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Abstract 
In this paper, we introduce the definition of L-fuzzy vector subspace, define its di-
mension by an L-fuzzy natural number. For a finite-dimensional L-fuzzy vector 
subspace, we prove that the equality ( ) ( )1 2 1 2 1 2dim dim dim dimE E E E E E+ + ∩ = +       

holds without any restricted conditions. At the same time, we deduce that the for-

mula ( ) ( )dim im dim kef dimf f E+ =   holds. 
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1. Introduction 

Firstly, fuzzy vector subspace was introduced by Katsaras and Liu [1]. Then its pro- 
perties and characters were investigated (see [2] [3] [4] [5], etc). The dimension of a 
fuzzy vector space was defined as a n-tuple by Lowen [6]. Subsequently, it was defined 
as a non-negative real number or infinity by Lubczonok [5], and proved that the for- 
mula  

( ) ( )1 2 1 2 1 2dim dim dim dimE E E E E E+ + ∩ = +                  (1) 

is valid under certain conditions, where 1E  and 2E  are fuzzy vector spaces. Recently, 
basis and dimension of a fuzzy vector space were redefined as a fuzzy set and a fuzzy 
natural number by Shi and Huang [7], respectively. Under the definitions, more pro- 
perties of (crisp) vector spaces were correct in fuzzy vector spaces. 

In this paper, we generalize the results in [7] to L lattice, and prove that some for- 
mulas still hold in the lattice L. In particular, we present the definition of L-fuzzy vector 
subspace and its -fuzzy dimension. The L-fuzzy dimension of a finite dimensional fuzzy 
vector subspace is a fuzzy natural number. We prove that (1) holds without any re- 
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stricted conditions and ( ) ( )dim kef dim im dimf f E+ =   holds. 

2. Preliminaries 

Given a set X  and a completely distributive lattice L, we denote the power set of X  
and the set of all L-fuzzy sets on X  (or L-sets for short) by 2X  and XL , respec- 
tively . For any A X⊆ , we denote the cardinality of A  by A . 

An element a  in L is called a prime element if a b c≥ ∧  implies a b≥  or a c≥ . 
a  in L is called co-prime if a b c≤ ∨  implies a b≤  or a c≤  [8]. The set of non- 
unit prime elements in L is denoted by ( )P L . The set of non-zero co-prime elements 
in L is denoted by ( )J L . 

The binary relation <  in L is defined as follows: for ,a b L∈ , a b<  if and only if 
for every subset D L⊆ , the relation supb D≤  always implies the existence of  
d D∈  with a d≤  [9]. { }:a L a b∈ <  is called the greatest minimal family of b  in 
the sense of [10], denoted by ( )bβ , and ( ) ( ) ( )* b b J Lβ β= ∩ . Moreover, for b L∈ , 
we define ( ) { }: opb a L a bα = ∈ <  and ( ) ( ) ( )* b b P Lα α= ∩ . In a completely distri- 
butive lattice L , there exist ( )bα  and ( )bβ  for each b L∈ , and ( ) ( )b b bβ α= ∨ = ∧  
(see [10]). 

In [10], Wang thought that ( ) { }0 0β =  and ( ) { }1 1α = . In fact, it should be that 
( )0β = ∅  and ( )1α = ∅ . 
Throughout this paper, L  denotes a completely distributive lattice, and E  is a 

crisp vector space. We often do not distinguish a crisp subset A  of E  and its cha- 
racteristic function Aχ . 

If XA L∈  and a L∈ , we can define  

[ ] ( ){ } ( ) ( )( ){ }: , : .aaA x X A x a A x X a A xβ= ∈ ≥ = ∈ ∈  

[ ] ( )( ){ } ( ) ( ){ }: , : .a aA x X a A x A x X A x aα= ∈ ∈ = ∈/   

Some properties of these cut sets can be found in [11]-[16]. 
In [17] Shi introduced the concept of L-fuzzy natural numbers(denoted by ( )L ), 

defined their operations and discussed the relation of α -cut sets. We simply recall as 
follows: for any ( ), Lλ µ ∈ , a L∈ , 

(1) ( )( ) ( ) ( ) [ ] [ ] ( )[ ] ;a a a aa aλ µ λ µ λ µ λ µ+ ⊆ + ⊆ + ⊆ +  

(2) ( )( ) ( ) ( ) [ ] [ ] ( )[ ] ;a aa aa aλ µ λ µ λ µ λ µ+ ⊆ + ⊆ + ⊆ +  

(3) For any ( ), Lλ µ ∈  and ( )a P L∈ , it follows that ( )( ) ( ) ( ) .a a aλ µ λ µ+ = +  

3. L-Fuzzy Vector Subspaces 

Definition 3.1. L-fuzzy vector subspace is a pair ( ),E E µ=  where E  is a vector 
space on field F , : E Lµ →  is a map with the property that for any , , ,x y E k l F∈ ∈ , 
we have ( ) ( ) ( )kx ly x yµ µ µ+ ≥ ∧ .  

In this definition, when [ ]0,1L = , L-fuzzy vector subspace is exactly the fuzzy vector 
subspace defined in [1]. We denote the family of L-fuzzy vector subspaces by LFVS . 

Let ( ),E E µ=  be a member of LFVS , we denote  
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[ ] [ ] ( ){ } ( ) ( ) ( )( ){ }: , : .a aa aE x E x a E x E a xµ µ µ β µ= = ∈ ≥ = = ∈ ∈   

[ ] [ ] ( )( ){ } ( ) ( ) ( ){ }: , :a a a aE x E a x E x E x aµ α µ µ µ= = ∈ ∈ = = ∈/   . 

We can obtain some properties of LFVS  analogous to fuzzy vector subspaces as 
follows. 

Theorem 3.2. Let ( ),E E µ=  be a member of LFVS , then 
(1) ( ) ( )0 sup .

x E
xµ µ

∈
=  

(2) For any { } ( ) ( )\ 0 and , .k F x E kx xµ µ∈ ∈ =   

The prove is trivial and omitted. 
Remark: Since L  is a completely distributive lattice, the property that if  
( ) ( )x yµ µ≠ , then ( ) ( ) ( )x y x yµ µ µ+ = ∧  not holds for LFVS . This can be seen 

from the following example. 
Example 3.3. Let L  be a completely distributive lattice with four elements as fol- 

lows. 
 

 
 

Let ( )2 ,E µ=   be an L-fuzzy vector subspace on 2  where µ  is defined by  

( )

( )
( ) { }{ }
( ) { }{ }

1, 0,0 .
, ,0 : \ 0 .

, 0, : \ 0 .

0, otherwise.

x
a x y y

x
b x y y

µ

=
 ∈ ∈= 

∈ ∈






 

We can easily check E  is an L-fuzzy vector subspace on 2 . Suppose that  
( )3,2x =  and ( )0, 2y = − , then ( ) ( ) ( ) ( )3,0 > 0 0.x y a x y bµ µ µ µ+ = = = ∧ =∧   

This example illustrates for L-fuzzy vector subspace ( ) ( )x yµ µ≠ ,  
( ) ( ) ( )> .x y x yµ µ µ+ ∧   
Theorem 3.4. Let E  be a vector space, ELµ ∈  and ( ),E E µ= . Then the follow- 

ing statements are equivalent: 
(1) E  is an L-fuzzy vector subspace. 
(2) (a) ( ) ( )For all and , .x E k F kx xµ µ∈ ∈ ≥  

(b) ( ) ( ) ( )For any , , .x y E x y x yµ µ µ∈ + ≥ ∧  

(3) For any 1, , rx x E∈  and 1, , rk k F∈ , where r  is a finite natural number, 
we have  
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( )
11

.
r r

i i iii
k x xµ µ

==

  ≥ ∧ 
 
∑  

The prove is trivial and omitted. 
In the following paper, the vector spaces we discuss are finite-dimensional. For their 

L-fuzzy vector subspaces, the following observation will be useful. 
Remark: Let ( ),E E µ=  be a member of LFVS . Suppose that  
( ) ( ){ }:E x x Eµ µ= ∈ . Since E  is finite-dimensional vector space, denotes dim E n= , 

then ( )Eµ  is a finite subset of L. 
In the fact, let B  be a basis of E , then B n= . Suppose that ( )Eµ  is infinite, 

then for all a L∈ , the total number of [ ]aE  is infinite. Since [ ]aB E∩   is a basis of 

[ ]aE , we have [ ] [ ]a aE B E= ∩  . Again since B  is finite, the total number of [ ]aE  is 
also finite. It contradicts with the hypothesis. Therefore ( )Eµ  is a finite subset of L  
with at most 2 1n +  values; 2n  values which can be attained at the vectors of { }\ 0E  
and the maximum which is attained at 0. 

Theorem 3.5. Let E  be a vector space, ELµ ∈  and ( ),E E µ= . Then the follow- 
ing statements equivalent: 

(1) E  is an L-fuzzy vector subspace. 
(2) For all a L∈ , [ ]aE  is a vector space. 
(3) For all ( )a J L∈ , [ ]aE  is a vector space. 
(4) For all a L∈ , [ ]aE  is a vector space. 
(5) For all ( )a P L∈ , [ ]aE  is a vector space. 
(6) For all ( )a P L∈ , ( )aE  is a vector space.  
Proof. We prove ( ) ( )1 4⇔  and ( ) ( )1 6⇔ , the others can be proved analogously. 
( ) ( )1 4⇒  We show that [ ]aE  is a vector space as follows. Suppose that [ ], ax y E∈  , 

then ( )( )a xα µ∈/  and ( )( )a yα µ∈/ , i.e. ( )( ) ( )( ) ( ) ( )( )a x y x yα µ α µ α µ µ∈ ∪ =/ ∧ .  
Since ( ),E E µ=  be an L-fuzzy vector subspace, then ( ) ( )( ) ( )( )(x y kx lyα µ µ α µ⊇ +∧ , 

we have ( )( )a kx lyα µ∈ +/ , this means [ ]akx ly E+ ∈  . Therefore [ ]aE  is a vector space. 

( ) ( )4 1⇒  Suppose that for all a L∈ , [ ]aE  is a vector space. Let ,x y E∈  and  
,k l F∈ . Since [ ]aE  is a vector space, then [ ]akx ly E+ ∈   if and only if  

[ ] [ ]anda ax E y E∈ ∈  . We have  

( ) [ ]( )( )
[ ] ( ) [ ] ( )( )( )
[ ] ( )( )( ) [ ] ( )( )( )

( ) ( ).

a

a L

a a

a L

a a

a L a L

kx ly a E kx ly

a E x E y

a E x a E y

x y

µ

µ µ

∈

∈

∈ ∈

+ = ∧ +

= ∧

= ∧ ∧

=



 

 

∧

∨ ∧

∨ ∧ ∨

∧

 

Therefore E  is an L-fuzzy vector subspace. 
( ) ( )1 6⇒  Suppose that ( ), ax y E∈ , then ( )x aµ   and ( )y aµ  . Since ( )a P L∈ , 

then ( ) ( )x y aµ µ ∧ . Because ( ),E E µ=  is an L-fuzzy vector subspace, we can 
have ( )kx ly aµ +  , this implies ( )akx ly E+ ∈ . Thus ( )aE  is a vector space. 

( ) ( )6 1⇒  Let ,x y E∈  and ,k l F∈ . Since ( )aE  is a vector space, then  
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( )akx ly E+ ∈   if and only if ( ) ( )anda ax E y E∈ ∈  . We have the following implications.  

( )
( )

( )( )( )

( )
( ) ( ) ( ) ( )( )( )

( )
( ) ( )( ) ( )

( ) ( )( )
( ) ( ).

a

a P L

a a

a P L

a a

a P L a P L

kx ly a E kx ly

a E x E y

a E x a E y

x y

µ

µ µ

∈

∈

∈ ∈

+ = ∧ +

= ∧

   = ∧ ∧   
   

=



 

 

∨

∨ ∧

∨ ∧ ∨

∧

 

Therefore E  is an L-fuzzy vector subspace. 
Theorem 3.6. Let E  be a vector space, : E Lµ →  be a map, ( ),E E µ= , and for 

all ( ) ( ) ( ), ,a b L a b a bβ β β∈ = ∩∧ . Then the following statements equivalent: 
(1) E  is an L-fuzzy vector subspace. 
(2) For all a L∈ , ( )aE  is a vector space.  
Proof. ( ) ( )1 2⇒  Suppose that ( ), ax y E∈  , then ( )( ) ( )( )anda x a yβ µ β µ∈ ∈ , 

i.e. ( )( ) ( )( )(a x yβ µ β µ∈ ∩ . Since for all ( ) ( ) ( ), ,a b L a b a bβ β β∈ = ∩∧  and E  
is an L-fuzzy vector subspace, we can know ( ) ( )( ) ( )( )a x y ax byβ µ µ β µ∈ ⊆ +∧ , 
this implies ( )aax by E+ ∈  . Therefore ( )aE  is a vector space. 

( ) ( )2 1⇒  Suppose that for all a L∈ , ( )aE  is a vector space. Let ,x y E∈  and 

,k l F∈ . Since ( )aE  is a vector space, then ( )akx ly E+ ∈   if and only if  

( ) ( )anda ax E y E∈ ∈  . We have  

( ) ( )( )( )

( ) ( ) ( ) ( )( )( )
( ) ( )( )( ) ( ) ( )( )

( ) ( ).

aa L

a aa L

a aa L a L

kx ly a E kx ly

a E x E y

a E x a E y

x y

µ

µ µ

∈

∈

∈ ∈

+ = ∨ +

= ∨ ∧

 = ∨  
 

=

∨



 

 

∧

∧

∧ ∧ ∧

∧

 

Therefore E  is an L-fuzzy vector subspace.  
We can define the operations between two L-fuzzy vector subspaces analogous to 

fuzzy vector subspaces. 
Definition 3.7. Let ( ) ( )1 1 2 2, and ,E E E Eµ µ= =   be two L-fuzzy vector subspaces 

on E . Define the intersection of 1E  and 2E  to be ( )1 2 1 2,E E E µ µ∩ =  ∧ . Define 
the sum of 1E  and 2E  to be ( )1 2 1 2,E E E µ µ+ = +   where 1 2µ µ+  is defined by for 
all x E∈   

( )( ) ( ) ( )( )
( ) ( )( )

1

1

1 2 1 1 2 2
2

1 1 2 1 .

x x x

x E

x x x

x x x

µ µ µ µ

µ µ

= +

∈

+ = ∨ ∧

= ∨ ∧ −
 

Definition 3.8. Let ( ) ( )1 1 1 2 2 2, and ,E E E Eµ µ= =   be two members of LFVS  
and 1 2E E E= ⊕ . We define the direct sum of 1E  and 2E  to be ( )1 2 1 2,E E E µ µ⊕ = ⊕   
where 1 2µ µ⊕  is defined by for all 1 2, , , 1, 2i ix E x x x x E i∈ = ⊕ ∈ =   

( )( ) ( )( ) ( ) ( )1 2 1 2 1 2 1 1 2 2 .x x x x xµ µ µ µ µ µ⊕ = ⊕ ⊕ = ∧  
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Theorem 3.9. Let ( ) ( )1 1 2 2, and ,E E E Eµ µ= =   be two members of LFVS  on 
E . We have 

(1) 1 2E E∩   is a member of LFVS  on E . 
(2) 1 2E E+   is a member of LFVS  on E .  
The proof of the theorem is trivial and it is omitted. 
Theorem 3.10. Let ( )1 1,E E µ=  and ( )2 2,E E µ=  be the members of LFVS . We 

have 
(1) For all a L∈ , ( )[ ] ( )[ ] ( )[ ]1 2 1 2 .

a a a
E E E E∩ = ∩     

(2) For all a L∈ , ( )[ ] ( )[ ] ( )[ ]
1 2 1 2 .

a a a
E E E E∩ = ∩     

(3) For any ( )a P L∈ , ( )( ) ( )( ) ( )( )
1 2 1 2 .

a a a
E E E E∩ = ∩     

(4) For any ( )a P L∈ , ( )( ) ( )( ) ( )( )
1 2 1 2 .

a a a
E E E E+ = +      

Proof. The proofs of (1) and (2) are easy by the definition of 1 2E E∩   and the pro- 
perties of L-fuzzy sets. 

(3) For any ( )a P L∈ , we have  

( )( ) ( ) ( )
( ) ( )

( )( ) ( )( )

1 2 1 2

1 2

1 2

                       and

                       

a

a a

x E E x x a

x a x a

x E E

µ µ

µ µ

∈ ∩ ⇔

⇔

⇔ ∈ ∩

 

 



 

∧

 

(4) By the definition of the sum of L-fuzzy vector subspaces, for any ( )a P L∈  we 
have  

( )( ) ( ) ( )( )
( ) ( )

( ) ( )
( ) ( )

1 2
1 2 1 1 2 2

1 2 1 2 1 1 2 2

1 2 1 1 2 2

1 2 1 2

                      , and = , such that .

                      , , and .

                      .

a

x x x

a a

x E E x x a

x x E x x x x x a

x x E x a x a

x x x E E

µ µ

µ µ

µ µ

= +
∈ + ⇔ ∨

⇔ ∃ ∈ +

⇔ ∃ ∈

⇔ = + ∈ +

 

 




 

∧

∧  

Theorem 3.11. Let ( )1 1,E E µ=  and ( )2 2,E E µ=  be two members of LFVS . 
Suppose that for any ,a b L∈ , we have ( ) ( ) ( )a b a bβ β β= ∩∧ . Then 

(1) ( )( ) ( )( ) ( )( )1 2 1 2 ,
a a a

E E E E∩ = ∩     

(2) ( )( ) ( )( ) ( )( )1 2 1 2 .
a a a

E E E E+ = +      

The prove is trivial and omitted. 

4. Fuzzy Dimension of L-Fuzzy Vector Subspaces 

Definition 4.1. Let ( )L  be the family of L-fuzzy natural number. The map 
( )dim : LFVS L→   is defined by  

( ) [ ]( )( )dim dim aa L
E n a E n

∈
= ∨ ∧  

is called the L-fuzzy dimensional function of the L-fuzzy vector subspace E , and 
dim E  is called the L-fuzzy dimension of E , it is an L-fuzzy natural number. We 
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usually use another form of dim E  as follows. 

( ) [ ]{ }dim : dim .aE n a L E n= ∨ ∈ ≥   

Theorem 4.2. For each LFVSE∈  and n∈ , we have 

( ) ( )( )( ) ( ){ }dim dim : dima aa L
E n a E n a L E n

∈
= ∨ = ∨ ∈ ≥  ∧  

Proof. For any n∈ , let ( )( )( )dim aa L
a E nλ

∈
= ∨ ∧ . Obviously ( )dim E nλ ≤  . Next 

we show that ( )dim .E nλ ≥   Suppose that b L∈  and ( )( )dimb E nβ∈  , then there  

exists [ ]and dim aa L E n∈ ≥  such that ( )b aβ∈ . In this case,  

[ ] ( ) [ ]dim dim dimba bn E E E≤ ≤ ≤    which implies ( ){ }: dim aa L E n bλ = ∨ ∈ ≥ ≥ . Thus 

we have  

( )( ){ } ( )dim dim .b b E n E nλ β≥ ∨ ∈ =   

This completes the proof.  
Theorem 4.3. Let the pair ( ),E E µ=  be a member of LFVS . Then for any  

,a L∈   

( )( ) [ ] ( )[ ]
dim dim dim .aa a

E E E≤ ≤    

If ( ) ( ) ( )a b a bβ β β= ∩∧  for all ,a b L∈ , then  

( )( ) ( ) [ ] ( )[ ]
dim dim dim dim .a aa a

E E E E≤ ≤ ≤     

In particular, ( )[ ] [ ]dim dim aa
E E=   for any ( )a J L∈ .  

Proof. In order to prove ( )( ) ( )dim dim aa
E E≤  . Suppose that ( )( )

dim
a

n E≤  , then  

( )( )dima E nβ∈  . Since β  is a preserve-union map, there is b L∈  and  

[ ] ( )dim ,   such that   .bn E a bβ≤ ∈  Because [ ] ( ) [ ]ab aE E E⊆ ⊆   , thus ( )dim an E≤  . There- 

fore ( )( ) ( )dim dim aa
E E≤  . 

( ) [ ]dim dima aE E≤   is obvious. Moreover, we can obtain that [ ] ( )[ ]
dim dima a

E E≤   
from the definition of ( )dim .E  

In order to prove for any ( ) ( )[ ] [ ], dim dim aa
a J L E E∈ =  , we only need to show 

( )[ ] [ ]dim dim aa
E E⊆  . Since the set ( )Eµ  is finite, for any ( )a J L∈  we have 

( )[ ]
( )

[ ]{ }
[ ]

[ ]

dim dim

                    : dim

                   , such that dim

                   dim

a

b

b

a

n E E n a

b L E n a

a b n E

n E

≤ ⇒ ≥

⇒ ∨ ∈ ≥ ≥

⇒ ∃ ≤ ≤

⇒ ≤

 







 

Therefore ( )[ ] [ ]dim dim .aa
E E=   
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Theorem 4.4. Let ( ),E E µ=  be a member of LFVS . Then 

( )( ) ( ) [ ] ( )[ ]
dim dim dim dim .

a aaaE E E E≤ ≤ ≤     

In particular, ( )( ) ( )dim dim
a aE E=   for any ( ).a P L∈   

Proof. ( )( ) ( )dim dim
a aE E≤   can be proved from the following implications.  

( )( ) ( )

[ ]{ }
[ ]

( )
[ ]

dim dim

                    : dim

                    , such that dim

                    dim dim .

a

b

b

a
b

b a

n E E n a

b L E n a

b a n E

E E n

≤ ⇔

⇔ ∨ ∈ ≥

⇔ ∃ ≤

 
⇒ = ≥  

 

 





 









  

Let ( )a P L∈ . In order to show ( ) ( )( )
dim dim

aaE E≤  , we need to show that  

[ ] [ ]dim dim .b b
b ab a

E E
 

≤  
 

∨ 




 Suppose that [ ]dim b

b a
n E

 
≤   

 





. Since the number of [ ]aE  

is finite, then when ,b a  the number of [ ]bE  is finite, denotes [ ] [ ] [ ]1 2
, , ,

ra a aE E E  

 , 

where ia a  for any { }1,2, , .i r∈   Thus [ ] [ ]
1

.
i

r

b a
b a i

E E
=

= 

 


 Since ( )a P L∈ , then 

we have 
1 2

.
r

c a a a a= ∧ ∧ ∧   Further we have [ ] [ ]1
i

r

a c
i

E E
=

⊆ 



. Thus for any 

[ ] [ ] [ ] [ ] ( )[ ] ( )( )

1
dim dim dim dim dim dim .

i

r a

b c ba bb a b ab a i
n E E E E E E

=

   
≤ = ≤ ≤ ∨ ≤ ∨ =       

     

   
  

Therefore for any ( )a P L∈ , ( )( ) ( )dim dim .
a aE E=   

( ) [ ]dim dim aaE E≤   is obvious. We show that [ ] ( )[ ]
dim dim )

aaE E≤   in the follow- 

ing implications.  
[ ]

( )
( )

( )
( )
( )

( )

( )
( )

( )( ) [ ]

dim dim dim

dim (dim ) .

a b b

a ba b
b P Lb P L

b a

a b
b P L

E E E

E E

αα

α

∈∈
∈∈

∈
∈

= ≤ ∧

= ∧ =

  

 



 

Theorem 4.5. Let ( )1 1,E E µ=  and ( )2 2,E E µ=  be two L-fuzzy vector subspaces. 
Then the following equality holds  

( ) ( )1 2 1 2 1 2dim dim dim dim .E E E E E E+ + ∩ = +       

Proof. We denote the sum of 1 2andE E   by ( )1 2 ,E E E µ+ =  . From Theorem 11, 
we know that 1 2E E+   is a L-fuzzy vector subspace. By the properties of L-fuzzy na- 
tural numbers, Theorem 12 and the dimensional formulation of vector spaces, we know 
for any ( )a P L∈ ,  



C. E Huang et al. 
 

166 

( ) ( )( )( )

( )( )( ) ( )( )( )

( )( ) ( )( )

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2 1 2

1 2

dim dim

dim dim

dim dim

dim dim

dim dim dim dim(

dim dim

a

a a

a a

a a a a

a a a a a a

a a

E E E E

E E E E

E E E E

E E E E

E E E E E E

E E

+ + ∩

= + + ∩

= + + ∩

= + + ∩

= + − ∩ + ∩

= +

   

   

   

   

     

 

 

Therefore ( ) ( )1 2 1 2 1 2dim dim dim dim .E E E E E E+ + ∩ = +        
Definition 4.6. Suppose that ( ),E E µ=  is an L-fuzzy vector subspace. A map 
:f E E→  is called an L-fuzzy linear transformation, if it satisfies the following 

conditions: 
(1) f  is a linear map on E . 
(2) For all x E∈ , ( )( ) ( ).f x xµ µ≥   
Theorem 4.7. Suppose that ( ),E E µ=  is an L-fuzzy vector subspace, f  is an 

L-fuzzy linear transformation on E , then  ( )kerker ker , ff f µ=  and  
 ( )imim im , ff f µ=  are L-fuzzy vector subspaces.  

The prove is trivial and omitted. 
Theorem 4.8. Suppose that ( ),E E µ=  is an L-fuzzy vector subspace, :f E E→  

is an L-fuzzy linear transformation, then  

( ) ( )dim ker dim im dimf f E+ =   

Proof. Suppose that ϕ  is a linear transformation on (crisp) vector spaces V , then 
the equality ( ) ( )dim im dim kef dimVϕ ϕ+ =  holds. Hence, for all ( ) ,a P L∈  we have  

( ) ( )( )( )
( )( )

( )( )( )

( )( )
( )( )

( )( ) ( )( )

dim im dim ker dim(im ) dim ker

dim im dim ker

dim im dim kef

a aa

a a

a a

f f f f

f f

E f E f

+ = +

= +

= ∩ + ∩ 

 

Since ( )aEf


 is a linear transformation on ( )aE , we have  

( ) ( )( )( )
( )( ) ( )( )

( ) ( )( )

dim im dim ker dim im dim kef

dim dim .

a a

a

E E

aa

f f f f

E E

+ = +

= =

 

 

 

Therefore ( ) ( )dim ker dim im dim .f f E+ = 

.  

5. Conclusion 

In this paper, L-fuzzy vector subspace is defined and showed that its dimension is an 
L-fuzzy natural number. Based on the definitions, some good properties of crisp vector 
spaces are hold in a finite-dimensional L-fuzzy vector subspace. In particular, the  
equality ( ) ( )1 2 1 2 1 2dim dim dim dimE E E E E E+ + ∩ = +       holds without any restricted 
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conditions. At the same time, ( ) ( )dim im dim kef dimf f E+ =   holds. 
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