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Abstract 
The lack of treatment for poliomyelitis doing that only means of preventing is im-
munization with live oral polio vaccine (OPV) or/and inactivated polio vaccine 
(IPV). Poliomyelitis is a very contagious viral infection caused by poliovirus. Child-
ren are principally attacked. In this paper, we assess the impact of vaccination in the 
control of spread of poliomyelitis via a deterministic SVEIR (Susceptible-Vaccinated- 
Latent-Infectious-Removed) model of infectious disease transmission, where vacci-
nated individuals are also susceptible, although to a lesser degree. Using Lyapunov- 
Lasalle methods, we prove the global asymptotic stability of the unique endemic equi-
librium whenever vac 1> . Numerical simulations, using poliomyelitis data from 
Cameroon, are conducted to approve analytic results and to show the importance of 
vaccinate coverage in the control of disease spread. 
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1. Introduction 

In the 70s, having noticed that five million children died every year further to an 
avoidable disease by the vaccination like poliomyelitis, the WHO introduced the Global 
Immunization Vision and Strategy (GIVS). Poliomyelitis has been eliminated in the 
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most of countries, but recently we observe the upsurge of infectious in some countries 
[1]. Since October 2013, Cameroon is classified by the WHO as the exporting country 
of the poliovirus [2]. Poliomyelitis is an acute and sometimes devastating viral disease 
very contagious caused by poliovirus. Human is the only natural host for poliovirus [3]. 
Children are principally attacked. Poliovirus is predominantly transmitted via mother 
and food contaminated. In the most of case, infection is asymptomatic but the persons 
infected can transmit disease via their feces [4]. When a susceptible is exposed to infec-
tion by a virulent poliovirus, we can observe few days or few weeks three types of res-
ponses (minor illness, aseptic meningitis, and paralytic poliovirus). In case of minor 
illness, after 3 - 5 days, symptoms can be slight, fever, tiredness, headache, sore throat 
and vomiting. In the minor illness, the patient recovers in a few days 24 to 72 hours. In 
the case of non paralytic poliomyelitis in addition in some of minor illness signs and 
symptoms includes stiffness and pain in the back of neck. In the past days of illness, 
healing will rapid and complete. In the paralytic poliomyelitis, the predominant dam-
age is flaccid paralysis resulting from lower motor neurons damage. The maximal re-
covery usually occurs after 6 months, but residuals paralysis lasts much longer. There 
does not exist a specific treatment for poliomyelitis although improved sanitation and 
hygiene help to limit the spread of poliovirus. The only specific means of preventing 
polio is immunization with live polio vaccine (OPV) or/and inactivated polio vaccine 
(IPV) [5] [6] [7] [8]. 

As part of the necessary multi-disciplinary research approach, mathematical models 
have been extensively used to provide a framework for understanding of poliomyelitis 
transmission dynamics and the best strategies to control the spread of infection in the 
human population. In the literature, considerable work can be found on the mathema- 
tical modeling of poliomyelitis [9]-[18]. Some of these works refer to vaccination as po-
lio control mechanism [9] [12] [17] [18], using a standard SEIR model [19]. 

Some SVEIR models are used to assess the potential impact of an imperfect SARS 
vaccine like SARS vaccine [20], Hepatitis B vaccine [21], Tuberculosis vaccine [22], 
HIV vaccine [23] [24], to mention only these four diseases. From a mathematical point 
of view, to show the global asymptotic stability of equilibrium points in general, and 
especially, the global asymptotic stability of the endemic equilibrium, is not an easy 
task. This requires, in most cases, the use of several different techniques, such as the 
theory of compound matrix [25] [26], the comparison theorem [27], or the use of Lya-
punov functions associated with the Lassalle invariance principle [28], to name a few 
techniques commonly used by authors. For example, in [20], the authors used com-
pound matrix techniques to show the global stability of the endemic equilibrium under 
some constraints on the parameters of the system. Huiming Wei et al. [29] proposed an 
SVEIR model with time delay, and analyzed the dynamic behavior under pulse vaccina-
tion. Using comparison theorem, they showed that the infection-free periodic solution 
is globally attractive. Yu Jiang et al. [30] modified that model by adding saturation in-
cidence, and used too the comparison theorem to show the global stability of “infec-
tion-free” periodic solution. 

In this paper, we study the impact of vaccination in the control of poliomyelitis 
spread via an SVEIR model of infectious disease transmission. Individuals are classified 



L. N. Nkamba et al. 
 

100 

as one of susceptible S , vaccinated V , exposed E , infectious I , or recovered R . 
The model is based on a standard SEIR model [19], but allows that susceptible individ-
uals may be given an imperfect vaccine that reduces their susceptibility to the disease. 
Since we consider a leaky vaccine, the V-compartment of vaccinated individuals is con-
sidered as a susceptible compartment, and thus we are dealing with a differential sus-
ceptibility system with bilinear mass action as in Hyman and Li [31]. However, we in-
clude one-way flow between these two compartments due to vaccination making the 
model studied here distinct from the model in [31]. For the case where the basic re-
production number is less than one, the global stability of the disease-free equilibrium 
has been shown by Gumel et al. in 2006 [20]. However, the global dynamics when the 
basic reproduction number is greater than one have not been resolved before. By al-
lowing different death rates for each of the compartments, the model studied in this 
paper is slight generalization of the model studied in [20]. Using Lyapunov-LaSalle 
methods, we fully resolve the global dynamics of the model for the full parameter space. 
We demonstrate that the model exhibits threshold behavior with a globally stable dis-
ease-free equilibrium if the basic reproduction number is less than unity and a globally 
stable endemic equilibrium if the basic reproduction number is greater than unity. 
Thus, we also fully resolve the global dynamics for the model studied in [20]. 

In order to study the stability of a positive endemic equilibrium state, we use Lyapu-
nov’s direct method and LaSalle’s Invariance Principle with a Lyapunov function of the 
form:  

( ) ( )*
1 2, , , lnn i i i i

i
V x x x A x x x= −∑                    (1) 

where 1, , nA A  are constants, ix  is the population of ith compartment and *
ix  is 

the equilibrium level. Lyapunov functions of this type have also proven to be useful for 
Lotka-Voltera predator-preys systems [32], and it appears that they can be useful for 
more complex compartmental epidemic models as well [33] [34]. 

The main aim of the present paper is to show that our model has a unique endemic 
equilibrium which is globally asymptotically stable. 

This SVEIR model could be used to assess the potential impact of an extended vacci-
nation program (such as for the monovalent serogroup A conjugate MenVacAfric, an 
anti-meningococcal vaccine introduced in 2011 in Sub-saharan Africa), in order to 
compare with the impact of a pulse vaccination program. 

In the next section, we present our SVEIR epidemic model. Section 3 presents some 
basic properties like the computation of the basic reproduction ration, 0 , and such as 
the existence of the equilibrium points. In Section 4, we study the stability properties of 
the model and in Section 7, numerical simulations will be done with Cameroon data 
which deal with the vaccination campaign against polio. An conclusion round the pa-
per. 

2. Model Description 

We divide the entire population into 5 sub-populations of epidemiological significance: 
susceptible, vaccinated, exposed, infective, and removed compartments with respective 
sizes S , V , E , I  and R . The latent compartment, E , takes into account the de-
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lay between the moment of the infection and the moment when an infected individual 
becomes infectious. The per capita death rates for susceptible, vaccinated, exposed, in-
fective and recovered individuals are Sd , Vd , Ed , Id  and Rd , respectively. The 
recruitment rate into the susceptible class is assumed to be constant and denoted by 
Λ . The per capita vaccination rate is p . 

We assume mass action incidence SIβ  for susceptible. Vaccination reduces the 
risk of infection by a factor ( )0,1θ ∈ . Thus, we have mass action incidence VIθβ  for 
vaccinated individuals and the efficacy of the vaccine is 1 θ− . The case 0θ =  corres-
ponds to a perfect vaccine and the case 1θ =  corresponds to a vaccine with no effect. 
Each of these cases can be dealt with more simply and directly by studying the basic 
SEIR model. 

The average duration of latency in class E  before progressing to class I  is 
1
ε

, 

and the average time spent in class I  before recovery is 1
γ

. All parameters of the 

system are assumed to be positive. 
Our model consists of the following system of ordinary differential equations:  

( )

( ) ( )
( )

,

S

V

E

I

R

S d p S SI

V pS d V VI

E I S V d E

I E d I

R I d R

β

θβ

β θ ε

ε γ

γ

 = Λ − + −


= − −
 = + − +
 = − +
 = −











                     (2) 

with initial conditions which satisfy ( ) ( ) ( ) ( ) ( )0 , 0 , 0 , 0 , 0 0S V E I R ≥ . A schematic of 
the model is shown in Figure 1. 

Since R  does not appear in the equations for the other variables, we will consider 
the following system (model system (3) without the R  compartment):  

 

 
Figure 1. Schematic of the compartmental model. 
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( )

( ) ( )
( )

S

V

E

I

S d p S SI

V pS d V VI

E I S V d E

I E d I

β

θβ

β θ ε

ε γ

 = Λ − + −


= − −


= + − +
 = − +









                     (3) 

with initial conditions which satisfy ( ) ( ) ( ) ( )0 , 0 , 0 , 0 0S V E I ≥ . 

3. Basic Properties and Equilibriums 
3.1. A Compact Positively Invariant Absorbing Set 

In order that the model be well-posed, it is necessary that the state variables ( )S t , 
( )V t , ( )E t  and ( )I t  remain nonnegative for all 0t ≥ . That is, the nonnegative 

orthant 4
+  must be positively invariant. Let  

( ) 4 * *, , , : , , ,S V E I S V E I S S V V
d+
Λ = ∈ + + + ≤ ≤ ≤ 

 


 

where { }min , , ,S V E Id d d d d= , 
( )

*

S

S
d p
Λ

=
+

 and 
*

*

V

pSV
d

= . 

Lemma 1. The compact set   is a positively invariant and attracting.  
Proof. For each of the variables S , V , E  and I , when the variable is equal to 

zero, the derivative of that variable is non-negative in 4
+ . It then follows from ([35], 

Proposition 2.1) that 4
+  is positively invariant. 

Let N S V E I= + + + . Then  

.S V E IN d S d V d E d I dN= Λ − − − − ≤ Λ −

 
Consequently,  

( )liminf N t
d
Λ

≤                           (4) 

Similarly, ( ) 0S t <  when ( ) *S t S>  and so  

( ) *liminf S t S≤                           (5) 

Let 0> . Then for a given initial condition, there exists 0T ≥  such that  
( ) *S t S≤ +   for all t T≥ . Then, 

( )*
VV p S d V≤ + −                           (6) 

for t T≥ . Thus, 
*

liminf .
V

pSV
d
+

≤
                          (7) 

This holds for all 0>  and so  
*

*liminf .
V

pSV V
d

≤ =                          (8) 

 
Since   is a positively invariant absorbing set is sufficient to consider the dynamics 

of the flow generated by system (3) in  . 
It is easy to see that the model system (3) has a disease-free equilibrium  
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( )* * * * *, , ,P S V E I=  given by  

( ) ( )
* * * *, , 0, 0.

S V S

pS V E I
d p d d p
Λ Λ

= = = =
+ +  

Additionally, an endemic equilibrium P  may also exist. 

3.2. Basic Reproduction Ratio and Equilibrium 

Using the method of the references [36] [37], the basic reproduction number vac  is  

( )
( )( )

* *

vac
E I

S V

d d

εβ θ

ε γ

+
=

+ +
                         (9) 

Replacing *S  and *V  by their values in (9), we obtain:  

( )( )( )vac 1 .
S E I V

p
d p d d d

εβ θ
ε γ

 Λ
= + + + +  

                (10) 

When there is no vaccination ( 0p = ), system (3) is the standard SEIR  model with  

( )( )0 vac 0
.p

S E Id d d
εβ
ε γ=

Λ
= =

+ +
                    (11) 

From Equation (10), we claim the following result.  
Proposition 1. vac 0≤   if and only if S Vd dθ ≤ .  
Proof. It follows from (11) that  

vac 0 .V S

V S

d p d
d d p
θ+

=
+

                        (12) 

Thus, vac 0≤   is equivalent to  

( ) ( ) ,V S V Sd p d d d pθ+ ≤ +                      (13) 

from which the result follows.                                              
The value of vac  determines whether or not there exists an endemic equilibrium 

([38], Theorem 2.3). 
Theorem 1. If vac 1≤ , then there are no endemic equilibria. If vac 1> , then 

there exists a unique endemic equilibrium ( ), , ,P S V E I= ).  
(See Appendix for proof). 

4. Stability Analysis of Equilibriums 
4.1. Stability Analysis of the DFE 

For local stability of the disease-free equilibrium, we claim the following:  
Theorem 2. If vac 1< , then the disease-free equilibrium is locally asymptotically 

stable and unstable if vac 1> .  
Proof. The Jacobian matrix of model (3) evaluate at the disease-free equilibrium is 

given by  

( )

( )

( ) ( )
( )

*

*
*

* *

0 0
0

.
0 0

0 0

S

V

E

I

d p S
p d V

J P
d S V

d

β
β

β θ

γ

 − + −
 

− − 
=  − + + 
 − + 





          (14) 
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The eigenvalues of ( )*P  are ( )1 Sd pλ = − + , 2 Vdλ = − , and those of the fol-
lowing sub-matrices  

( ) ( )
( )

* *

1 .E

I

d S V
J

d

β θ

γ

 − + +
 =
 − + 




                   (15) 

The characteristic polynomial of 1J  is given by  

( ) ( )( )( )2
1 vac( ) 1E I E Id d R d dλ λ γ λ γ= + + + + + − + +            (16) 

It clear that the roots of 1  have negative real parts if and only if vac 1< . It follows 
that the disease-free equilibrium *P  is locally asymptotically stable whenever vac 1<  
and unstable when vac 1> . This end the proof.                               

The following result is proven in ([20], Theorem 4.1). 
Theorem 3. If vac 1≤ , then the disease-free equilibrium is globally asymptotically 

stable. 
If vac 1> , then the disease-free equilibrium is unstable.  

4.2. Stability Analysis of the Endemic Equilibrium 

Our main result is the following theorem.  
Theorem 4. If vac 1> , then the endemic equilibrium point ( ), ,SV E I  is globally 

asymptotically stable in 4
+ .  

Proof. Consider the following candidate Lyapunov function  

( ) ( ) ( ) ( ) ( ), , , ln ln ln ln .EdS V E I S S S V V V E E E I I Iε
ε
+

= − + − + − + −   (17) 

Differentiating ( ), , ,S V E I  along solutions to (3) gives: 

2 3

      3 4 .

S V
S S S V V Sd S d V
S S S V V S

S I S E E I V S I V E E I SIS IV
S I S E E I V S I V E E I S

β θβ

   
= − − + − − −   

   
   

+ − − − + − − − −   
   



   (18) 

Since  

1; 1; 1; 1.S S S V V S S I S E E I V S I V E E I S
S S S V V S S I S E E I V S I V E E I S

= = = =        (19) 

and,  

1 2 3 1 2 3 1 2 3. . , , , , , 0n
n n na a a a n a a a a a a a a+ + + + ≥ ≥          (20) 

Since arithmetical mean is greater than geometrical mean, we have the following in-
equalities 

2 0

3 0

3 0

4 0.

S S
S S
S V V S
S V V S
S I S E E I
S I S E E I
V S I V E E I S
V S I V E E I S

− − ≤

− − − ≤

− − − ≤

− − − − ≤

                    (21) 
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Therefore 0≤ . Thank’s to the direct Lyapunov theorem of stability, we conclude 
that ( ), ,P SV E I=  is stable.  

It remain to prove that ( ), , ,P S V E I=  is asymptotically stable using the Lasalle in-
variance principle.  
set 

2

3

3

4 .

S SA
S S
S V V SB
S V V S
S I S E E IC
S I S E E I
V S I V E E I SD
V S I V E E I S

= − −

= − − −

= − − −

= − − − −

                   (22) 

it’s clear that;  

( ) ( )0 0A B C D= ⇔ = = = =  
Backing to the above relations, we have the following implications.  

0A S S= ⇒ =  
( ) ( ),   0S S B V V= = ⇒ =  

( ),   0 1I E E I E IS S C
I E E I E I

   = = ⇒ = = ⇒ =   
    

If we set  

,    then     and   .E I a E aE I aI
E I
= = = =                 (23) 

Finally we have,  

( ), , , 0 ,   ,    ,    S V E I S S V V E aE I aI= ⇔ = = = =            (24) 

At the endemic equilibrium, we have  

( )

( ) ( )
( ) .

S

V

E

I

d p S SI

pS d V VI

I S V d E

E d I

β

θβ

β θ ε

ε γ

Λ = + +


= +


+ = +


= +

                     (25) 

Replacing , , ,S V E I  by their values given by (24) in the second equation of system 
(25) yields  

0 .V VpS d V a V I pS d V a VIθ β θ β= − − ⇒ = +               (26) 

If we compare relation (26) with the last equation of (25), then we have: 

,    and    1.VpS d V VI aθβ= + =                     (27) 

Consequently: ,   I I E E= =  
Finally  

( ) ( ), , , 0 ,    ,    ,    S V E I S S V V E E I I= ⇔ = = = =           (28) 
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Thus, the largest invariant set contained in ( ){ }, , , 0S V E I =  is  

( ){ }, , ,P S V E I= . 
Then the global stability of ( ), , ,P S V E I=  follows according to the Lasalle inva-

riance principle [28].                                                      

5. Numerical Simulations 

In this section we show via numerical simulations that when vac  is lower than one 
(minor illness vac 0.70= ), disease will be eliminated from the community, and when 

vac  is greater than one (meningitis and paralytic form of polio), and epidemics will 
occurs or the disease will persists in the community. We explore also the impact of vac-
cination coverage in the spread of poliomyelitis. 

Parameters Description and Values 

Most of parameters values are from Cameroon, like natural rate of mortality. We as-
sume that the natural rates of mortality of susceptible, recovered, exposed are the same. 
Value of vaccine efficacy, recovery rate and rate of apparition of clinical symptoms are 
coming from WHO. For vaccination coverage, we take different values in order to ex-
plore different situations. The recruitment rate of susceptible humans, Λ , likely is ac-
tually the birth rate, and are taken in [39] [40]. See Table 1 for the description of para-
meters and their based line or range value. 

6. Numerical Results and Interpretations 

Figure 2 illustrate the minor illness form of polio. We assume that 0.5γ = , so  

vac 0.70= , and we have showed analytically that If vac 1≤ , then the disease-free 
equilibrium is globally asymptotically stable. We see that in this case, healthy carriers 
and infectious tend toward horizontal axis, and the infection is eradicated after around 
6 months. 

In Figure 3, we are in the presence of the meningitis form of polio. Assuming that  
 

Table 1. Description and values of parameters of model (3).  

Parameter Description Based line value or range 

Λ  Recruitment rate of susceptible 2.5 

β  Effective contact rate 0.1 

1 θ−  Vaccine efficacy 0.8 

ε  Rate of development of clinical symptoms 0.05 - 0.5 

γ  Recovery rate 0.05 

p  Vaccination coverage rate [ ]0,1  

Sd  Natural mortality rate of susceptible 0.0551 

Vd  Natural mortality rate of vaccinated 0.0551 

Ed  Natural mortality rate of exposed 0.0551 

Id  Mortality rate of infectious 0.08 

Rd  Natural mortality rate of recovered 0.0551 
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Figure 2. Minor illness vac 0.70= . 

 

 
Figure 3. Meningitis form of polio vac 1.46= . 

 
0.2γ =  and vaccine coverage 0.8p = , to have vac 1.46= . It is clear that infection is 

a little more severe and the disease reaches at endemic equilibrium point and does not 
disappear. 

In Figure 4, we are in the presence of the most severe form of polio: the paralytic 
form with 0.005γ = , so vac 3.15= . As in the case of meningitis form, the patient 
takes long time to heal and thus continue to transmit the infection during that time. It 
is important to note that remark is that the infection takes longer to reach the endemic 
equilibrium point and remains in the population despite vaccination. 

We are in front of paralytic polio. We assume vac 3.15= , and explore the effect of 
immunization on the dynamic of the disease. Figure 5 show that more vaccine cover-
age is high, the number of healthy carriers and infectious is low at equilibrium point. 
But it is noted that the infection remains in the population. 

Figure 6, we explored three cases:  
1) even if the vaccine is perfect and nobody is vaccinated; the infection is and re-

mains high in the population 0θ =  and 0p = ;  
2) The vaccination is made; even if the coverage is low infection decreases and reaches 
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a an equilibrium point 0θ =  and 0.5p = ;  
3) The last and not realistic situation is that infection is eradicated after one year, and 

when we have perfect vaccine and maximal vaccination coverage 0θ =  and 1p = .  
 

 
Figure 4. Paralytic form of polio vac 3.15= . 

 

 
Figure 5. Impact of vaccine coverage. 

 

 
Figure 6. Impact of vaccine efficacy. 
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7. Conclusions 

We highlighted in this article the importance of vaccination in the control of the prop-
agation of the poliomyelitis. We relied on the compartmentalized SVEIR model that 
characterizes the infectious diseases. We computed vac , key parameter related to the 
Reproduction, which governs the asymptotic behavior of the model. We then con-
structed a Lyapunov function to prove the global asymptotic stability of the endemic 
equilibrium whenever vac 1> . 

Using data from AHALA (district of Yaound in Cameroon), we simulated the three 
different forms of polio namely the minor illness, the meningitis form and the paralytic 
form. In the case of minor illness of polio, we assumed that vac 0.70= . The model 
also allowed an endemic equilibrium point when vac  is greater than 1. In that case, 
we simulated both meningitis and paralytic form of polio, respectively with vac 1.46=  
and vac 3.1= . We found that, the more the vaccine coverage is high, the more the 
healthy Carriers and Infectious are low. The simulations show that, to eradicate polio in 
the population means to have simultaneously a perfect vaccine and maximal vaccine 
coverage. Therefore, other control strategies are to be issued to finally reach that goal. 
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Appendix 
Proof of Theorem 1 

Proof. In order to determine the existence of possible endemic equilibrium, that is, 
equilibrium with all positive components which we denote by  

( ), , , ,P S V E I=  
we have to look for the solution of the algebraic system of equations obtained by 
equating the right hand sides of system (3) to zero. In this way we obtain the implicit 
system of equations,  

,    ,   I

S V

dpSS V E I
d p I d I

γ
β θβ

+Λ
= = =

+ + + 
,            (29) 

where I  is solution of the following equation  
2

1 2 3 0,A I A I A+ + =                         (30) 

with ( ) ( )( )3 32
1 vac V E S IA d d d p dθ γ= − + + +  , 

( ) ( ) ( ) ( )( )2 2 2
2 vac vac1 ,I E V V S V SA d d d p d d p d d pγ θ θ θ θ = − Λ + + + + + + + −  

 
and ( )( ) ( )( )22 2

3 vac 1 .E V IA d d p dθ γ= Λ + + + −    
Note that coefficient 1A  is always negative and coefficient 3A  is positive (resp. 

negative) if and only if vac  is greater (less) than unity. Thus, model system (3) ad-
mits only one endemic equilibrium whenever the basic reproduction number is greater 
than unity. When vac 1≤ , we have 2A  negative. It follows that the model system (3) 
does not have any endemic equilibrium point whenever vac 1≤ .                 
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