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Abstract 
We continue the study of the Standard Model of Quantum Physics in the Clifford 
algebra of space. We get simplified mass terms for the fermion part of the wave. We 
insert the simplified equations in the frame of General Relativity. We construct the 
electromagnetic field of the photon, alone boson without proper mass. We explain 
how the Pauli principle comes from the equivalence principle of General Relativity. 
We transpose in the frame of the algebra of space the second quantification of the 
electromagnetic field. We discuss the changes introduced here. 
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1. Reduced Equations 

We use the introduction, the notations and results of the first part [1]. We have ex-
plained there how the Lagrangian density is both consequence and cause of the equa-
tions ruling the waves of the electron, its neutrino and the d and u quarks with their 
three states of color. These particles are those of the first generation in the Standard 
Model of Quantum Physics (SM). The self-causality of this part of the SM, main result 
of [1], explains why a principle of extremum exists in physics. This self-causality is also 
the limit of the domain where the Lagrangian mechanism is acting: contrary to the SM 
where the Lagrangian density has a fermion and a boson part, we cannot get the self- 
causality of a boson part of the Lagrangian density. Then we must get all properties of 
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the boson part of the SM only from the wave equations of the fermion part. 
The 1 3+  boson fields of the ( ) ( )1 2U SU×  gauge group of electro-weak interac-

tions and the 8 bosons named “gluons” of the ( )3SU  group of chromodynamics gen-
erate the ( ) ( ) ( )1 2 3U SU SU× ×  gauge group of the SM. They must account for the 
invariance under ( )3 2,Cl GL∗ =  . This group generalizes the ( )2,SL 

 group which 
is used to get the relativistic invariance of the Dirac wave equation [2]. We recall that 
the dilation reads :D x x MxM′ = 

  where M  is any element in 3Cl∗  and †M M=  
[3]-[16]. The vectors transforming like x  which satisfy: 

;x MxM x D x x D xµ µ ν µ µ ν
µ ν µ νσ σ′ ′ ′= = = =                 (1.1) 

are named contravariant. The vectors transforming like the gradient µ
µσ∇ = ∂  are 

named covariant. An example of covariant vector is qA , the potential space-time vec-
tor of the Dirac equation which satisfies: 



ˆ ;    .;  vqA Mq A M qA D q A M Mµ µ ν′ ′ ′ ′= = =                 (1.2) 

Each Dirac wave is made of a right and a left wave. For instance the 1φ  wave of the 
electron reads, with the usual notation of the complex conjugate: 

1 1 1 111 1 2 1 2
1 1 1 1
2 1 2 1

1 1
1 1 1 1 1 1 11 13 3

1 1
2 2

2 ; 2

0 01 1ˆˆ;   2 ;   .
2 20 0

R L R L

ξ η η ξ
φ φ

ξ η η ξ

ξ ησ σ
φ φ φ

ξ η

   − −
= =   

   
   + +

= + = = = =   
   



     (1.3) 

We use similar notations for the wave 8φ  of the magnetic monopole, the waves 
,  2,3, 4n nφ =  of the d quark and the waves 3 2, , 4,  3n nφ + =  of the u quark (see [1] 

(2.6)-(2.8)). Right and left waves transform differently under the invariance group: 
1 1 1 1 1 1 8 8 8 8 8 8; ;ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ; .R R MR L L ML R R R M L L L M′ ′ ′ ′= = = =    .    (1.4) 

Each chiral wave allows us to construct a unique contravariant vector: 
1 1 1 1 1 1 8 8 8 8 8 8.; ; ;R L R LD R R D L L D R R D L L= = = =                   (1.5) 

1.1. The Lepton Sector 

The wave equations of the electron and of the Lochak’s magnetic monopole [17]-[22] 
use the , 1, , 6ja j =   of [1] (3.26) and the potentials of [1] (3.20) and (3.22). They 
read: 

 ( )1 1 1 8 8
1 3 5 1

ˆ ˆ0 2 b .mR i R i a L a L a R σ
ρ

= ∇ + + + −                (1.6) 

 ( )8 8 8 1 1
6 4 5 1

1 3ˆ ˆ0 b ;  .
2 2

mR i k R i a L a L a R kσ
ρ α

 = ∇ − + + + + = 
 

           (1.7) 

( ) ( ) ( )1 3 1 1 2 8 1 8 8
1 2 1 4

ˆ ˆ0 b .mL i w L i w iw L i a R a L a Rσ
ρ

= ∇ + + − + + + +         (1.8) 

( ) ( ) ( )8 3 8 1 2 1 8 1 1
6 2 1 3

ˆ0 b .mL i w L i w iw L i a R a L a Rσ
ρ

= ∇ + − − − + − +         (1.9) 



C. Daviau et al. 
 

2400 

We do not change anything in (1.6), (1.8) and (1.9) from the wave equations of the 
SM, where 8R  is useless and often canceled. We put in (1.7) a term of chiral gauge. 
The fine structure constant α  gives the magnetic charge g  of the Dirac magnetic 
monopole: 

3;  b.
2 2

g qQ QB B
c α α

= = =


                     (1.10) 

We also use the value of the Weinberg-Salam angle obtained in [23] from the prop-
erties of the electron. This implies: 

( )3
2

2b 2 ,   2
3
q eA W g q

c
= − = =



                   (1.11) 

where A  is the electromagnetic potential and e q c=   is the charge of the electron. 
Two conservative currents exist, the lJ  and the lK  currents generalizing the cur-
rents of the Lochak’s magnetic monopole and of the Dirac’s electron [17]-[22]. They 
read in the lepton case: 

1 8 1 8 1 8 1 8;   .l R R L L l R R L LJ D D D D K D D D D= + + + = + − −           (1.12) 

We explain below why the electromagnetic potential A  generalizes the lK  current. 
We first explain how the lJ  current simplifies the mass terms of our wave equations. 
We have: 

( )1 1 1 8 8 1 1 8 8 1 1 1 1 8 8 1 1 1 1 8 8 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ .lJ R R R R R L L L L R R R R R R R L L R L L R= + + + = + + +   (1.13) 

We have also: 
1 1

8 1 8 8 1 81 2
5 5 1

1 1 1 1 1 13
1 1

8 1 8 8 1 83
3 3

0;

ˆ ˆ;  
2

1

;

;ˆ ˆ;  
2

1ˆ ˆ .;  
2

R R
iR R a R R R a R

L R a L L R a L

L R a L L R a L

σ σ σ

σ

σ

=
−

= − = −

+
= =

+
= =

              (1.14) 

We then get: 
1 1 8 8

1 3 5 1
ˆ ˆ .lJ R a L a L a R σ= + −                    (1.15) 

A similar calculation gives: 
8 8 1 1

6 4 5 1

1 1 8 8
1 2 1 4

8 8 1 1
6 2 1 3

ˆ ˆ ˆ

ˆ
,

,

.

l

l

l

J R a L a L a R

J L a R a L a R

J L a R a L a R

σ

σ

σ

= + +

= + +

= − +



 



                   (1.16) 

In each of the four wave Equations (1.6)-(1.9) the mass term has three parts while the 

lJ  current is made of four chiral currents. The reason is the cancellation of the terms 
1 1 8 8 1 1 8 8ˆ ˆ,  ,  ,  R R R R L L L L  . This cancellation also occurs in the calculation of the gauge 

terms, and the result is: the action of a gauge potential upon any of the chiral nR  and 
nL  terms is “exterior” to this part of the wave, caused by the other chiral waves. 
We have obtained in [23] Equations. (2.5), (2.8) and (6.10): 
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1 18 1 8 8 1 2 18 1 8 8 1 3 1 8;  ;  .L L L LW D L L L L W d iL L iL L W D D= = + = = − = − +          (1.17) 

With the value obtained in [23] for the Weinberg-Salam angle we also get j jw qW=  
and the electro-weak terms present in the wave equations may be simplified: 

( ) ( ) ( ) ( )1 2 8 1 8 1 3 1 1 2 1 1 8 8 3 8;ˆ ˆ ˆ2 2 2 .2L L L Lw iw L q D D L w L w iw L q D D L w L− + = − + = − = − + = (1.18) 

The system (1.6)-(1.9) is then reduced to: 





( )

( )

1

8

3 1

3 8

ˆ ˆ0 2 b

1 ˆ0 b
2

ˆ

.

.

.

.

0 b 3

0 b 3

l

l

l

l

mi i J R

mi k i J R

mi w i J L

mi w i J L

ρ

ρ

ρ

ρ

 
= ∇ + + 
 
  = ∇ − + +  

  
 

= ∇ + + + 
 
 

= ∇ + − + 
 





                    (1.19) 

We have: 
1 8 1 8

1 8 1 81 1 1 1
1 8 1 8
2 2 2 2

1 1 1 1 8 8 8 8
1 1 1 8 8 81 1 1 2 1 1 1 2

1 1 1 1 8 8 8 8
2 1 2 2 2 1 2 2

1 1 1 1
1 1 1 2 2 1 2

1 1 1
2 1 1

0 0 0 0ˆ2 ;  2 ;  2 ;  2 ;
0 0 0 0

2 ;  2 ;

2

R R

L

R R L L

D R R D R R

D L L

ξ ξ η η
ξ ξ η η

ξ ξ ξ ξ ξ ξ ξ ξ
ξ ξ ξ ξ ξ ξ ξ ξ

η η η η
η η η

       
= = = =       

       
   

= = = =   
   

−
= =

−



 



8 8 8 8
8 8 8 2 2 1 2

1 8 8 8 8
1 2 1 1 1

;  2 .LD L L
η η η η

η η η η η
   −

= =   
−   



    (1.20) 

These chiral currents satisfy: 
10 1 1 1 1 13 1 1 1 1 11 1 1 1 1 12 1 1 1 1

1 1 2 2 1 1 2 2 2 1 1 2 2 1 1 2
80 8 8 8 8 83 8 8 8 8 81 8 8 8 8 82 8 8 8 8

1 1 2 2 1 1 2 2 2 1 1 2 2 1 1 2
10 1 1 1 1 13

1 1 2 2

;    ;      ;    ,

;  ;    ;    ,

;   

R R R R

R R R R

L L

D D D iD

D D D iD

D D

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

η η η η η

= + = − = + = −

= + = − = + = −

= + = − 1 1 1 1 11 1 1 1 1 12 1 1 1 1
1 1 2 2 1 2 2 1 1 2 2 1

80 8 8 8 8 83 8 8 8 8 81 8 8 8 8 82 8 8 8 8
1 1 2 2 1 1 2 2 1 2 2 1 1 2 2 1

;    ;   ,

;  ;  ;  .
L L

L L L L

D iD

D D D iD

η η η η η η η η η η η

η η η η η η η η η η η η η η η η

+ = − − = −

= + = − + = − − = −

 (1.21) 

From the previous equalities we can get the result: the chiral currents are isotropic, 
and using the numeric equations equivalent to (1.19) we get the law of conservation of 
these four chiral currents. For instance the 1

RD  current satisfies (see [1] (3.40)): 

( ) ( ) ( ) ( )2 2 2 210 11 12 13 10 11 12 13
0 1 2 3;   .0 0R R R R R R R RD D D D D D D D= − − − = ∂ + ∂ + ∂ + ∂      (1.22) 

The conservative currents are 1 8,  R RD D  and 1 8
L LD D+ . Next we get: 

( ) ( ) ( )
( )

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1
1 1 1 1 2 2 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 2 2 2 2 2

10 10 11 11 12 12 13 13 1 1

4 4

2 2 .R L R L R L R L R L

a a

D D D D D D D D D D

ξ η ξ η ξ η ξ η ξ ξ η η ξ ξ η η ξ ξ η η ξ ξ η η= + + = + + +

= − − − = ⋅
 (1.23) 

The same calculation gives for the other terms in 2 :ρ  
1 8 1 8 1 8 1 8 8 8

2 2 3 3 4 4 5 5 6 6;  ;  ;  ;2 2 .2  2 2L L R L L R R R R La a D D a a D D a a D D a a D D a a D D= ⋅ = ⋅ = ⋅ = ⋅ = ⋅  (1.24) 

This implies: 
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( ) ( )
2 1 1 1 8 1 8 1 8 1 8 8 8

21 1 8 8 1 1 8 8

2 2 2 2 2 2 )

.

R L L L R L L R R L R L

R L R L R L R L l

l

D D D D D D D D D D D D

D D D D D D D D J

J

ρ

ρ

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

= + + + ⋅ + + + =

=

   (1.25) 

The space-time vector lv J ρ=  in the mass terms of the wave equations is then 
unitary and the wave Equation (1.19) read: 

 ( )
 

( )
( )

1

8

3 1

3 8

ˆ0 2 b v .

10 b v .
2

ˆ0 b 3 v .

0 b 3 v .

i im R

i k im R

i w im L

i w im L

= ∇ + +

  = ∇ − + +  
  

 = ∇ + + + 
 = ∇ + − + 





                   (1.26) 

The unitary space-time vector v  is similar to a reduced velocity and we name this 
vector “local reduced velocity”. It is impossible to suppress this term: the replacement 
of v  by 1 should suppress the crossing between the left and right terms in the Dirac 
equation, and this crossing is necessary to get the results of the Dirac equation for the 
electron. L. de Broglie often said that the wave equation of the electron is essentially re-
lativistic: since the chiral currents are isotropic, none non-relativistic approximation 
can actually conserve the chiral properties of the lepton wave, and this is exactly the 
reason allowing us to say that the quantum wave of the electron can never be a solution 
of the Schrödinger equation, even at very small or null usual velocity. The use in quan-
tum electrodynamics of a Schrödinger equation for any quantum state is the same kind 
of error than the use of a non-relativistic theory for the Maxwell laws of the electro-
magnetism: this automatically should suppress most of the physical properties of the 
electromagnetism (induction, electromagnetic waves and so on). An electron without 
spin does not exist. 

1.2. The Quark Sector 

We start from the wave equations obtained in [1], Equations (3.60)-(3.62) and (3.66)- 
(3.69), with n = 2 (red color). The other equations are similar, up to a circular permuta-
tion of 2,3, 4n = . This gives the system: 

 ( ) ( ) ( )

(
)

2 2 1 2 3 1 2 4 3 3 2
1 1 3 3 1 3

2 23 3 23 3 42 4 42 4
2 5 1 3 5 1 4

52 6 72 7 52 5 62 6 72 7
5 1 5 1 4 4 4

2 ˆ ˆ ˆ ˆ ˆ ˆˆ b
3

ˆ ˆ ˆ

        

ˆ ˆ

    

q

i R R h ih R h ih R h h R

m
d L s R s L s R s L

s R s R s L s L s L

σ σ
ρ

σ σ

∇ = + + + − + −

+ − + + +

+ + + + +

         (1.27) 

 ( ) ( ) ( )

(
)

5 5 1 2 6 1 2 7 3 3 5
1 1 3 3 1 3

5 56 6 56 6 75 7 75 7 52 2
5 5 1 3 5 1 4 5 1

53 3 54 4 52 2 53 3 54 4
5 1 5 1 3 3 3

4 ˆ ˆ ˆ ˆ ˆ ˆb
3

ˆ

ˆ ˆ ˆ ˆ ˆ            

q

i R R h ih R h ih R h h R

m
d L s R s L s R s L s R

s R s R s L s L s L

σ σ σ
ρ

σ σ

∇ = − + + + − + −

+ − + + + −

− − + + +

    

      (1.28) 
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( ) ( ) ( ) ( )

( )

2 2 1 2 5 3 2 1 2 3 1 2 4 3 3 2
2 2 2 1 1 3 3 1 3

2 23 3 23 3 42 4 42 4 52 5 62 6 72 7 52 5 62 6 72 7
2 2 1 4 2 1 3 2 1 2 1 2 1 3 3 3

bˆ ˆ ˆ ˆ ˆ ˆ
3

              .q

i L L w iw L w L h ih L h ih L h h L

m
d R s L s R s L s R s L s L s L s R s R s Rσ σ σ σ σ

ρ

− ∇ = + + − + + + − + −

− + + − + − − − + + +     

 (1.29) 

( ) ( ) ( ) ( )

( )

5 5 1 2 2 3 5 1 2 6 1 2 4 3 3 5
2 2 2 1 1 3 3 1 3

5 56 6 56 6 75 7 75 7 52 2 53 3 54 4 52 2 53 3 54 4
5 2 1 4 2 1 3 2 1 2 1 2 1 4 4 4

b
3

              .q

i L L w iw L w L h ih L h ih L h h L

m
d R s L s R s L s R s L s L s L s R s R s Rσ σ σ σ σ

ρ

− ∇ = + − + + + + − + −

− + + − + + + + + + +

 

    

 (1.30) 

The mass term qm  may be different from the mass term m  of the lepton wave. 
The conservative qJ  current, which is the current of probability in the quark case, sa-
tisfies: 

2 3 4 2 3 4 5 6 7 5 6 7.q R R R L L L R R R L L LJ D D D D D D D D D D D D= + + + + + + + + + + +     (1.31) 

Like in the previous section the calculation of ρ  gives: 

;   v ;   v 1.q
q

J
Jρ

ρ
= = =                      (1.32) 

The weak potentials satisfy: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 25 2 5 5 2 2 25 2 5 5 2 3 2 5
2 2 2

1 36 3 6 6 3 2 36 3 6 6 3 3 3 6
3 3 3

1 47 4 7 7 5 2 47 4 7 7 4 3 4 7
4 4 4

;  ;  ;

;  ;  ;

;  ;  .

L L L L

L L L L

L L L L

w qD q L L L L w qd q iL L iL L w q D D

w qD q L L L L w qd q iL L iL L w q D D

w qD q L L L L w qd q iL L iL L w q D D

= = + = = − = − +

= = + = = − = − +

= = + = = − = − +

   

   

   

 (1.33) 

A calculation similar to (1.14) gives: 

 ( ) ( ) ( ) 

2 2 1 2 3 1 2 4 3 3 2 2
1 1 3 3 1 3

2 ˆ ˆ ˆ ˆ ˆ ˆˆ b v
3

.qi R R h ih R h ih R h h R m R∇ = + + + − + − +      (1.34) 

 ( ) ( ) ( ) 

5 5 1 2 6 1 2 7 3 3 5 5
1 1 3 3 1 3

4 ˆ ˆ ˆ ˆ ˆ ˆb v .
3 qi R R h ih R h ih R h h R m R∇ = − + + + − + − +           (1.35) 

( ) ( ) ( ) ( )2 2 1 2 5 3 2 1 2 3 1 2 4 3 3 2 2
2 2 2 1 1 3 3 1 3

bˆ ˆ ˆ ˆ ˆ ˆ ˆv
3

.qi L L w iw L w L h ih L h ih L h h L m L− ∇ = + + − + + + − + − −  (1.36) 

( ) ( ) ( ) ( )5 5 1 2 2 3 5 1 2 6 1 2 4 3 3 5 5
2 2 2 1 1 3 3 1 3

ˆ v .b
3 qi L L w iw L w L h ih L h ih L h h L m L− ∇ = + − + + + + − + − −  (1.37) 

The gauge bosons acting in (1.34) on the right part of the quark d are made of only 
the right colored d waves: 

( ) ( )

( )

( ) ( )

( )

( )

1 32 2 3 3 2 2 32 2 3 3 23 3 3 3
1 1

3 2 33
1

1 43 3 4 4 3 2 43 3 4 4 33 3 3 3
2 2

3 3 43
2

1 24 4 2 2 4 2 24 4 23 3 3 3
3 3

;  ;
2 2 2 2

,
2

;  ;
2 2 2 2

,
2

;  
2 2 2 2

R R

R R

R R

R R

R R

g g g g
h D R R R R h d iR R iR R

g
h D D

g g g g
h D R R R R h d iR R iR R

g
h D D

g g g g
h D R R R R h d iR R i

= = + = = − +

= − +

= = + = = − +

= − +

= = + = = − +

   

   

  ( )

( )

2 4

3 4 23
3

;

.
2 R R

R R

g
h D D= − +



   (1.38) 
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This gives: 

( ) ( ) ( )1 2 3 1 2 4 3 3 2 2 2 3 4
1 1 3 3 1 3 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 ,;  dR dR R R Rh ih R h ih R h h R g J R J D D D+ + − = − − = − = + +   (1.39) 

then the wave Equation (1.34) of the right red d quark is reduced to : 

 

232ˆ ˆ0 b v .
3 2 dR q

g
i J m R = − ∇ + − + 

 
                   (1.40) 

Similarly the wave equations of the green and blue colors of the right d quark are: 

 

 

33

43

2ˆ ˆ0 b v ,
3 2
2ˆ ˆ0 b v .
3 2

dR q

dR q

g
i J m R

g
i J m R

 = − ∇ + − + 
 
 = − ∇ + − + 
 

                   (1.41) 

The gauge bosons acting in (1.35) on the right part of the quark u are made of only 
the right colored u waves: 

( ) ( )

( )

( ) ( )

( )

( )

1 56 5 6 6 5 2 65 5 6 6 53 3 3 3
1 1

3 5 63
1

1 67 6 7 7 6 2 76 6 7 7 63 3 3 3
2 2

3 6 73
2

1 75 7 5 5 7 2 57 7 53 3 3 3
3 3

;  ;
2 2 2 2

,
2

;  ;
2 2 2 2

,
2

;  
2 2 2 2

R R

R R

R R

R R

R R

g g g g
h D R R R R h d iR R iR R

g
h D D

g g g g
h D R R R R h d iR R iR R

g
h D D

g g g g
h D R R R R h d iR R i

= = + = = − +

= − +

= = + = = − +

= − +

= = + = = − +

   

   

  ( )

( )

5 7

3 7 53
3

;

.
2 R R

R R

g
h D D= − +



     (1.42) 

This gives: 

( ) ( ) ( )1 2 6 1 2 7 3 3 5 5 6 7
1 1 3 3 1 3 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 ;  ,uR uR R R Rh ih R h ih R h h R g J J D D D+ + − = − − = − = + +      (1.43) 

then the wave Equation (1.35) of the right red u quark is reduced to : 

 

534 ˆ0 b v .
3 2 uR q

g
i J m R = − ∇ − − + 

 
                     (1.44) 

And the wave equations of the green and blue colors of the same right u quark are: 

 

 

63

73

4 ˆ0 b v
3 2
4 ˆ0 b v .
3

,

2

uR q

uR q

g
i J m R

g
i J m R

 = − ∇ − − + 
 
 = − ∇ − − +  





                    (1.45) 

Next for the left waves we get a double dependence for the gauge bosons, because the 
weak potentials also change with the color and the strong potentials change with the 
savor. Similarly to (1.18) we have: 

( ) ( )
( ) ( )
( ) ( )

1 2 5 5 2 3 2 1 2 2 2 5 3 5
2 2 2 2 2 2

1 2 6 6 3 3 3 1 2 3 3 6 3 6
3 3 3 3 3 3

1 2 7 7 4 3 4 1 2 4 4 7 3 7
4 4 4 4 4 4

;  ;

;

ˆ ˆ ˆ2 2 2 2
ˆ ˆ  ˆ2 2 2 2
ˆ ˆ ˆ2 2 ;  .2

;

2

L L

L L

L L

w iw L qD L w L w iw L qD L w L

w iw L qD L w L w iw L qD L w L

w iw L qD L w L w iw L qD L w L

+ = − = − − = − =

+ = − = − − = − =

+ = − = − − = − =

    (1.46) 
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The gauge bosons acting in (1.36) on the left part of the quark d are made of only the 
left colored d waves: 

( ) ( )

( )

( ) ( )

( )

( )

1 23 2 3 3 2 2 32 2 3 3 23 3 3 3
1 1

3 2 33
1

1 34 3 4 4 3 2 43 3 4 4 33 3 3 3
2 2

3 3 43
2

1 42 4 2 2 4 2 24 4 23 3 3 3
3 3

;  ;
2 2 2 2

,
2

;  ;
2 2 2 2

,
2

;  
2 2 2 2

L L

L L

L L

L L

L L

g g g g
h D L L L L h d iL L iL L

g
h D D

g g g g
h D L L L L h d iL L iL L

g
h D D

g g g g
h D L L L L h d iL L i

= = + = = − +

= − +

= = + = = − +

= − +

= = + = = − +

   

   

  ( )

( )

2 4

3 4 23
3

;

.
2 L L

L L

g
h D D= − +



     (1.47) 

This gives: 

( ) ( )1 2 3 1 2 4 2 2 3 4
1 1 3 3 3

ˆ ˆ ˆ ,;  dL dL L L Lh ih L h ih L g J L J D D D+ + − = − = + +        (1.48) 

then the wave Equation (1.36) of the left red d quark is reduced to : 

5 23b ˆ0 3 v .
3 2L dL q

g
i qD J m L = ∇ + − − − 
 

                 (1.49) 

And the wave equations of the green and blue colors of the left d quark are: 

6 33

7 43

b ˆ0 3 v ,
3 2
b ˆ0 3 v .
3 2

L dL q

L dL q

g
i qD J m L

g
i qD J m L

 = ∇ + − − − 
 
 = ∇ + − − − 
 

                 (1.50) 

The gauge bosons acting in (1.37) on the left part of the quark u are made of only the 
left colored u waves: 

( ) ( )

( )

( ) ( )

( )

( )

1 56 5 6 6 5 2 65 6 5 5 63 3 3 3
1 1

3 5 63
1

1 67 6 7 7 6 2 76 7 6 6 73 3 3 3
2 2

3 6 73
2

1 75 7 5 5 7 2 57 5 7 73 3 3 3
3 3

;  ;
2 2 2 2

,
2

;  ;
2 2 2 2

,
2

;  
2 2 2 2

L L

L L

L R

L L

L L

g g g gh D L L L L h d iL L iL L

gh D D

g g g gh D L L L L h d iL L iL L

gh D D

g g g gh D L L L L h d iL L iL

= = + = = −

= − +

= = + = = −

= − +

= = + = = −

   

   

   ( )

( )

5

3 7 53
3

;

.
2 L L

L

gh D D= − +

     (1.51) 

This gives: 

( ) ( )1 2 6 1 2 7 5 5 6 7
1 1 3 3 3 ;  ,uL uL L L Lh ih L h ih L g J L J D D D+ + − = = + +        (1.52) 

then the wave Equation (1.37) of the left red d quark is reduced to: 
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2 53b0 3 v .
3 2L uL q

g
i qD J m L = ∇ + − − − 
 
                 (1.53) 

And the wave equations of the green and blue colors of the same d quark are: 

3 63

4 73

b0 3 v ,
3 2
b0 3 v .
3 2

L uL q

L uL q

g
i qD J m L

g
i qD J m L

 = ∇ + − − − 
 
 = ∇ + − − − 
 





                (1.54) 

So we describe all particles of the first generation in the SM with 8 left spinors and 8 
right spinors, then 16 spinors together, we have obtained 16 simplified wave equations: 
four in (1.19), three in (1.40)-(1.41), three in (1.44)-(1.45), three in (1.49)-(1.50), three 
in (1.53)-(1.54). Each wave equation is equivalent to four numeric partial differential 
equations, we have the true number of numeric equations for our 64 16 4= ×  real 
functions of space and time. 

2. Covariant Derivative 

In the frame of General Relativity (GR) the space-time manifold has in each point of 
the manifold a tangent space-time with a variable space-time basis ( )0 1 2 3, , ,e e e e . The 
local coordinates of an event x  in this basis read: 

0 1 2 3 0
0 1 2 3 ;  ; . x x e x e x e x e x e x ct g e eµ

µ µν µ ν= + + + = = = ⋅           (2.1) 

This point of view comes not directly from the ideas of A. Einstein, based on the 
concept of invariance, but from the ideas of his professor of mathematics, Minkowski. 
Naturally D. Hestenes and most of his followers [24] [25] [26] [27] used the space-time al-
gebra, replacing the basis ( )0 1 2 3, , ,e e e e  by an orthonormal variable basis ( )0 1 2 3, , ,γ γ γ γ . 
Nevertheless we developed another way for many reasons that we explained in the in-
troduction of [16]. A posteriori the previous section gives a new reason for the choice of 

3Cl  as the true framework of relativistic quantum mechanics: since the potentials in 
(1.40), (1.44), (1.49) and (1.53) are built from the chiral waves nR  and nL  the wave 
equations of the right and left parts do not add to give a wave equation for  

n n nR Lφ = + . Then the Clifford algebra of space-time is not the best framework to build 
the relativistic quantum model able to include both GR and SM.  

V. Fock [28] revisited the construction of GR from a physical point of view. His 
starting point was the same used by Einstein: the invariance of the light velocity in any 
moving frame. Since light is an electromagnetic wave, Fock considered an electromag-
netic wave front and imposed only to two moving frames the same law for such a wave 
front. His second point is the use of inertial frames of reference ([28] p. 15): “There ex-
ist frames of reference in which the equations of motion have a particularly simple 
form ; in a certain sense these are the most ‘natural’ frames of reference. They are the 
inertial frames in which the motion of a body is uniform and rectilinear, provided no 
forces act on it.” This point of view is implicit in our text, such an inertial frame is al-
ways used in quantum physics. From the invariance of the light velocity in any inertial 
frame, Fock proved that the transformation linking the coordinates of an event is ne-
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cessary linear: x D xµ µ ν
ν′ =  and he proved next that the transformation is exactly what 

we use in (1.1): the transformation is necessary a dilation, with a scale factor. But Fock 
did not start from quantum mechanics, nor from the wave of a particle with spin 1/2. It 
is very hard to go from the group of the dilations to the 3Cl∗  group, because the natu-
ral homomorphism is from 3Cl∗  into the group of the dilations. In spite of the know-
ledge of the expansion of the Universe which is simply a growing scale factor, Fock did 
not use this dilation. He only find a reason to neglect the ratio of his dilation, getting 
the Lorenz transformation that he was searching. 

Fock emphasized also this: “The equations of the gravitational, or any other field, are 
partial differential equations, the solutions of which are unique only when initial, 
boundary or other equivalent conditions are given. The field equations and the boun-
dary conditions are connected and the latter can in no way be considered less impor-
tant than the former. But, in problems relating to the whole of space, the boundary 
conditions refer to distant regions and their formulation requires knowledge of space as 
a whole”. Consequently Fock used a space uniform at infinity. This also is implicit in 
the point of view of the 3Cl  algebra used here since we suppose in (1.1) the existence 
of an orthonormal fixed direct basis ( )1 2 3, ,σ σ σ  that any observer moving with uni-
form movement of translation in comparison with other ones may use. The ( )µσ  ba-
sis used by the observer of x  is also used by the observer of x′ . We go from the 
coordinates xµ  of an event seen by an observer in his frame to the coordinates x µ′  
of the same event seen by another moving observer by (1.1) which implies: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2 20 1 2 3

2

2 2 2 22 0 1 2 3

det det

det det det det

;    det .

x x x x x MxM

M x M r x

r x x x x r M

′ ′ ′ ′ ′= − − − =

= =

 = − − − =  



           (2.2) 

This is exactly the result of Fock: The wave equation of the electromagnetic front 
wave: 

( )
2

2
2

1 grad 0
tc
ω ω∂  − = ∂ 

                        (2.3) 

has the same form in two inertial frames only if: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 20 1 2 3 2 0 1 2 3 .x x x x r x x x x ′ ′ ′ ′− − − = − − −  
       (2.4) 

We explained in the first part of this work [1] section 4 how this dilation may be en-
larged to the case where M  is not independent of x  and may change from a point to 
another one on the space-time manifold. The main difference with the tensorial frame 
of GR is the difference between contravariant vectors and covariant vectors that we en-
countered in the first section: The contravariant vectors transform as [1] (4.3)-(4.5) 
while the covariant vectors transform as [1] (4.6)-(4.8). Moreover for the spinor waves 
we have four other forms of semi-variance: 1 1 8, ˆ ,R L R  and 8̂L  transform with the four 
kinds of representations of 3Cl∗ : 

1 1 1 8 8 8 1 1 81 88ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ;  .;  ;  R R MR R R R M L L ML L L L M′′ ′= = = =′
         (2.5) 
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We then have four different forms of gradient applying into the wave equations: 

( )1ˆ ˆ ˆ;   ;   ;   .M M−= ∇ − ∇D D D D                     (2.6) 

This appeared in the wave equations (1.6)-(1.9) and (1.27)-(1.30). Even in the case of 
a flat space with null Christoffel symbols we get again these four kinds of semi-variance, 
because the 1 2 3i σ σ σ=  which orients the space is in the kernel of the homomorphism 
M D : 

 b b b b bˆ ˆ;  ;  ;  ;  .
2 2 2 2 2

i i i i i= ∇ − ∇ = + ∇ = − ∇ = − ∇ = + D D D D D        (2.7) 

Then the wave equations equivalent to (1.19) read: 

 

 ( )

1

8

3 1

3 8

3ˆ0 b v
2

0 b v

3 ˆ0 b 3 v
2
b0 3 v .

,

2

,

,

i m R

i k m R

i w m L

i w m L

 = − + + 
 

= − − +

 = − + + + 
 
 = − + − + 
 





D

D

D

D

                      (2.8) 

Similarly the wave equations of the colored quarks read, with 2,3, 4n = : 




 

3

33

3 3

33

bˆ ˆ0 v ,
6 2
5 ˆ0 b v ,
6 2
b ˆ0 3 v ,
6 2
5 .0 b 3 v
6 2

n
dR q

n
uR q

n n
L dL q

n n
L uL q

g
i J m R

g
i J m R

g
i qD J m L

g
i qD J m L

+

+

+

 
= − + − +  
 
 = − − − + 
 
 = − + + + + 
 
 = − − + + + 
 





D

D

D

D

                (2.9) 

Relativistic Invariance 

The ( )2,SL   group used in relativistic quantum mechanics to account for the spin 
1/2 of the electron is a subgroup of the ( ) 32,GL Cl∗=  group which is the natural 
geometric group of invariance with the 3-dimensional space. Under the dilation gener-
ated by any M  element of 3Cl∗  satisfying (1.1) and (2.2) we have (see [16] 2.2.1): 

1 1

ˆ ˆ ˆ ˆ;  ;  ;  
ˆ ˆ;  ;  ;  ;  ;  .i i

l l l

M M M M M M M M

m m r r MM re MM re J MJ M J M J Mθ θρ ρ − − −

′ ′ ′ ′= = = =

′ ′ ′ ′= = = = = =

D D D D D D D D   

 

  (2.10) 

We then get: 
2

1 1 1 1 1 1 2 1 1 1 1ˆ ˆ ˆ ˆ ˆe e .i i
l l l l

m m r m mJ R MM M J M M MR r Mr J r R MJ Rθ θ

ρ ρ ρ ρ
− − − − − − −′ ′ ′

′ ′ ′ ′ ′= = =
′ ′ ′
     (2.11) 

This gives: 

 

113 3ˆ ˆ ˆ ˆ0 b b .
2 2l l

m mi J R M i RJ
ρ ρ

′   ′′ ′= − + + = − + +   ′  
′


D D         (2.12) 
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Since M  is invertible we have the equivalence: 

 

1 13 3ˆ ˆ ˆ ˆ0 b 0 b
2 2l l

m mi J J RR i
ρ ρ

′  ′′ ′= − + + ⇔ = −
  ′ 
 

+ +  ′ 
D D        (2.13) 

And it is the same for (2.8)-(2.9). It is this form invariance that is named “relativistic 
invariance” in the Dirac theory. 

3. The Electromagnetic Field 

In the SM the electromagnetic field is a field of bivectors (antisymmetric second rank 
tensor) on the relativistic point of view, and a field of operators on the quantum point 
of view. The motion of this field comes from a special part of the Lagrangian density. 
We cannot use this way, because we do not believe into a meta-physical necessity of the 
Lagrangian mechanism for any physical field. The Lagrangian density comes from the 
real part of the invariant form of the wave equations. Consequently only the wave equa-
tions of the fermion part of the SM are compulsory and all must come from them. We 
know that the particles of this electromagnetic field, the photons, are bosons with no 
mass. And we shall prove that this is the case for: 

( )
8

1
.n n

R L
n

A D D
=

= −∑                           (3.1) 

We have explained in [23] why the derivative of a vector current like 1
LD  must be 

defined by: 

( ) ( ) ( )1 1 1 1 1ˆ ˆ ,Ld D L L L L− = ∇ − ∇                      (3.2) 

Now the covariant derivative is more general than the partial derivative, so we re-
place this by: 

( ) ( ) ( ) ( ) ( )
8

1 1 1 1 1

1

ˆ ˆ ;   .n n
L R L

n
D D L L L L F D D D D− − −

=

 = − = − ∑D D         (3.3) 

This derivative will be generalized in a further article. This kind of derivative is suffi-
cient to avoid the infinity of tensorial densities coming from the use of simple partial 
derivatives in the Dirac theory [3]. This derivative gives a field of bivectors with value 
in 3Cl  that may be thought of as a field of operators acting on this field itself. We get, 
in the dilation generated by any M  element and with (1.4): 1F MFM −′ =  and this 
relation is compulsory because compatible with the product of operators. Equations 
(2.8) gives: 

 

( )  ( )
 

 

1 1 1 1

8 8 8 8

1 3 1 1 1 3

8 3 8 8 8 3

;    

;  

;    

3 3ˆ ˆb v b v ;
2 2

ˆb v b v ;

3 3ˆ ˆ ˆb 3 v b 3 v ;
2 2

1 1ˆ ˆb 3 v b 3 v
2

 .;
2

R i m R R iR m

R i k m R R iR k m

L i w m L L iL w m

L i w m L L iL w m

   = + = +   
   

= − + = − +

   = − + + = − + +   
   

   = − − + = − − +   
   

 



 



D D

D D

D D

D D

         (3.4) 
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We get with ˆˆ2A B AB BA∧ = − : 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 1 1

8 8 8 8 8 8

1 1 1 1 1 3 1

8 8 8 8 8 3 8

3ˆ 2 b v
2

ˆ ˆ 2 b v

3ˆ 2 b 3 v
2
1ˆ ˆ 2 b

,

,

,

3 v .
2

R R

R R

L L

L L

D D R R R R i m D

D D R R R R i k m D

D D L L L L i w m D

D D L L L L i w m D

−

−

−

−

 = − = + ∧ 
 

= − = − + ∧

 = − = − + + ∧ 
 

 = − = − − + ∧ 
 



 



 

D D

D D

D D

D D

         (3.5) 

We then get for the electromagnetic field created by the lepton wave: 

( ) ( ) ( ) ( ) ( )

( ) ( )

1 8 1 8

1 1 8 8

3 1 8 1 8 1 8

3 3 12 b
2 2 2

       3 .

l l R R L L

R L L R

L L l R R L L

F D A D D D D D D D D

i D D D kD

mw D D J D D D D
ρ

− − − − −= = + − −

  = ∧ + + −   

+ ∧ − + + + +




∧

           (3.6) 

These last terms cancel with (1.12) and (1.17) and we get: 

1 1 8 83 3 12 b .
2 2 2l R L L RF i D D D kD= ∧ + + 

 
 

−                  (3.7) 

Similarly the first wave Equation (2.9) gives: 

( )

( )

( )

( ) ( ) ( )

2 23

2 23

3 33

4 43

2 3 4

1ˆ ˆb v ,
6 2

12 b v
6 2

12 b v
6 2

12 b v
6

,

,

,

.

2

12 b v
6

dR q

R dR q R

R dR q R

R dR q R

R R R q dR

g
R i J m R

g
D D i J m D

g
D D i J m D

g
D D i J m D

D D D D D D i m J

−

−

−

− − −

= − +

 = − + ∧ 
 

 = − + ∧ 
 

 = − + ∧ 
 

 + + = + ∧ 






 
 


D

            (3.8) 

Next the second Equation (2.9) gives: 

 

( ) ( ) ( )

( )

( )

( ) ( ) ( )

5 5 5 53 3

5 5 5 5 5 53

6 63

7 73

5 6 7

5 5ˆ ˆv b v ,
6 2 6 2

5ˆ ˆ 2 b v
6 2

52 b

;   

,

,v
6 2
52 b v
6 2

2

,

uR q uR q

R uR q R

R uR q R

R uR q R

R R R

g g
R i b J m R R iR J m

g
D D R R R R i J m D

g
D D i J m D

g
D D i J m D

D D D D D D

−

−

−

− − −

   = − − + = − − +   
   

 = − = − − + ∧ 
 

 = − − + ∧ 
 
 = − − + ∧ 
 

+ + =



 

D D

D D

5 b v .
6 q uRi m J − + ∧ 

 

    (3.9) 
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We then get: 

( ) ( ) ( )
7

2

12 b 5 v .
6

n
R dR uR q dR uR

n
D D i J J m J J−

=

 = ∧ − + ∧ +  
∑         (3.10) 

Next with the left waves and the third Equation (2.9) we get: 





( ) ( ) ( )

( )

( )

2 5 2 2 2 53 3

2 2 2 2 2 5 23

3 6 33

4 7 3

b bˆ ˆ ˆ ˆ3 v 3 v ,
6 2 6 2

ˆ 2 3 v
6 2

b2 3 v
6 2
b2 3 v

2

;   

,

,

6

L dL q L dL q

L L dL q L

L L dL q L

L L dL q

g g
L i qD J m L L iL qD J m

gbD D L L L L i qD J m D

g
D D i qD J m D

g
D D i qD J m

−

−

−

  = − + + + = − + + +       
 = − = − + + + ∧ 
 

 = − + + + ∧ 
 
= − + + +


 



D D

D D

( ) ( ) ( ) ( )

4

2 3 4 5 2 6 3 7 4b2 6
6

                                                     2 v .

,L

L L L dL L L L L L L

q dL

D

D D D D D D i J iq D D D D D D

im J

− − −

 ∧ 


 + + = − ∧ − ∧ + ∧ + ∧ 
 
− ∧

 (3.11) 

Next with the last Equation (2.9) we get: 


( ) ( ) ( )

( )

( )

5 2 5 5 5 23 3

5 5 5 5 5 2 53

6 3 63

7 4 3

5b 5bˆ ˆ ˆ3 v 3 v ,
6 2 6 2

5bˆ ˆ 2 3 v
6 2

5b2 3 v
6 2

5b2

;   

,

,

3
6

L uL q L uL q

L L uL q L

L L uL q L

L L

g g
L i qD J m L L iL qD J m

g
D D L L L L i qD J m D

g
D D i qD J m D

g
D D i qD

−

−

−

  = − − + + + = − − + + +       
 = − = − − + + + ∧ 
 

 = − − + + + ∧ 
 

= − − + +



 

D D

D D

( ) ( ) ( ) ( )

7

5 6 7 2 5 3 6 4 7

v
2

,

                                          

5b2 6
6

          v . 2

uL q L

L L L uL L L L L L L

q uL

J m D

D D D D D D i J iq D D D D D D

im J

− − −

+ ∧

+ + = ∧ − ∧ + ∧ + ∧

−




∧

 



 (3.12) 

We then get: 

( ) ( )
7

2

b 5b2 2 v .
6 6

n
L dL uL q dL uL

n
D D i J J im J J−

=

 = − ∧ + ∧ − ∧ + 
 

∑        (3.13) 

By subtracting this from (3.10) we get: 

( ) ( ) ( )

( ) ( )

7

2
(

b 5 5 2 .
3

n n
q q R L

n

q
dR uR dL uL q dR uR dL uL

F D A D D D D

mi J J J J i J J J J J
ρ

− − −

=

 = = − 

= ∧ − + − + ∧ + + +

∑
    (3.14) 

And q dR uR dL uLJ J J J J= + + + : the last exterior product cancels, then the electro-
magnetic field loses the mass term. We get: 

( )b 5 5 .
3q dR uR dL uL
iF J J J J= ∧ − + −                   (3.15) 

The electromagnetic field l qF F F= +  has then no mass term. The previous calcula-
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tion shows that this peculiar cancellation does not occur for other gauge fields. This is 
the reason of our choice of A  as the gauge boson of the electric gauge, boson that is 
known as the photon in the SM. We must recall that in quantum mechanics the derived 
fields are second, only the potential space-time vectors take place in the wave equations. 

4. Pauli Principle 

Studying the anomalous Zeeman effect, Pauli found the necessity of the “spin number” 
of the electron in the frame of the Bohr’s model of atom. And he came to his principle 
[29]: “There can never be two or more equivalent electrons in an atom, for which in 
strong fields the values of all quantum numbers , , , jl j mn  are the same. If an electron 
is present in the atom, for which these quantum numbers have definite values, this state 
is occupied.” This principle and the quantum wave of the electron are today the basis of 
the understanding of the periodic table of the chemical elements. 

Since its formulation is made in the frame of the non-relativistic wave of a system of 
electrons we cannot follow the usual explanation of this principle by the anti-symme- 
trization of the wave. The only compulsory wave equation is the wave of one electron 
and more generally of one fermion. Moreover the explanation by the four quantum 
numbers , , , jl j mn  given by Pauli himself is not directly the explanation coming from 
the Dirac theory of the electron. The resolution of the Dirac equation in the case of the 
Coulombian potential gives two kinds of solutions, with a quantum number  

1, 2, 3κ = ± ± ±   which gives ( )1+n n  states if 0κ >  and ( )1−n n  states if 0κ <  
[30]. The quantum number κ  comes from the separation in spherical coordinates of 
the radial and angular functions. The quantum number jm  comes from the separation 
between the angular parameters, even if it is also the proper value of the operator 3J  
[31]. The quantum number l  of the Bohr’s theory is absent of the calculation. The  

quantum number j of the total kinetic momentum is only indirectly present: 1
2

j κ= − .  

The other quantum numbers are the degrees of the Gegenbauer’s polynomial giving the 
angular functions (the Legendre polynomials with degree l  of the non-relativistic 
calculation are only linear combinations of two Gegenbauer’s polynomial of different 
degrees) and the degree of the Laguerre’s polynomials giving the radial functions (see 
[16] Appendix C). These polynomials are obtained only when the condition of integra-
bility of the wave is imposed. This condition comes from the necessity to normalize the 
wave which itself comes from the equivalence principle between inertial and gravita-
tional mass-energy (see [16] 9.2): 0

0T  being the density of energy of the wave and E  
the global energy of the electron we have in any inertial frame and for any stationary 
state 0 0

0cT EJ=  and: 
0

0
0d d 1.JvT E v

c
= ⇔ =∫∫∫ ∫∫∫



                    (4.1) 

This last equality allows us to define a norm for the wave φ  of the electron: 
0

d ;    1.Jv
c

φ φ= =∫∫∫


                     (4.2) 
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Next the Dirac equation which is the linear approximation of our non-linear wave 
equation in the electron case is satisfied by the sum and the difference of two solutions. 
The previous norm defines a scalar product: 

( )2 2
1 2 1 2 1 2

1 .
4

φ φ φ φ φ φ⋅ = + − −                   (4.3) 

With the kind of functions used by the separation of variables in spherical coordi-
nates, the condition of orthogonality for this Euclidean scalar product is automatically 
satisfied by the different solutions. Moreover the condition of orthogonality for the 
Euclidean scalar product is exactly equivalent to the cancellation of the Hermitian sca-
lar product of quantum mechanics [31]. The meaning of the Pauli principle is then: two 
electrons in an atom occupy orthogonal normalized states. The true origin of this con-
dition is the principle of equivalence between inertial and gravitational mass-energy. 

5. The Multi-Photons Field 

The quantized electromagnetic field is described with operators of creation and annihi-
lation: the operator of creation adds one photon to the electromagnetic field and the 
operator of annihilation suppresses one photon. We previously studied the wave of a 
unique fermion and the potential present in the wave equations is linked to this unique 
fermion. The dilation generated by any M  element satisfies (1.1), (1.4) and (2.10), 
then (3.3) gives: 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( )

1 1 1 1

11 1 1 1 1 1 1

1 1 1 1 1 1 1 1

ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ .

LD D L L L L

M M ML ML ML ML M M

M L L M ML L MM M

−

− − − −

− − −

′ ′ ′ ′ ′ ′ ′= −

  = −    
 = −  

D D

D D

D D



 

  

    (5.1) 

With ( )det eiMM MM M r θ= = =  we get: 

( ) ( ) ( )
( ) ( )

1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

e e
ˆ ˆ ˆe e

ˆ ˆ                      

;  

  .

 i i

i i

M r M M r M

M L L M r M L L M M L L Mr

M L L MM M M L L M

θ θ

θ θ

− − − −

− − − − −

− − −

= =

= =

= =

D D D

D D

       (5.2) 

Then (5.1) gives: 

( ) ( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( )

1 1 1 1 1 1 1 1 1 1 1 1

1 1

8 8
1 1

1 1
1

ˆ

,

,

ˆ ˆ ˆ

.

L

L

n n n n
R L R L

n n

D D M L L M ML L M M L L L L M

MD D M

F D D D D MD D M MD D M

F MFM

− − − −

− −

− − − − − −

= =

−

 ′ = − = − 

=

   ′ ′ ′= − = −   

′ =

∑ ∑

D D D D 

  (5.3) 

Now if the field of a system of two photons ( )1F  and ( )2F  satisfies: 

( ) ( ) ( ) ( )( )12 1 2 2 1
1 ,
2

F F F F F= +                       (5.4) 

this field also transforms like the field of a unique photon: 
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( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( ) ( )( )

1 1 1 1
12 1 2 2 1 1 2 2 1

1 1
121 2 2 1

1 1
2 2
1 .
2

F F F F F MF M MF M MF M MF M

M F F F F M MF M

− − − −

− −

 ′ ′ ′ ′ ′= + = + 

= + =
 (5.5) 

This is generalized by using the group ( )S n  of permutations: 

( )
( ) ( ) ( )

1
1,2, , 1,2, , 1,2, ,1 2

1
!

;   .n n nn
S n

F F F F F MF M
n σ σ σ

σ

−

∈

′= =∑
  

           (5.6) 

The quantized electromagnetic field is the general element   of the linear space 
generated by all these fields of systems of photons, satisfying again: 

1.M M −′ =                              (5.7) 

Actually this field is independent on the chiral gauge and the scale parameter: we use 
again M M=   and ( )det eiMM MM M r θ= = = . We let: 

1 2 2e .iM r Mθ− −=                            (5.8) 

We then get for any M s i ip= + + +u v : 

( )

2 2

2 2 1

1 2 1 2 2 1 1

;   

;   ;   

e e

e e e e 2, ,

e e .

i i

i i i i

i i

M M

M M MM M M M

M r M r s i ip

r MM r r r SL

M M M M M MM r r M

θ θ

θ θ θ θ

θ θ

−

− − − − −

= = = − − +

= = = = ∈

′ = = = =



u v

    

   (5.9) 

Like all gauge fields the quantized electromagnetic field   is insensitive to the 
chiral angle θ  and the scale factor r . The ( )1F  and ( )2F  fields have value in the bi-
vector part of 3Cl  from (3.7) and (3.15). Then ( ) ( )1 1F F= − , ( ) ( )2 2F F= −  and we get: 

( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )12 121 2 2 1 2 1 1 2
1 1
2 2

F F F F F F F F F F = + = − − + − − =       (5.10) 

Then this field is a scalar + pseudo-scalar field, similar to the Higgs field. More gen-
erally the field of an odd number of photons is a bivector field and the field of an even 
number of photons is scalar + pseudo-scalar field. This also implies that the quantized 
electromagnetic field is not reduced to the field ( )F D A−=  of the Section 3. The 
quantum field theory then identifies several fields which live in different linear spaces. 
The calculations of Clifford algebras allows this by using an addition of different scalar, 
vector and so on parts. And this is possible on the relativistic point of view because 

1M M −′ =   is true in all cases. A third electromagnetic field is used in quantum 
physics, the “exterior” field F  created by the electric currents: 

4πˆ ;    ,eF j j qJ
c

ρ∇ = = = + j                      (5.11) 

where eρ  is the density of electric charge, j  is the density of electric current an 
J c  is the probability current created by the charged particle. Then (4.1) implies that 
the integration on the whole space of this density of charge is the charge of the particle, 
and the Pauli principle implies the orthogonality for two electrons. Then the normali-
zation of each wave gives a total charge 2e , and the macroscopic conservation of the 
electric current results from the wave equations of quantum physics. 
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6. Concluding Remarks 

The unification of all interactions needs only two Clifford algebras, the 3Cl  algebra of 
space which contains both a linear space isomorphic to the tangent space-time to the 
space-time manifold and the group of invariance generalizing the relativistic invariance. 
The greater 1,5Cl  algebra introduces the eight 1 8, ,φ φ . They are enough to get the 
( ) ( ) ( )1 2 3U SU SU× ×  gauge group of the SM. In a further paper we shall explain how 

these algebras may be seen only from the intrinsic point of view of observers, us, who 
are living inside a sheet of space-time manifold. 

We have resolved the wave equations of the electron + neutrino in the case of the 
hydrogen atom [15]. When the Dirac equation was solved and gave all the quantum 
numbers required, the true number of states and the true energy levels, this wave equa-
tion was definitely considered as the true relativistic wave equation of the electron. Now 
we got a new set of solutions for the three chiral spinors of the wave electron + neutrino, 
with exactly the quantum numbers required, the true number of states and the true 
energy levels. Nevertheless these solutions are not the solutions obtained with the wave 
equation of the alone electron. It is then possible to get the true experimental results 
from a deficient model. A necessary condition to get the awaited solutions seems the 
form 1 r  for the potential terms. This condition is satisfied for the exterior potential 
A  such as ˆF A= ∇ ∧  where F  is the exterior field of (5.11). 

A priori we do not expect a revolution with new particles or a new kind of interac-
tion. The only new wave awaiting study is the magnetic monopole which uses the six-
teenth 8R  spinor previously not used by the SM. If our interpretation of the three 
generations from the three kiσ  terms present in our wave equations is true, we may 
expect three such magnetic monopoles with the respective proper mass of the electron, 
the muon and the tau. The magnetic monopoles of the second and the third generation 
should be able to disintegrate into magnetic monopoles of the first generation and it is 
possible that this is the reason of the activity during several hours after the electric dis-
charges operated by L. Urutskoev and in the French laboratories [32]-[38]. 

Since only the fermion wave equations are doubly linked to their Lagrangian density, 
since the gauge fields do not have the same double link to the Lagrangian density and 
since the momentum-energy tensor is the conservative tensor linked to the invariance 
of this Lagrangian density under the space-time translations we can predict this: All 
momentum-energy belongs to the fermion part of the quantum wave, there is none 
momentum-energy belonging to the boson part of the quantum world. We do not see 
the momentum-energy of an isolated photon, we see only the momentum-energy 
emitted or absorbed by fermions. The double equality 2E mc hν= =  comes from two 
reasons: the first one was thought of by A. Einstein as a consequence of the fact that all 
energies have the same electromagnetic origin. The second equality comes from the in-
variance under a greater group than the Lorentz group (see [16] 4.1.2). 

About anti-matter, we predict that any object made of anti-matter has the same gra-
vitation as the corresponding object of matter. This comes from the wave equations for 
anti-particles which change only the sign of the differential term (see [16] 3.4). The 
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momentum-energy tensor does not change and 0
0T  remains everywhere positive. 

Then, in conformity with all experiments, the total energy and the proper mass of any 
antiparticle are positive. 

This work is not an end, it is a beginning. Now that we know the wave equations for 
all the first generation, the study of the two other generations must be done. It will be 
also necessary to resolve the equations and to confront the results with what has been 
learned in the laboratories. A great progress should be the description of the transition 
of an electron from one state to another one by emitting or absorbing a photon, allow-
ing us to understand from where comes the probability of spontaneous and stimulated 
emission, the probability of absorption and the link with the number of photons in the 
vicinity of the electron. 

What can we expect as experimental confirmation of this work? First the existence of 
leptonic magnetic monopoles is necessary in the 3Cl  framework. The existence of 
such monopoles is already proved [33]-[38]. Next only one proper mass is available for 
the two quarks d and u, and we can hope that our wave equations with mass terms and 
gauge terms depending on the different parts of the wave shall be able to account for 
the confinement of quarks in the protons and neutrons. Another exciting perspective is 
the fact that one complete wave is able to include the electron, the three quarks of a 
proton and the three quarks of a neutron, then to include a complete deuterium atom. 
Therefore an atom of helium, with two electrons, two protons and two neutrons, needs 
only two complete fermionic waves. This must be visible in nuclear physics, particularly 
when a photon is emitted by a whole atom. The numerous and precise results of both 
GR and SM may also be understood as a confirmation of this work, even if they have 
been obtained before and without us. 
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