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Abstract 
The study focuses on the imputation for the longitudinal survey data which often has 
nonignorable nonrespondents. Local linear regression is used to impute the missing 
values and then the estimation of the time-dependent finite populations means. The 
asymptotic properties (unbiasedness and consistency) of the proposed estimator are 
investigated. Comparisons between different parametric and nonparametric estima-
tors are performed based on the bootstrap standard deviation, mean square error and 
percentage relative bias. A simulation study is carried out to determine the best per-
forming estimator of the time-dependent finite population means. The simulation 
results show that local linear regression estimator yields good properties. 
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1. Introduction 

Longitudinal surveys refer to a type of sampling surveys done repeatedly over time on 
the same sampled units. In such surveys, data which are rich in information about the 
specific sampled unit can be obtained and thus suitable for various purposes. While 
longitudinal surveys are regarded to be better and reliable in informing about various 
features of a study unit, they suffer from monotone and intermittent patterns of miss-
ing data. This is often as a result of inaccessibility to or deliberate refusal of respondents 
to provide information after having participated in the surveys thus the occurrence of 
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nonresponses. 
Missing data are a problem because nearly all standard statistical methods presume 

complete information for all the variables included in the analysis. Using data with 
missing values leads to reduction in sample size which significantly affects the precision 
of the confidence interval, statistical power reduce and biased population parameter es-
timates. Imputation is one of the approaches used to intuitively fill in these missing 
values. Over time, various imputation models have been developed and they have been 
used to overcome quite a number of challenges caused by missing data. However, some 
shortcomings still exist such as biasedness and inefficiency of estimators. This is be-
cause imputation models have different assumptions in both parametric and nonpara-
metric contexts. 

Parametric methods like maximum likelihood estimation have limitations like sensi-
tivity to model misspecification while nonparametric methods are more robust and 
flexible [1]. Some of the methods used by [2] are simple linear regression imputation 
and Nadaraya-Watson technique. From their simulation results, it was found that the 
simple linear regression imputation approach has the weakness of producing biased es-
timates even when the responses at a particular time (including previous values) are 
correctly specified. On the other hand, Nadaraya-Watson technique of [3] and [4] used 
in the imputation of missing values in the longitudinal data has some weaknesses of 
producing a large design bias and boundary effects that give unreliable estimates for 
inference. 

As shown by [5] and [6], a rival for Nadaraya-Watson technique is the local linear 
regression estimator which was found to produce unbiased estimates without boundary 
effects. [7] studied the weighted Nadaraya-Watson method and was concerned with the 
limitations of the method such as consistency, asymptotic normality and the interior 
and boundary point effects. In his study, he found that local linear regression is much 
better than the weighted Nadaraya-Watson method as it produces asymptotically un-
biased estimates without boundary effects. Moreover, [8] also found that the local linear 
regression estimator (introduced by [9]) has desirable properties. 

In order to overcome the limitations of Nadaraya-Watson estimator, we derive a lo-
cal linear regression estimator in the imputation of the nonresponndents in a longitu-
dinal data set. The asymptotic properties (unbiasedness and consistency) of the pro-
posed estimator are investigated. Comparisons between various estimators (parametric 
and nonparametric) are performed based on the bootstrap standard deviation, mean 
square error and percentage relative bias. A simulation study is conducted to determine 
the best performing estimator of the finite population mean. 

2. Assumptions and Notations 

1) All sampled units are observed on the first time point ( )1t =  and remain in the 
sample till the final time t T= . The variable of interest ,i ty  is the value of y for the 

thi  unit at time point t. 
2) The prediction process is past last value dependent and the vectors  
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( ),1 , ,1 ,, , , , ,i i T i i Ty y I I   are independently and identically distributed (i.i.d) from the 
superpopulation under the model-assisted approach. 

For 2, ,t T=   and 1, 2, ,i N=   and the response indicator function ,i tI  is 

,
,

.

1; observed
1, 2, ,

0; unobserved
i t

i t
i t

y
I t T

y
−= =
−

                   (1) 

3) The vector ( )1, , Ty y  follows the Markov chain for longitudinal survey data 
without missing values  

( ) ( ), , 1 , , 1 , , 1 , 1| , 0, 1 | , 1i t i t i t i t i t i t i tL y y I I L y y I− − − −= = = =               (2) 

4) We assume that the population P is divided into a fixed number of imputation 
classes, which are basically unions of some small strata. 

3. Regularity Conditions 

Denote f to be a probability density function (pdf) of X and ( ) ( ) ( )g x p x f x=  where 
( )p x  is defined by; 

( ) ( ) ( ), ,1 | , 1 |i t i tp x P I Y X P I X= = = =                   (3) 

and g and f have bounded second derivatives 
i) The Kernel function K is a bounded and twice continuously differentiable 

symmetric function on the interval [ ]1,1− , and such that ( )0 d 1k K u u= =∫ ,  
( )1 d 0k uK u u= =∫ , ( )2

2k u K u= ∫ , 2k < ∞  and ( ){ }2
dK u u

∞

−∞
< ∞∫ . 

ii) The regression function ( )m ⋅  is at least twice continuously differentiable every- 
where in the neighborhood of 0x . 

iii) The sample survey variable of interest has a finite second moment bounded on 
the interval ( )0,1 . Thus ( )2E y < ∞ . 

iv) The conditional variance ( ) ( )2 |i i ix Var y X xσ = =  is bounded and continuous. 

4. Methodology 
4.1. Imputation Process 

Considering the case of the last past value, we do impute for missing value *
,i ty  by the 

value obtained through the prediction procedure. But according to [10], the joint 
distribution of bivariate random variables ( ,X Y ) is preserved when the missing value, 
Y is imputed by the conditional distribution of Y given X. Therefore, considering the 
conditional mean imputation approach for the single imputation. 

Let  

( ) ( ), , 1 1 , , 1 ,1 , 1| , 0, 1i t t t i t i t i i ty E y y I Iϕ − − − −= = =                 (4) 

be the conditional expectation with respect to the superpopulation for unobserved 
value ,i ty  with observed value , 1i ty −  for 2t ≥ . 

It is therefore clear that when , , 1i t tϕ −  is known, then the imputed value of unobserved 

,i ty  is given by ( ), , , 1 1i t i t t ty yϕ − −= . In cases where ( ), , 1 1i t t tyϕ − −  in Equation (4) is 
unknown, for nonmonotone nonrespondents, we employ the last value dependent 
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mechanism. 
Under assumption (2), we have  

( ) ( ), , 1 1 , , 1 , , 1| , 1, 1i t t t i t i t i t i ty E y y I Iϕ − − − −= = =                (5) 

Using Equation (4), we are limited to do estimation by regressing the nonrespondents 

ty  on the observed values 1ty −  based on the longitudinal survey data, therefore, we 
apply the equivalent Equation (5) which allows estimation using data from all subjects 
having observed ty  and observed 1ty − . Then, the imputation of the nonrespondents 
is done using ( ), , 1 1i t t tyϕ − −  in Equation (5) and under the last value dependent 
assumption, we are able to use auxiliary survey data in regression fitting. According to 
[11], imputing nonresponses using (5) was done for monotone case and their approach 
is easy to apply if the conditional expectation say, ( ), 1t t xϕ −  in (4) has a linear 
relationship with x. Adopting the concept of nonparametric method in [12], here, the 
local linear estimator of ( ), 1t t xϕ −  is ( ), 1ˆt t xϕ − . Let ,i ty  be the variable of interest for 
the i-th unit at time t where 1, ,i N=   and 1, ,t T=  . Associated with each ,i ty  
are the known , ,i t qx , 1, ,q Q=  , of q auxiliary variables. To make the notations and 
writings simple, we relax the index t and write with a single subscript i, thus ,i ty  is 
written as iy . 

The regression imputation model η  is given by the relation 

( )i i iy m x ε= +                            (6) 

such that iε ’s are residuals which are assumed to be independently normally distri- 
buted with mean zero and variance ( )2

ixσ . 
It is clear that  

( ) ( )i i iE y X x m x= =                         (7) 

( ) ( )2

, | ,
0 otherwise

i
i j i j

x i j
Cov y y X x X x

σ == = = 


             (8) 

where ( )im x  is an unknown regression function which is a smooth function of x. 
To obtain the estimator of ( )im x  at 1ty −  and its derivatives, we use the weighted 

local polynomial fitting by assuming that the regression function with ( )1p th+  
derivatives at a point, say 0x x= , exists and are continuous. 

We can rewrite the imputation model (6) as 

( )
1ti y i iy m x ε
−

= +                          (9) 

where approximation of ( )
1ty im x
−

 about 1ty −  is done following the Taylor series 
expansion. 

The kernel weight given as  

( ) ( )0i
i

x x
w x K

h
 − =  
  

                      (10) 

where h is the bandwidth and K is the kernel function which should be strictly positive 
and ( )hK ⋅  controls the weights, 0x  is the point of focus and ix  being the covariate 
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with design matrix centered at past last value and j is the order of the local polynomial. 
Let  

( ) ( )
2

0
1 0

pn j
i j i i

i j
S y x x w xβ

= =

 
= − − 

 
∑ ∑                   (11) 

Accordingly, for 0j = ,  

( ) ( )
( )

1
0

1

ˆ
n

i ii
n

ii

w x y
m x

w x
=

=

= ∑
∑

                        (12) 

Equation (12) is the Nadaraya-Watson estimator. 
With estimator the ( )0m̂ x , the conditional expectation given by ( )1ˆ tyϕ −  is used to 

impute the missing values, i.e. 

( )
0

1
, 1 1

0

1

ˆ

n
i

i i i
i

t t t n
i

i i
i

x xK y
hy

x xK
h

ω
ϕ

ω

=
− −

=

− 
 
 =

− 
 
 

∑

∑

I

I
                   (13) 

where iω  is the survey weight and  

, 1,
, 1,

1, 1, 1,
for 2, ,

0, otherwise
t i t i

t t i

I I
t T−

−

= =
= =


I                (14) 

Similarly for 1j = , 

( ){ } ( )2
0 1 0

1

n

i i i
i

S y x x w xβ β
=

= − − −∑                   (15) 

Minimizing S with respect to 0β  and 1β  in Equation (15) and solving for 0β  and 

1β , we get  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
0 0 0

1 1 1 1
0 2

2
0 0

1 1 1

ˆ

n n n n

i i i i i i i i
i i i i

n n n

i i i i
i i i

y w x w x x x y w x x x w x x x

w x x x w x w x x x
β = = = =

= = =

− − − −
=

 − − − 
 

∑ ∑ ∑ ∑

∑ ∑ ∑
    (16) 

and  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0
1 1 1 1

1 2
2

0 0
1 1 1

ˆ

n n n n

i i i i i i i i
i i i i

n n n

i i i i
i i i

y w x x x w x y w x w x x x

w x x x w x x x w x
β = = = =

= = =

− − −
=

 − − − 
 

∑ ∑ ∑ ∑

∑ ∑ ∑
        (17) 

Defining: 
( ) ( ) ( )01

jn
j i iiS x w x x x

=
= −∑  and 

( ) ( ) ( )01
jn

j i i iiT x y w x x x
=

= −∑ , Thus: 
Using ( )jS x , in Equation (17), we obtain 

( ) ( ) ( )
( ) ( ) ( )( )

( )0 0 1
1 2

1 2 0 1

ˆ
n

i
i i

i

x x S x S x
w x y

S x S x S x
β

=

 − − =  
−  

∑                  (18) 
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and with ( )jT x , in Equation (17), it yields  

( ) ( ) ( ) ( )
( ) ( ) ( )

0 1 1 0
1 2

2 0 1

ˆ S x T x S x T x
S x S x S x

β
−

=
−

                      (19) 

Similarly, using ( )jS x , in Equation (16) gives 

( ) ( ) ( )
( ) ( ) ( )

( )2 0 1
0 2

1 2 0 1

ˆ
n

i
i i

i

S x x x S x
y w x

S x S x S x
β

=

 − − =  
−  

∑                  (20) 

and with ( )jT x , Equation (16) becomes 

( ) ( ) ( ) ( )
( ) ( ) ( )

2 0 1 1
0 2

2 0 1

ˆ S x T x T x S x
S x S x S x

β
−

=
−

                     (21) 

The local linear estimator for the regression function ( )1m x  is now given by: 

( ) ( )1 0 0 1
ˆ ˆˆ im x x xβ β= + −                        (22) 

Substituting for 0β̂  (from Equation (20)) and 1̂β  (from Equation (18)) in Equation 
(22) gives,  

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( )

( )2 1 0 0 0 1
1 02 2

1 12 0 1 2 0 1

ˆ
n n

i i
i i i i i

i i

S x S x x x x x S x S x
m x w x y x x w x y

S x S x S x S x S x S x= =

  − − − −   = + −   
− −      

∑ ∑ (23) 

With estimator, ( )1m̂ x , the conditional expectation given by ( )1ˆ tyϕ −  is used to 
impute the missing values, i.e. 

( ) ( ) ( ) ( )
( ) ( ) ( )

( )

( )
( ) ( ) ( )

( ) ( ) ( )
( )

2 1 0
, 1 1 2

1 2 0 1

0 0 1
0 2

1 2 0 1

ˆ
n

i i i
t t t i i

i i i

n
i i i

i i i
i i i

S x S x x x
y w x y

S x S x S x

x x S x S x
x x w x y

S x S x S x

ω
ϕ

ω

ω

ω

− −
=

=

  − −  =  
 −   

  − −  + −  
 −   

∑

∑

I

I

I

I

      (24) 

where iω , is the weight according to the survey design and , 1,t t i−I  is as defined earlier. 

4.2. Estimation of the Finite Population Means Using the Imputed Data 

In this study, we consider a finite population from which samples are drawn. Before 
estimation of the population parameters, imputation process is done. Suppose that the 
survey measurements are 1 2, , , Ny y y  on the variables 1 2, , , NB B B  respectively 
and a simple random sample without replacement, nB , of size n is selected from a 
finite population, P of size N. The sample consists of two parts: rB  and n rB − , where 

rB  is the set of all respondents in the survey and n rB −  is the set of all non-respondents. 
The missing observations of the sample unit ,i ty , for 2t ≥  are considered. Impu- 
tation of the missing value ,i ty  for n ri B −∈  and 2t ≥  is done and then a complete 
data set is produced which is then used in the estimation of finite population means. 

Let tY  be the finite population mean at time point, t for 1,2, , .t T=   
The value to be imputed for the non respondent is denoted by *

,i ty  such that the 
imputed data is given as  
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,#
, *

,

, observed value

, imputed value
i t r

i t
i t n r

y i B
y

y i B −

∈= 
∈

                  (25) 

The mean of the finite population is given by  

1

1 N

i
i

Y Y
N =

= ∑  

Now, using the imputed data, the estimator of the finite population total is the 
sample total of the imputed data denoted by Iy  and is given by 

( ) *
, ,1

n
I i t i i i t

i B
y y I I y

∈

 = + − ∑                       (26) 

Thus, using the imputed data, the estimator of the finite population mean is the 
sample mean of the imputed data denoted by Iy , given by 

#
,

n
I i i t

i B
y yω

∈

= ∑                             (27) 

Assuming that for each ni B∈   

1n

N

s i i i
i B i

E y yω
∈ =

 
= 

 
∑ ∑                          (28) 

for each i P∈ . 
The imputed values are treated as if they were observed such that both observed and 

the imputed are used in the estimation of the population mean: 
Sample mean for the imputed data becomes  

*
, ,

r n r
I i i t i i t

i B i B
y w y w y

−∈ ∈

  = + 
  
∑ ∑                       (29) 

Note that the same weight due to sampling design is used in Equation (29) for all 
units in the sample. 

*
, ,

1

r n r
I i t i t

i B i B
y y y

n
−∈ ∈

  = + 
  
∑ ∑                        (30) 

for 1, ,t T=  . 
Since t is used as a constant variable, Equation (30) is re-written as 

*1ˆ
r n r

t i i
i B i B

y y y
n

−∈ ∈

 
= + 

 
∑ ∑                        (31) 

As for [12], the local constant estimation for the nonrespondents in Equation (31) is 
obtained as: 

( )
, 1

, , 1 ,
*

, 1 1
, 1

, , 1

ˆ

i t
i i t t i t

i S
i t t t

i t
i i t t

i s

x y
K y

h
y y

x y
K

h

ω
ϕ

ω

−

∈
− −

−
−

∈

− 
 
 = =

− 
 
 

∑

∑

I

I
               (32) 

and the local linear estimation for the nonrespondents, *
iy  in Equation (31) is given 

by: 
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( ) ( ) ( ) ( )
( ) ( ) ( )

( )

( )
( ) ( ) ( )

( ) ( ) ( )
( )

2 1 0 , , 1*
, 1 1 2

1 2 0 1 , , 1

0 0 1 , , 1
0 2

1 2 0 1 , , 1

ˆ
n

i i i t t
i t t t i i

i i i t t

n
i i i t t

i i i
i i i t t

S x S x x x
y y w x y

S x S x S x

x x S x S x
x x w x y

S x S x S x

ω
ϕ

ω

ω

ω

−
− −

= −

−

= −

  − −  = =  
 −   

  − −  + −  
 −   

∑

∑

I

I

I

I

       (33) 

Clearly, *
iy  in Equation (31) is substituted by Equation (32) and Equation (33) for 

use of local constant estimator and local linear regression estimator respectively. 

5. Asymptotic Properties of the Estimator 

In the derivation of the asymptotic properties, we use the set of regularity conditions. 
According to [12], the asymptotic theory development is provided by the concept of a 
sequence of finite populations { } 1

Pν ν

∞

=
 with ν  strata in Pν . It is assumed that there is 

a sequence of finite populations and the corresponding sequence of samples. The finite 
population P indexed by ν  is assumed to be a member of the sequence of the 
populations. The sample size denoted by nν  and the population size denoted by Nν  
approach infinity as ν →∞ . The uniform response and the size mν  of the nonrespon-  

dents set n rB −  satisfy the condition 1m
n
ν

ν

α→ < . All limiting processes will be under-  

stood as ν →∞  such that the regularity conditions are satisfied. For easy notation, the 
subscript ν  will be ignored in the subsequent work. 

Theorem 1. Assuming the regularity conditions (i)-(iv) and also the assumptions in 
section 2 hold. Then under the regression imputation model η , (6), the estimator, ˆ

ty  
in Equation (31), is asymptotically unbiased and consistent for the population mean 

tY . 
Proof. 1) Bias of t̂Y . 
The general formula for the finite population total is given by: 

n N n
t i i

i B i B
Y y y

−∈ ∈

= +∑ ∑                           (34) 

where nB  and N nB −  are the sampled and the non sampled sets respectively. 
Equation (34) can be decomposed as 

r n r N n
t i i i

i B i B i B
Y y y y

− −∈ ∈ ∈

 
= + + 
 
∑ ∑ ∑                      (35) 

For simplicity, denote rB , n rB −  and N nB −  by r , ( )n r−  and ( )N n−  respec- 
tively throughout the remaining work. 

From Equation (31), the estimator for the finite population total is given by  

( )1
ˆ ˆt i i

i r i n r
Y y m x

∈ ∈ −

= +∑ ∑                         (36) 

Now consider the difference,  

( )1
ˆ ˆt t i i i i i

i r i n r i r i n r i N n
Y Y y m x y y y

∈ ∈ − ∈ ∈ − ∈ −

   − = + − + −   
   
∑ ∑ ∑ ∑ ∑  
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( )( )1
ˆ ˆt t i i i

i n r i N n
Y Y m x y y

∈ − ∈ −

− = − −∑ ∑                     (37) 

( ) ( ) ( )( )1 1 1
ˆ ˆt t i i i i i

i n r i N n
Y Y m x m x m x y y

∈ − ∈ −

   − = − + − −   ∑ ∑          (38) 

Taking expectation on both sides of Equation (38), we have 

( ) ( ) ( )( ) ( )( ) ( )1 1 1
ˆ ˆt t i i i i i

i n r i n r i N n
E Y Y E m x m x E m x y E y

∈ − ∈ − ∈ −

− = − + − −∑ ∑ ∑     (39) 

Clearly, ( )( ) 0i ii n rE m x y
∈ −

− =∑  since ( ) ( )i iE y m x= . 
Now,  

( ) ( ) ( )( ) ( )1 1
ˆ ˆt t i i i

i n r i N n
E Y Y E m x m x E y

∈ − ∈ −

− = − −∑ ∑             (40) 

( ) ( ) ( )( ) ( )1 1
ˆ ˆt t i i i

i n r i N n
E Y Y E m x m x m x

∈ − ∈ −

− = − −∑ ∑             (41) 

Assuming ,n N →∞  such that ( ) 0N n− → , then ( ) 0i
i N n

m x
∈ −

→∑  in Equation 
(41) and hence,  

( ) ( ) ( )( )1 1
ˆ ˆt t i i

i n r
E Y Y E m x m x

∈ −

− ≈ −∑                  (42) 

But from Lemma 1 (see Appendix), 

( )( ) ( ) ( ) ( )( ) ( )2
1 1 0 1 0 2 3 1 0

2

ˆ
2
hE m x m x uhm x hk uh k m x
k

′ ′′= + + +        (43) 

where 0iuh x x= − . 
Thus the bias of t̂Y  becomes 

( ) ( ) ( ) ( ) ( )2
2 0 3 1 0

0 1 0
2

ˆ
2

i
t i

i n r

hk x x k m x
Bias Y x x m x h

k∈ −

   ′′+ − ′= − +       
∑      (44) 

2) Variance of t̂Y . 
The variance of t̂Y  is given by the variance of the error term t̂ tY Y− . That is,  

( ) ( )ˆ ˆ
t t tVar Y Var Y Y= −                         (45) 

( )( )1ˆ i i i
i n r i N n

Var m x y y
ε∈ − −

 = − − 
 
∑ ∑                    (46) 

( ) ( ) ( ) ( )*2 2 2 2

1

n

i i i i
i n r i i n r i N n

w x x x xσ σ σ
∈ − = ∈ − ∈ −

= − −∑∑ ∑ ∑              (47) 

( ) ( ) ( ) ( ) ( ) ( )2 2 2
0

1ˆ
asy t t k i iVar Y Y d x n r x N n x

nh
σ σ σ− ≈ − − − −        (48) 

Thus,  

( ) ( )2
0

1ˆ
asy t t k

i n r
Var Y Y d x

nh
σ

∈ −

− ≈ ∑                    (49) 

for sufficiently large n such that ( ) 0N n− →  and ( ) 0n r− → ; where  
( )2

kd K u du= ∫ . 
3) Mean square error (MSE) of t̂Y . 
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Finally, we have  

( ) ( )2ˆ ˆ ˆ
t t tMSE Y Bias Y Var Y   = +                        (50) 

( ) ( ) ( ) ( ) ( )
2

2
2 0 3 0 2

0 0 0
2

1ˆ
2

i
t i k

i n r i n r

hk x x k m x
MSE Y x x m x h x d

K nh
σ

∈ − ∈ −

    ′′+ −    ′= − + +           
∑ ∑ (51) 

which is the asymptotic expression of the MSE for t̂Y . ˆ 0tMSE Y  →   as 0h →  and 
nh →∞ , and thus t̂Y  is consistent. 

Consequently, ˆ
ty  is asymptotically unbiased and consistent. 

6. Simulation Study 
6.1. Description of Longitudinal Data 

In this section, a study of the finite population mean estimators based on four measures 
of performance (percentage relative bias (%RB), MSE and bootstrap standard deviation 
(SD bootstrap)) is carried out. 

Simulations and computations of the finite population mean estimators were done 
using R (R version 3.2.3 (2015-12-10)) based on 1000 runs. For the the local linear and 
local constant estimators, the Gaussian kernel with a fixed bandwidth of 0.75h =  was 
used. To fit the nonparametric regression, the loess function in R was used. 

For comparison purposes, we used complete data as our main reference in the 
evaluation of the performance of the estimators (Proposed local linear estimator, local 
constant estimator and the simple linear regression estimator). 

In this simulation study, a sample of size 1500n =  was considered. The longitudinal 
data for each of the sampled units is of size 4T =  that is, 1, 2,3, 4t = . This will yield 
23 different patterns of the longitudinal data with each of respondent and non- 
respondent values being denoted by 1 and 0 respectively at different time points. 

Longitudinal data was generated according to two models: 
1) In model 1, simulation of ( ), 1, 2,3, 4iy i =  is done from a multivariate normal 

distribution with the means for the 4 time points as 1.33, 1.94, 2.73, 3.67 respectively 
and the covariance matrix following the ( )1AR  model with standard error 1 and 
correlation coefficient 0.9. 

2) In model 2, simulation of ( )( )log , 1, 2,3, 4iy i =  is done from a multivariate 
normal distribution with the means for the 4 time points as 1.33, 1.94, 2.73, 3.67 
respectively and the covariance matrix following the ( )1AR  model with standard 
error 1 and correlation coefficient 0.9. 

In order to obtain the nonmonotone pattern in the simulated data, we used the 
predetermined unconditional probabilities of [13] shown in Table 1. 

6.2. Bootstrap Variance Estimation 

The following steps were used to obtain the bootstrap variance. 
1) We constructed a pseudo population by replicating the sample of size 1500 times 

through 1000 simulation runs. 
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Table 1. Probabilities of nonresponse patterns for 4t = . 

Pattern type Nonresponse pattern Normal/Log-normal data Total Probability 

Monotone 

1 0 0 0 0.062 0.181 

1 1 0 0 0.043  

1 1 1 0 0.076  

Nonmonotone 

1 0 0 1 0.113 0.494 

1 0 1 0 0.071  

1 0 1 1 0.186  

1 1 0 1 0.124  

Complete data 1 1 1 1 0.325 0.325 

 
2) A simple random sample of size 200 was drawn with replacement from the pseudo 

population. 
3.) We applied the simple linear regression, local constant and local linear regression 

imputation models to impute the missing iy ’s of the sample. 
4) Repeating the steps 2 and 3 for a large number of times ( 1000B = ) to obtain 
( ) ( )1ˆ ˆ, , B

I IY Y  where ( )ˆ b
IY  is the analog of ÎY , for the b-th bootstrap sample. 

5) Obtain the bootstrap variance of ÎY  by the formula  

( ) ( ) ( )( )2.
1

1ˆ ˆ ˆB b
boot I I IbV Y Y Y

B =
= −∑  where ( ).

ÎY  is the mean bootstrap analog of ÎY , given 

by ( ) ( ).
1

1ˆ ˆB b
I IbY Y

B =
= ∑ . 

6.3. Results and Discussion 

The results of this simulation study are summarized in Table 2 and Table 3. 
In terms of the percentage relative bias (%RB), at time point 2t = , it can be seen 

that the local linear estimator has the least value followed by the Nadaraya-Watson 
estimator and then the simple linear regression estimator, which was the largest value 
of %RB. 

At time point 3t = , observe that the the simple linear regression estimator has the 
least %RB value compared to that of the local linear estimator and the Nadaraya- 
Watson estimator performed worst with the largest %RB. The %RB values of the local 
linear estimator and the simple linear regression estimator are very much closer to zero 
than those for the other estimators. 

At time point 4t = , observe that the local linear estimator has the least %RB value 
followed by the simple linear regression estimator and the Nadaraya-Watson estimator 
performed worst. Through comparisons based on %RB with reference to the complete 
data, the local linear estimator has its %RB values approaching zero. 

In terms of MSE, at time point 2t = , Nadaraya-Watson estimator has the least 
values followed by the local linear estimator and lastly the simple linear regression 
estimator which has the largest values. At time point 3t = , the local linear estimator 
has the least values of MSE followed by the simple linear regression estimator and lastly  
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Table 2. Simulated results for mean estimation (normal case). 

Method Quantity 1t =  2t =  3t =  4t =  

Complete data 

Mean 1.328918 1.939003 2.729671 3.66934 

Standard deviation 1.000342 1.000168 0.9997156 1.000435 

%RB 0.0 0.0 0.0 0.0 

MSE 1.001018 1.000666 0.9997697 1.001196 

SD bootstrap 0.6667591 0.6666357 0.6666357 0.6675065 

Local Linear Regression 

Mean  1.938469 2.729698 3.669843 

Standard deviation  0.9948414 0.9926485 0.9932463 

%RB  0.0003101247 0.004607907 0.003463886 

MSE  0.9900532 0.9857052 0.9868784 

SD bootstrap  0.6606914 0.6600272 0.6597972 

Nadaraya-Watson 

Mean  1.938513 2.688752 3.658198 

Standard deviation  0.9804571 0.995685 0.9812671 

%RB  0.002618051 −1.49819 −0.3079823 

MSE  0.9616402 0.9934076 0.963356 

SD bootstrap  0.9807754 0.9967448 0.9815455 

Simple linear regression 

Mean  1.939073 2.729775 3.669467 

Standard deviation  0.9952188 0.9928367 0.9926948 

%RB  0.003486382 0.003859931 0.003474327 

MSE  0.9908072 0.9860761 0.9857896 

SD bootstrap  0.9952162 0.9938139 0.993223 

 
Table 3. Simulated results for mean estimation (log-normal case). 

Method Quantity 1t =  2t =  3t =  4t =  

Complete data 

Mean 1.330963 1.94061 2.731046 3.671122 

Standard deviation 1.000228 0.9999145 0.9998701 1.000415 

%RB 0.0 0.0 0.0 0.0 
MSE 1.000779 1.000138 1.000068 1.001156 

SD bootstrap 0.6658951 0.6659541 0.6659541 0.6662738 

Local Linear Regression 

Mean  1.940391 2.731393 3.671548 

Standard deviation  0.9950302 0.9927199 0.9925087 

%RB  −0.006115805 0.001946422 0.003121577 
MSE  0.9904082 0.9858397 0.9854251 

SD bootstrap  0.6588623 0.655473 0.658257 

Nadaraya-Watson 

Mean  1.940298 2.689957 3.660124 

Standard deviation  0.9806438 0.9958007 0.9805938 

%RB  −0.0109425 −1.506794 −0.3052104 

MSE  0.9619855 0.9936533 0.9620454 
SD bootstrap  0.9793316 0.9938614 0.9797415 

Simple linear regression 

Mean  1.940518 2.731128 3.671224 

Standard deviation  0.9948923 0.9928891 0.9925527 

%RB  -0.004716414 0.002994436 0.002771179 

MSE  0.9901363 0.9861755 0.9855044 
SD bootstrap  0.9940906 0.9909141 0.9916702 
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the Nadaraya-Watson estimator which has the largest MSE value. At time points 4t = , 
Nadaraya-Watson estimator has the least values of MSE followed by the simple linear 
regression estimator and lastly the local linear estimator which has the largest MSE 
value. 

In terms of the bootstrap standard deviation, it can be seen that the local linear 
estimator performs the best at all the three time points 2t = , 3t = , and 4t =  in 
which its values are even lower than those of the complete data implying that the results 
got with the local linear estimator are the best. The simple linear regression and 
Nadaraya-Watson estimators are competing interchangeably in terms of performance 
for the bootstrap samples. 

In terms of the percentage relative bias (%RB), at time points 2t =  and 4t = , 
observe that the simple linear regression estimator has the least %RB values followed by 
the local linear estimator and the Nadaraya-Watson estimator has the biggest %RB 
values. Based on these aforementioned results, it is viable to choose the best estimator 
as the local linear estimator which handles both linear and nonlinear models. At time 
points 3t = , observe that the local linear estimator has the least %RB value followed by 
simple linear regression estimator and lastly the Nadaraya-Watson. This implies that, 
for 1500n = , the local linear estimator has the smallest bias close to zero as for the 
complete data, hence the best estimator compared to others. 

In terms of the MSE, at time points 2t =  and 4t = , Nadaraya-Watson estimator 
has the least values of MSE, followed by the simple linear regression estimator and 
lastly the local linear estimator which has the largest values of MSE. At time point 

3t = , the the local linear estimator has the least values implying that it performed well 
at time point 3t = . 

In terms of the bootstrap standard deviation, observe from Table 3 that the local 
linear estimator performs the best at all the three time points since it has the least 
bootstrap standard deviations and these values are even smaller than those of the 
complete data in order of increasing time. 

From Table 3 of results, it is can be seen that the bootstrap standard deviations of the 
local linear estimator are more close to those of the Nadaraya-Watson estimator than 
the simple linear regression estimator. 

7. Conclusion 

Generally, nonrespondents in any survey data has a significant impact on the bias and 
the variance of the estimators and therefore, before using such data in statistical 
inference, imputation with an appropriate technique ought to be done. In this study, 
the main objective was to obtain an imputation method based on local linear regression 
for nonmonotone nonrespondents in longitudinal surveys and determine its asymptotic 
properties. Comparing the parametric and nonparametric methods, nonparametric 
methods performed better than the parametric methods. This was evident from the 
MSE and %RB values in both the normal and log-normal data. Among the nonpara- 
metric methods, the local linear estimator was the best estimator as it behaved better 
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than the Nadaraya-Watson estimator in terms of %RB. In terms of the bootstrap 
standard deviation, the local linear estimator performs the best at all the three time 
points since it has the least bootstrap standard deviations for the two data sets. 
Generally, the local linear estimator performs relatively well and in particular in the 
normal data. We conclude that use of the nonparametric estimators seem plausible in 
both theoretical and practical scenarios. 
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Appendix 

LEMMA 1. The bias of ( )1m̂ x  is given by  

( )( ) ( ) ( )( ) ( )2
1 0 2 3 0

2

ˆ
2
hBias m x uhm x hk uh k m x
k

′ ′′= + +            (52) 

Under the regularity conditions in section 3, ( )( )1ˆ 0Bias m x →  as 0h →  and  
n →∞ . 

PROOF OF LEMMA 1. 
Proof. From Equation (23), 

( ) ( ) ( ) ( )* **
1 0

1 1
ˆ

n n

i i i i i
i i

m x w x y x x w x y
= =

= + −∑ ∑                 (53) 

where ( ) ( ) ( ) ( )
( ) ( ) ( )

( )2 0 1*
2

2 0 1

i
i i

s x x x s x
w x w x

s x s x s x

 − −
 =
 − 

,  

( ) ( ) ( ) ( )
( ) ( ) ( )( )

( )0 0 1**
2

2 0 1

i
i i

x x s x s x
w x w x

s x s x s x

 − − =
 − 

, where ( ) 0i
i

x x
w x K

h
− =  

 
. 

The expectation of ( )1m̂ x  is given by  

( ) ( ) [ ] ( ) ( ) [ ]* **
1 0

1 1
ˆ

n n

i i i i i
i i

E m x w x E y x x w x E y
= =

= + −   ∑ ∑           (54) 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )
( )

1 0 0 0

2
2 1 3 0 0 3 1 2

02
2 0 1

ˆ

2

i

i

E m x m x x x m x

S x S x S x x x S x S x S x S x
m x

S x S x S x

′= + −  
   − + − −     ′′+  

 −   

  (55) 

The bias of ( )1m̂ x  is therefore given by  

( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

( )

1 0 0

2
2 1 3 0 0 3 1 2

02
2 0 1

ˆ

2

i

i

Bias m x x x m x

S x S x S x x x S x S x S x S x
m x

S x S x S x

′= −

   − + − −     ′′+  
 −   

  (56) 

For fixed design points of ix ’s on the interval ( )0,1 , the expression  
( ) ( ) ( ) ( )1 3

01
jn j j

j i i jiS x x x w x nh k o nh+ +
=

= − ≡ +∑  almost everywhere, see [14]. 
Now,  

1) 
( ) ( ) ( ) ( ) ( ) ( )

( )

22 3 5 4 4 6
2 1 3 2 3

2 6 2 2 8
2

S x S x S x nh k o nh o nh nh k o nh

n h k o n h

     − = + − +     

= +
 

2) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

0 3 1 2

3 4 6 4 3 5
3 2

2 5 2 7
3

S x S x S x S x

nh o nh nh k o nh o nh nh k o nh

n h k o n h

−

       = + + − +       

= +

 

3) 
( ) ( ) ( ) ( ) ( ) ( )

( )

22 3 5 3 4
2 0 1 2

2 4 2 6
2

S x S x S x nh k o nh nh o nh o nh

n h k o n h

     − = + + −     

= +
 



S. Pyeye et al. 
 

1153 

4) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 4 4 3
0 1 1 0 0S x S x S x S x nh o nh o nh o nh nh o nh   − = + − + =     

Equation (56) becomes  

( )( ) ( ) ( ) ( ){ } ( )02 2
1 0 0 2 0 3

2

ˆ
2i i

m x
Bias m x x x m x h k x x hk

k
′′

′  = − + + −         (57) 

Letting 0
0 .i

i
x x

u uh x x
h
−

= ⇒ = −  

Hence, the bias of ( )1m̂ x  can be re-written as  

( )( ) ( ) ( )( ) ( )2
1 0 2 3 0

2

ˆ
2
hBias m x uhm x hk uh k m x
k

′ ′′= + +             (58) 

and hence the result. 
LEMMA 2. The asymptotic expression of the variance of ( )1m̂ x  is given by  

( )( ) ( )2
1 0ˆ kdVar m x x

nh
σ≈                        (59) 

as 0h →  and nh →∞ ; where ( )2 dkd K u u= ∫ . 
PROOF OF LEMMA 2. 
Proof. Using Equation (23),  

( )( ) ( ) ( ) ( ) ( ) ( )2*2 **2
1 0

1 1
ˆ

n n

i i i i i
i i

Var m x w x Var y x x w x Var y
= =

= + −∑ ∑         (60) 

since ( ), 0i jCov y y = . 
It follows that  

( )( ) ( ) ( ) ( ) ( ) ( )2*2 2 **2 2
1 0

1 1
ˆ

n n

i i i i i
i i

Var m x w x x x x w x xσ σ
= =

= + −∑ ∑          (61) 

where 

( ) ( )*2 2
2 2
1

i iw x w x
n h

≈                          (62) 

and 

( ) ( )
( ) ( ) ( ) ( )( )

( )( )

2
2 5 2 7 2 5 2 7

**2
2 4 2 6

2

1 0i i

o n h o n h o n h o n h
w x w x

nh n h k o n h

 + − − ≈ → 
+  

 

as .n →∞  
Thus, 

( )( ) ( ) ( )2 2
1 2 2

1

1ˆ
n

i i
i

Var m x w x x
n h

σ
=

= ∑                  (63) 

The asymptotic expression of the variance of ( )1m̂ x  becomes 

( )( ) ( )2
1 0ˆ kdVar m x x

nh
σ≈                      (64) 

where ( )2 dkd K u u= ∫ . Hence the result. 
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MSE of ( )1m̂ x  
From LEMMA 1 and 2, the MSE of ( )1m̂ x  becomes  

( ) ( ) ( ) ( )( ) ( ) ( )
2

2 2
1 0 0 2 0 3 0 0

2

ˆ
2

k
i i

dhMSE m x x x m x hk x x k m x x
k nh

σ
 

′ ′′= − + + − +    
 

(65) 
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