bohm effect, it has been proposed that it can be detected in 
persistent currents, magnetoconductance, and universal conductance fluctuations of 
strongly spin-orbit coupled mesoscopic systems [16] [19] [20] [21]. Specifically, the 
Berry phase is expected to manifest itself in additional oscillations superimposed on the 
conventional Aharonov-Bohm ones, leading to peak-splitting in the power spectrum of 
those oscillations [18], i.e., to a beating pattern. Beating magnetoconductance oscilla- 
tions have been indeed reported [22] [23] [24] [25] [26] for AB rings fabricated in 
materials with strong spin-orbit interactions at temperatures below 500 mK. In com- 
parison, our samples show beating patterns at much more elevated temperatures. 

However, one should exercise caution when adopting the interpretation based on the 
effect of Berry phases for beating patterns superimposed on Aharonov-Bohm oscilla- 
tions. First, the Aharonov-Bohm oscillations appear at arbitrarily small magnetic fields, 
while the effect of the Berry phase reaches its full extent only in the adiabatic limit, 
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realized when both Zω  and soω  are larger [16] [18] [19] than the frequency of the 
electron rotation around the ring. Second, the Berry geometrical phase is restricted to 
the range { }0,2π , limiting the corresponding geometrical flux to the order of one flux 
quantum [19], which may make it negligible as compared with the Aharonov-Bohm 
flux. Third, there can be other causes for the appearance of beating patterns: a recent 
experimental study [27] carried on InGaAs/InAlAs mesoscopic rings reports on beating 
patterns in the magnetoresistance as a function of the magnetic field, measured at tem- 
peratures up to 3 K. The authors attribute these patterns to the interplay of a few, geo- 
metrically-different, closed paths that are created in a finite-width ring [28]. We carry 
out below a thorough attempt to fit our AB oscillations’ data to the theoretical expres- 
sions predicting the beating patterns, in particular the expressions given in Ref. [16]. 
We find that the theoretical expression for the transmission of a strongly spin-orbit 
coupled Aharonov-Bohm ring does show a beating pattern. However, it seems to be 
due to the Zeeman interaction alone; the reason being the confinement of the Berry 
phase to the range { }0,2π  mentioned above. Our conclusion is that, given the phy- 
sical parameters of our rings, the beating patterns we observe probably cannot be 
attributed to the effects of the Berry phase. 

The remaining part of the paper is organized as follows. Section 2 describes the 
samples’ preparation and the measurements techniques. Section 3 includes the results 
of the measurements of the antilocalization effects (Section 3.1), the universal con- 
ductance fluctuations (Section 3.2), and the Aharonov-Bohm oscillations (Section 3.3). 
In each subsection we list the values of the coherence length extracted from the data. In 
the last subsection there we combine the results of all measurements to produce the 
dependence of the dephasing rate in our samples on the temperature (Section 3.4), 
from which we draw the conclusion that it is electron-electron scattering that dephases 
the interference in our InGaAs/AlInAs heterostructures. Section 4 presents our at- 
tempts to explain the beating pattern of the AB oscillations displayed in Section 3.3. 
Our conclusions are summarized in Section 5. 

2. Samples’ Preparation and Measurements 

Three types of samples were prepared, all comprising a single basic material. The 
schematic drawing of the layers in the InGaAs/AlInAs heterostructures used in our 
studies is given in Figure 1. This material was grown by molecular-beam epitaxy, as 
described in detail elsewhere [29] [30]. The geometrical shape of above-micron devices 
was patterned by a conventional photolithography, while that of the nanoscale ones 
were patterned using e-beam lithography. About 1 micron deep mesa was etched with 
phosphoric acid (of concentration 1:8) to prevent as much as possible parasitic conduc- 
tion in the structure below the quantum well. Vacuum deposition of a Au-Ge conven- 
tional alloy was used to form Ohmic contacts. Electron density of 11 24.55 10  cm−×  and 
electron mobility of 1.8 × 105 cm2/(V sec) were deduced from resistivity and Hall-effect 
measurements taken at 4.2 K. These values were calculated for the samples which have 
a significant contribution of the parallel conduction of low mobility layers below the 
2DEG in the quantum well, and therefore are different from the actual values of the 
mobility and carrier density of electrons in that quantum well. 
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Figure 1. (Color online) Schematic structure of the sample layers. The dashed (red) line in the 
spacer layer is the Si -δ doping. 
 

Measuring each of the coherence effects requires samples of different geometry.   
We have used a 110 μm  long (i.e., the distance between the voltage probes) and 
10 μm  wide Hall bar for the weak-localization studies, a shorter Hall bar of length 
8 μm  and width 0.2 μm  for the UCF measurements, and two identically-prepared 
rings (denoted below by “A” and “B”), of average radius 0.75 μm , and average width 
0.2 μm  for the AB measurements, see Figure 2. The resistance was measured by the 
four-terminal method, exploiting a low-noise analog lock-in amplifier (EG & GPR- 
124A) in perpendicularly-applied magnetic fields up to 5 Tesla. The measurements 
were performed in a 4He cryostat at temperatures in the range of 1.4 4.2 K− . 

3. Results  
3.1. Weak Antilocalization 

Weak-localization corrections to the average conductivity arise from interference 
between pairs of time-reversed paths that return to their origin. Application of a mag- 
netic field that destroys time-reversal symmetry suppresses the interference and thus 
increases the conductivity. Antilocalization appears in systems in which the electrons 
are subjected to (rather strong) spin-orbit coupling. Then, the interference-induced 
correction to the conductivity is reduced, because the contribution of time-reversed 
paths corresponding to wave functions of opposite spins’ projections is negative, while 
that of the equal spin-direction time-reversed paths remains positive. The reason is that 
upon following a certain closed path, the electron’s spin is rotated by π , while for the 
time-reversed path with the opposite spin projection it is rotated by π− . These two 
phases add up to give a total rotation of 2π , leading to a Berry’s phase factor of −1. 
This results in a higher net conductivity, and the positive magneto-conductivity caused 
by localization is turned into a negative one at low magnetic fields. 

Measuring the magnetoconductivity as a function of the magnetic field allows for an 
accurate estimate of the phase-breaking length Lφ . The dotted curves in Figure 3 are 
the magnetoconductivity ( )Bσ∆  of the longer Hall bar as a function of a magnetic 
field B  directed normal to the sample. Upon increasing the magnetic-field strength  
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Figure 2. (Color online) High-resolution scanning-electron microscope image of one of the 
measured Aharonov-Bohm rings. 
 

 
Figure 3. (Color online) The magnetoconductivity as a function of a magnetic field normal to the 
sample plane, at 1.6 K (a) and 4.2 K (b), for the WAL sample. The dotted (blue) lines are the data; 
the solid (red) curves represent the theoretical magnetoconductivity, calculated from Equation 
(1). 
 
from zero, one observes a decreasing conductivity originating from the suppression of 
antilocalization, followed by an increase due to the destruction of localization. Indeed, 
the line shapes at small magnetic fields measured at 1.4 K and 4.2 K, are nicely fitted to 
the curves calculated from the theoretical expression derived in Refs. [6] [7]. As found 
there, the magnetoconductivity of a two-dimensional electron gas, in the presence of a 
perpendicular magnetic field, is  

( ) ( ) ( ) ( ) ( ) ( )
2

1 2 32

e 3 10 ,
2 22π

vN
B B x x x

α
σ σ σ  ∆ ≡ − = − Ψ − Ψ + Ψ  

     (1) 
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where  

( ) ( ) [ ] [ ]( )ln 1 2 1 ,x x xψΨ = + +                    (2) 

ψ  being the digamma function. In Equation (1), vN α  is the valley degeneracy, and  

1 2 3
0 so

so

, , .
4
3

B B Bx x x
B B BB B φ

φ

= = =
+ +

               (3) 

These parameters comprise ( )24eB Lφ φ=  , the “phase-coherence” magnetic field, 
roughly the field required to destroy phase coherence, ( )2

so4eB Lφ =   that represents 
the spin-orbit coupling, with so F soL v ω≈ , and ( )2

0 4eB =   , where   is the mean- 
free path. 

The comparison of the data with Equation (1) has yielded so 0.87 0.09 μmL = ±  for 
the spin-orbit characteristic length, 3.9 0.9 μmLφ = ±  at 1.6 K, and 1.7 0.3 μmLφ = ±  
at 4.2 K for the phase-coherence length. The relatively large error bars do not arise from 
the fitting procedure; these are due to the scattering of the fitting values obtained for 
different samples. 

As seen in Figure 3, the curves of the data-points deviate from the theoretical ones 
for magnetic fields exceeding 0.01B =  Tesla. We believe that at these fields there 
appear other quantum corrections, e.g., interaction effects, and contributions arising 
from the parasitic conductances of the layers below the quantum well. 

Equation (1) derived in Refs. [6] [7] emphasizes the contribution to the conductivity 
resulting from the impurity-induced spin-orbit interaction or from the cubic (in-the- 
momentum) Dresselhaus coupling. The theory of Iordanskii et al. [31] accounts for the 
linear-in-the-momentum Rashba interaction, which is rather significant in InGaAs [32]. 
As shown in Ref. [31] Iordanskii, this linear interaction adds another characteristic 
spin-orbit field in addition to soB , representing the linear-in-the-momentum Rashba 
interaction. This additional field is denoted soB′ . Indeed, our data can be also fitted to 
Equation (13) of Ref. [31]; we have found though, that due to the larger number of 
fitting parameters [as compared to Equation (1)] multiple sets of the fitting parameters 

soB  and soB′  can produce the same quality of fit as obtained for Equation (1), with the 
same values of Bφ  as used in the latter. In order to distinguish between the sets of 
fitting parameters the range of magnetic fields should be much larger and the quality of 
the data, limited mostly by universal conductance fluctuation, should be much better. 
Unfortunately, out data do not meet these restrictions. As the focus of the present study 
is on dephasing mechanism, and since both theories produce the same values of Bφ , 
we present in Figure 3 the fitting curve of Equation (1). 

Finally we note that for 220 R = Ω□  and carrier density of 11 24 10  cm−× , the 
mean-free path is about 0.3 μm , which gives 3

0 2 10B −≈ ×  Tesla. We have found that 
Lφ  is not very sensitive to the value of 0B . 

3.2. Universal Conductance Fluctuations 

Like weak localization and weak antilocalization effects, the universal conductance fluc- 
tuations of a mesoscopic system result from interference of the electronic wave func- 
tions corresponding to pairs of time-reversed paths. As such, these fluctuations are do- 
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minated by the phase-coherence length Lφ . The UCF are expressed by the ensemble- 
average autocorrelation function of the dimensionless conductance, ( )2g G e h=  [8],  

( ) ( ) ( ) ,F B g B g B Bδ δ∆ = + ∆                    (4) 

where ( ) ( ) ( )g B g B g Bδ = − . The angular brackets denote the ensemble average. 
Theoretically, the average is over an ensemble of mesoscopic systems of various im- 
purity configurations; the experiment is carried out on a single sample and the average 
is accomplished by ramping a magnetic field over the range B∆  ( B∆  was in the 
range 310 1− −  Tesla). This can generate sample-specific, random-looking but repro- 
ducible fluctuations in the conductance. 

The phase-coherence length is derived from the magnetic correlation field cB , i.e., 
the field corresponding to the half width at half height of F . This magnetic correlation 
field is found from the correlation function using the condition  

( ) ( )1 0 ,
2cF B B F B∆ = = ∆ =                     (5) 

where ( )0F B∆ =  is the root-mean-square (rms) of the conductance fluctuations, 
g∆ ,  

3 2

,v LN
g

L
φα

β
 

∆ =  
 

                        (6) 

( L  is the length of the specimen) [33]. The coefficient β  represents the effect of the spin- 
orbit coupling on the magnitude of the fluctuations. The correlation field is given by  

e ,c
hB

WLφ
=                            (7) 

where W  is the sample’s width. 
The resistance of the shorter Hall bar, measured at 1.52 K and at 4.2 K, is shown in 

Figure 4(a). The reproducible conductance fluctuations are displayed in Figure 4(b); 
the curve there is obtained by subtracting the slowly-varying background of the average 
conductance from the measured one. Taking 2β =  (corresponding to strong spin- 
orbit coupling [33] [34]) in Equation (6) yields that the coherence length of our short 
Hall bar is 3.03 0.8 μmLφ = ±  at 1.52 K and is 1.56 0.8 μm±  at 4.2 K; Equation (7) 
yields the values 2.3 1.2 μmLφ = ±  at 1.52 K and 1.65 0.25 μm±  at 4.2 K. 

3.3. The Frequency and the Amplitude of the Aharonov-Bohm  
Oscillations 

Perhaps the most conspicuous manifestation of the Aharonov-Bohm effect [9] in con- 
densed matter are the periodic oscillations of the magnetoconductance of a meso- 
scopic ring as a function of the magnetic flux penetrating it, whose periodicity is the 
flux quantum 0 ehΦ = . These oscillations are utilized to probe the sensitivity of the 
electronic wave functions to magnetic fluxes. Their amplitudes, i.e., their “visibility” is 
the hallmark of quantum coherence. 

The average area of the two rings we measured (see Section 2 and Figure 2) is 
21.8 μm≈ ; the periodicity of the AB oscillations with respect to the magnetic field is 

thus expected to be 400≈  Tesla−1. The magnetoresistance of our ring A as a function  
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(a) 

 
(b) 

Figure 4. (Color online) (a) The resistance as a function of the magnetic field of a UCF sample at 
1.52 K and at 4.2 K; (b) The deviation of the magnetoconductance from the average background 
average. 
 
of the magnetic field measured at 1.5 K is portrayed in Figure 5. Panel (a) there depicts 
the raw data, and panel (b) magnifies the low-field part of the data. Once the low- 
frequency data points are filtered out [see panels (a) and (b) in Figure 6], one can 
indeed observe fast oscillations with a frequency of about 400 Tesla−1, consistent with 
the estimated periodicity for the AB oscillations. On top of these, one sees beats, with a 
frequency of about 40 Tesla−1. These observations are consistent with the Fourier 
transform of the resistance, shown in Figure 7. Panel (a) there, (at magnetic fields in 
the range 0.1 - 0.15 Tesla) is peaked around the expected AB frequency 390≈  Tesla−1. 
Panel (b), based on data points from the range 0.65 - 0.7 Tesla, has two peaks, at 390≈  
Tesla−1 and at 330≈  Tesla−1. Analysis of data between these ranges shows a gradual 
decrease of the (average) AB frequency and a gradual increase of the splitting between 
the two peaks. Although the coherence length of our rings is of the order of the ring 
circumference (see below), Figure 7(b) also shows small peaks around 700≈  Tesla−1, 
probably corresponding to the second harmonic of the AB oscillations. 

The splitting of the main peak in the power spectrum is the hallmark of the beating 
pattern [18], expected to result from the joint effect of the strong spin-orbit coupling 
and the Zeeman interaction [16] [24]. The appearance of the beating patterns, and their 
comparison with theoretical expectations, are discussed in Section 4. 

The Fourier transforms of the magnetoresistance of our sample B are similar to those 
shown in Figure 7 for sample A. The amplitude of the AB oscillations (the “visibility”), 
and therefore also the heights of the leading peak in the Fourier transforms of the 
magnetoresistance, decrease with increasing temperature, because of the decrease of the 
coherence length. To deduce this length, we used measurements on our sample B, at 
magnetic fields below 0.05 Tesla, taken at 1.54 K, 1.78 K and 2.3 K. The narrow range of  
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(a) 

 
(b) 

Figure 5. (Color online) (a): The magnetoresistance of an Aharonov-Bohm ring at 1.5 K, as a 
function of the magnetic field, up to 0.7B =  Tesla; (b) The magnified data in the low-field 
region, showing the tiny oscillations superimposed on the Aharonov-Bohm ones. 
 

 
(a) 

 
(b) 

Figure 6. (Color online) (a) and (b) The data shown in Figure 5(a) and Figure 5(b), once the 
low-frequency data points are filtered out. 
 
magnetic fields has been chosen because it contains mainly an amplitude of only a 
“single” harmonic. According to Ref. [11], the amplitude of the eh  oscillation in the 
conductance, ABG∆ , is  

2

AB 2

e exp π ,
B

DG r L
h r k T φ ∆ = − 

                   (8) 

where r  is the radius of the ring and D  is the diffusion coefficient. 



L. H. Tzarfati et al. 
 

119 

 
(a) 

 
(b) 

Figure 7. (Color online) (a) The Fourier transform of the magnetoresistance for magnetic fields 
in the range 0.1 - 0.15 Tesla; the main peak is at 390≈  Tesla−1; (b) The Fourier transform of the 
magnetoresistance for magnetic fields in the range 0.65 - 0.7 Tesla, where the peaks are at 330≈  
Tesla−1 and 390≈  Tesla−1. 

3.4. The Dephasing Rate 

The dephasing rate of the electrons, 1
φτ
− , due to electron-electron interactions was 

calculated by Altshuler et al. [35]; it is linearly proportional to the temperature and to 
the sheet resistance, R□ , of the sample,  

2
B

2

e1 ln .
e

Rk T h
h Rφτ

 
=  

 

□

□

                        (9) 

It is related to the coherence length by  
1 2 .D Lφ φτ − =                             (10) 

Using the diffusion coefficient, D , from the Einstein relation, ( )21R e E D =  □ , 
we obtain the inverse of the dephasing length squared, 2Lφ

− , in the form  

( ) ( )
4

2 2 2
2

e2π ln e .BL R k T E h R
hφ

−  =  □ □                (11) 

The two-dimensional electronic density of states,  , can be calculated, by taking 
the effective mass of electrons in Ga0.25In0.75As to be 0.03m m∗ = . 
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The symbols in Figure 8 mark the values of the inverse of the dephasing length 
squared, as extracted from our experiments. Had the sheet resistance been identical for 
all samples, all the points would have fallen on a straight line. However, since the 
widths of the samples fabricated for the UCF and the AB measurements were narrower 
than those for the WL ones, the sheet resistance is expected to be higher [36] and 
therefore the slopes in Figure 8 are steeper. Note that the values of the sheet resistances 
which can be calculated from the density of electrons and their mobility quoted in this 
paper would have produced much lower values than those quoted in the caption. In 
addition to a certain numerical uncertainty in the theoretical expression (11), we 
believe that the main reason for the discrepancy seen in Figure 8 between the slopes 
and the measured values arises from parallel conduction as mentioned above. 

4. The Beating Patterns in the Magnetoconductance of the Rings 

The combined effect of strong spin-orbit and Zeeman interactions, in the adiabatic 
limit, is expected to induce a Berry phase on the spin part of the electronic wave 
function. The possibility that this geometrical phase can be detected in power spectra of 
the magnetoconductance oscillations of mesoscopic rings has been pursued quite 
actively, both theoretically and experimentally (see Section 1 for a brief survey). An 
interesting (theoretical) observation has been made in Ref. [18]. Carrying out numeri- 
cally a rather complicate calculation of the AB oscillations and the corresponding 
power spectrum (computed by zero-padding the data before applying the Fourier 
transform code), the authors found that the peak splitting in diffusive rings depends 
strongly on the different dephasing sources, and that for small dephasing the splitting is 
totally masked. 
 

 
Figure 8. (Color online) The inverse dephasing length squared, extracted from all three 
experiments, as a function of the temperature. The lines represent the theoretical expression, 
Equation (11), with the following sheet-resistance values: = 330R Ω□

 for the lowest curve 
(black); = 450R Ω□

 for the two middle lines (blue and red); and = 600R Ω□
 for the top line 

(green). 
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Our data are not sufficient to examine this observation. We have therefore analyzed 
the simpler expression given in Ref. [16] for the transmission   of a clean Aharonov- 
Bohm ring1 subjected to strong spin-orbit and Zeeman interactions,  

( )
( )

( )
( )

1 12 2

2 2

tan 2 tan 2
1 1 .

4 2 4 2sin sin

t t

S S

− −
+ −

+ −

   Φ Φ
   = + + +
   Φ Φ   

               (12) 

This expression is valid in the adiabatic limit, pertaining to the case where, as 
mentioned in Section 1, both soω  and Zω  are larger than the rotation frequency 
around the ring, Ω  [16]. This condition is fulfilled by our rings, whether the rotation 
frequency is calculated in the clean limit, ( )F 2πv rΩ = , leading to 0.33 meVΩ ≈ , 
or in the diffusive limit, ( )22πD r Ω =   , in which case 0.001 meVΩ ≈ . The trans- 
mission   is given in terms of two phases, each of which is different for the two spin 
orientations. The phase t

±Φ  comprises the Aharonov-Bohm phase and the Berry 
phase, BΦ ,  

Z
B B 2 2

0 so Z

2π , π 1 ,t
ω

ω ω
± ± ±

 Φ  Φ = Φ − Φ = ± −
 Φ + 

            (13) 

where Φ  is the magnetic flux through the ring. With our experimental parameters, 

0 400 BΦ Φ ≈ × , where B  is measured Tesla. The other phase, S
±Φ  (termed “stand- 

ard” in Ref. [16]), is in fact the optical path along the ring perimeter; it is different for 
each spin direction since the Zeeman energy modifies the Fermi energy of each spin. 
This phase is given by  

02π ,S rk± ±Φ =                            (14) 

where 0k ±  are the solutions of  

( ) ( )
2

20 2
F Z so 0 F .

2

k
E k k

m
ω ω

±
±

∗= ± +


                  (15) 

The effective electron mass m∗  in our samples is 0.05≈  times the free-electron 
mass, and the Fermi energy F 19.6 meVE ≈ . Solving Equation (15) yields  

( ) ( )

2
2 2 so

0 F
F

2
22 so

Z so
F F

11
2

1 1             1 .
4

k k
E

E E

ω

ω
ω ω

±
  

   = +       

  
 + +  
   





  

           (16) 

For our samples’ parameters so12.3FE ω≈ × , while Zω  becomes comparable to 

soω  at about 2B =  Tesla. The transmission as a function of the magnetic field as 
derived from Equation (12) is illustrated in Figure 9 (the parameters use are those 
quoted in Section 1 and above). 

The two panels in Figure 9 display the transmission for two different ranges of the 
magnetic field. Both show an envelope of the AB oscillations, which varies slowly. 
Figure 9(a) clearly exhibits beats, superimposed on fast AB oscillations. From Equation  

 

 

1Reference [24] gives another expression for the transmission. The setup considered in that paper is however, 
different from ours. 
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(a) 

 
(b) 

Figure 9. (Color online) The transmission, Equation (12), as a function of the magnetic field over 
a wider range of fields (a) and over a restricted range (b). The parameters are given in Sections 1 
and 4. 
 
(13), the Berry phase is of order π , and the AB phase is of order 2π 400 B× ×  ( B  in 
Tesla). Therefore, the Berry phase affects the results only for 0.002B <  Tesla, and it is 
practically irrelevant for the interpretation of our data. Equation (12) shows that the 
modulations of the AB oscillations, which result from the factors  

( ) ( )2 2
02 πtan tant

±Φ ≈ Φ Φ , are modified by the prefactors ( )2 2sin S
±Φ , which create 

beats due to the dependence of S
±Φ  on B . At 0soω = , Equations (14)-(16) yield 

( ) F2π 118 1 118 2.7S Z E Bω±Φ = × ≈ ×    ( B  in Tesla). Then the transmission 
given in Equation (12) should exhibit beats at a very small frequency of order 2.7 
Tesla−1. In our samples so 1.6 meVω ≈ , and then the two functions S

±Φ  are appro- 
ximately parabolic in B  (for small B ), with slopes that increase with B . Specifi- 

cally, one has ( ) ( ) ( )22π 114 0.14 0.1 0.1S B O B+  Φ ≈ − − + −   and  

( ) ( ) ( )22π 123 0.14 0.1 0.1S B O B−  Φ ≈ + − + −   near 0.1B =  Tesla, while  

( ) ( ) ( )22π 113 0.98 0.7 0.7S B O B+  Φ ≈ − − + −   and 
 

( ) ( ) ( )22π 124 0.89 0.7 0.7S B O B−  Φ ≈ + − + −   near 0.7B =  Tesla. The correspond 

ing beats have even smaller frequencies, of order 0.14 Tesla−1 and 1 Tesla−1, respectively. 
These frequencies seem consistent with the envelopes of the fast oscillations in Figure 9. 



L. H. Tzarfati et al. 
 

123 

Although the theory exhibits a slow decrease of the average frequency, and a gradual 
increase of the beating frequencies, similar to the experimental observations, all of these 
theoretical beat frequencies are much smaller than those seen in the experiments. 
Fourier transforms of the data in Figure 9 (with or without zero-padding) indeed yield 
single peaks at the first harmonic of the AB oscillations, somewhat broadened by the 
Zeeman contributions. Higher harmonics do show small splittings of the peaks. 

5. Summary 

We have measured weak antilocalization effects, universal conductance fluctuations, 
and Aharonov-Bohm oscillations in the two-dimensional electron gas formed in InGaAs/ 
AlInAs heterostructures. This system possesses strong spin-orbit coupling and a high 
Landé factor. Phase-coherence lengths of 2 - 4 μm  at 1.5 - 4.2 K  were extracted 
from the magnetoconductance measurements. The analysis of the coherence-sensitive 
data reveals that the temperature dependence of the decoherence rate complies with the 
dephasing mechanism originating from electron-electron interactions in all three ex- 
periments. 

Distinct beating patterns superimposed on the Aharonov-Bohm oscillations are ob- 
served over a wide range of magnetic fields, up to 0.7 Tesla at the relatively high tem- 
perature of 1.5 K. The Berry phase is much smaller than the AB phase, and therefore 
cannot be responsible for these beats. Qualitatively, the theory of Aronov and Lyanda- 
Geller [16] does exhibit beats due to the interplay between the Zeeman and the spin- 
orbit interactions. However, the beating frequencies found in this theory are much 
smaller than those observed experimentally. It thus seems that the source of the beating 
pattern in the magnetoconductance of our rings is the different electronic paths through 
the ring, each penetrated by a slightly different magnetic flux [28]. For example, since 
the AB frequencies are proportional to the area encompassed by the electronic paths, 
the measured ratio of the two frequencies in Figure 7(b), i.e., 390 330 1.2≈ , implies a 
radii ratio of about 1.1. The width of our rings (see Figure 2) can easily accommodate 
two paths with such a radii ratio, and hence may explain the beating pattern. 
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