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Abstract 
By the second mean-value theorem of calculus (Gauss-Bonnet theorem) we prove 
that the class of functions ( )zΞ  with an integral representation of the form 

( ) ( )
0

d chu u uz
+∞

Ω∫  with a real-valued function ( ) 0uΩ ≥  which is non-increasing 

and decreases in infinity more rapidly than any exponential functions ( )exp ,uλ−  

0λ >  possesses zeros only on the imaginary axis. The Riemann zeta function ( )sζ  

as it is known can be related to an entire function ( )sξ  with the same non-trivial 

zeros as ( )sζ . Then after a trivial argument displacement 1
2

s z s↔ = −  we relate it 

to a function ( )zΞ  with a representation of the form ( ) ( ) ( )
0

d chz u u uz
+∞

Ξ = Ω∫  

where ( )uΩ  is rapidly decreasing in infinity and satisfies all requirements 
necessary for the given proof of the position of its zeros on the imaginary axis iz y=  
by the second mean-value theorem. Besides this theorem we apply the Cauchy-  
Riemann differential equation in an integrated operator form derived in the 
Appendix B. All this means that we prove a theorem for zeros of ( )zΞ  on the 

imaginary axis iz y=  for a whole class of function ( )uΩ  which includes in this 
way the proof of the Riemann hypothesis. This whole class includes, in particular, 
also the modified Bessel functions ( )I zν  for which it is known that their zeros lie 
on the imaginary axis and which affirms our conclusions that we intend to publish at 
another place. In the same way a class of almost-periodic functions to piece-wise 
constant non-increasing functions ( )uΩ  belong also to this case. At the end we 
give shortly an equivalent way of a more formal description of the obtained results 
using the Mellin transform of functions with its variable substituted by an operator. 
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Theorem, Mellin Transformation 

 

1. Introduction 

The Riemann zeta function ( )sζ  which basically was known already to Euler 
establishes the most important link between number theory and analysis. The proof of 
the Riemann hypothesis is a longstanding problem since it was formulated by Riemann 
[1] in 1859. The Riemann hypothesis is the conjecture that all nontrivial zeros of the 
Riemann zeta function ( )sζ  for complex is tσ= +  are positioned on the line  

1 i
2

s t= +  that means on the line parallel to the imaginary axis through real value  

1
2

σ =  in the complex plane and in extension that all zeros are simple zeros [2]-[17]  

(with extensive lists of references in some of the cited sources, e.g., ([4] [5] [9] [12] 
[14]). The book of Edwards [5] is one of the best older sources concerning most 
problems connected with the Riemann zeta function. There are also mathematical 
tables and chapters in works about Special functions which contain information about 
the Riemann zeta function and about number analysis, e.g., Whittaker and Watson [2] 
(chap. 13), Bateman and Erdélyi [18] (chap. 1) about zeta functions and [19] (chap. 17) 
about number analysis, and Apostol [20] [21] (chaps. 25 and 27). The book of Borwein, 
Choi, Rooney and Weirathmueller [12] gives on the first 90 pages a short account about 
achievements concerning the Riemann hypothesis and its consequences for number 
theory and on the following about 400 pages it reprints important original papers and 
expert witnesses in the field. Riemann has put aside the search for a proof of his 
hypothesis “after some fleeting vain attempts” and emphasizes that “it is not necessary 
for the immediate objections of his investigations” [1] (see [5]). The Riemann hypothesis 
was taken by Hilbert as the 8-th problem in his representation of 23 fundamental 
unsolved problems in pure mathematics and axiomatic physics in a lecture hold on 8 
August in 1900 at the Second Congress of Mathematicians in Paris [22] [23]. The vast 
experience with the Riemann zeta function in the past and the progress in numerical 
calculations of the zeros (see, e.g., [5] [10] [11] [16] [17] [24] [25]) which all confirmed 
the Riemann hypothesis suggest that it should be true corresponding to the opinion of 
most of the specialists in this field but not of all specialists (arguments for doubt are 
discussed in [26]). 

The Riemann hypothesis is very important for prime number theory and a number 
of consequences is derived under the unproven assumption that it is true. As already 
said a main role plays a function ( )sζ  which was known already to Euler for real 
variables s  in its product representation (Euler product) and in its series re- 
presentation (now a Dirichlet series) and was continued to the whole complex s -plane 
by Riemann and is now called Riemann zeta function. The Riemann hypothesis as said 
is the conjecture that all nontrivial zeros of the zeta function ( )sζ  lie on the axis  
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parallel to the imaginary axis and intersecting the real axis at 1
2

s = . For the true  

hypothesis the representation of the Riemann zeta function after exclusion of its only 
singularity at 1s =  and of the trivial zeros at ( )2 , 1, 2,s n n= − =   on the negative 
real axis is possible by a Weierstrass product with factors which only vanish on the  

critical line 1
2

σ = . The function which is best suited for this purpose is the so-called xi  

function ( )sξ  which is closely related to the zeta function ( )sζ  and which was also 
introduced by Riemann [1]. It contains all information about the nontrivial zeros and 
only the exact positions of the zeros on this line are not yet given then by a closed 
formula which, likely, is hardly to find explicitly but an approximation for its density 
was conjectured already by Riemann [1] and proved by von Mangoldt [27]. The 
“(pseudo)-random” character of this distribution of zeros on the critical line 
remembers somehow the “(pseudo)-random” character of the distribution of primes 
where one of the differences is that the distribution of primes within the natural 
numbers becomes less dense with increasing integers whereas the distributions of zeros 
of the zeta function on the critical line becomes more dense with higher absolute values 
with slow increase and approaches to a logarithmic function in infinity. 

There are new ideas for analogies to and application of the Riemann zeta function in 
other regions of mathematics and physics. One direction is the theory of random 
matrices [16] [24] which shows analogies in their eigenvalues to the distribution of the 
nontrivial zeros of the Riemann zeta function. Another interesting idea founded by 
Voronin [28] (see also [16] [29]) is the universality of this function in the sense that 
each holomorphic function without zeros and poles in a certain circle with radius less  
1
2

 can be approximated with arbitrary required accurateness in a small domain of the 

zeta function to the right of the critical line within 1 1
2

s≤ ≤ . An interesting idea is  

elaborated in articles of Neuberger, Feiler, Maier and Schleich [30] [31]. They consider 
a simple first-order ordinary differential equation with a real variable t  (say the time) 
for given arbitrary analytic functions ( )f z  where the time evolution of the function 
for every point z  finally transforms the function in one of the zeros ( ) 0f z =  of this 
function in the complex z -plane and illustrate this process graphically by flow curves 
which they call Newton flow and which show in addition to the zeros the separatrices of 
the regions of attraction to the zeros. Among many other functions they apply this to 
the Riemann zeta function ( )zζ  in different domains of the complex plane. Whether, 
however, this may lead also to a proof of the Riemann hypothesis is more than 
questionable. 

Number analysis defines some functions of a continuous variable, for example, the 
number of primes ( )xπ  less a given real number x  which last is connected with the 
discrete prime number distribution (e.g., [3] [4] [5] [7] [9] [11]) and establishes the 
connection to the Riemann zeta function ( )sζ . Apart from the product repre- 
sentation of the Riemann zeta function the representation by a type of series which is 
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now called Dirichlet series was already known to Euler. With these Dirichlet series in 
number theory are connected some discrete functions over the positive integers 

1, 2,n =   which play a role as coefficients in these series and are called arithmetic 
functions (see, e.g., Chandrasekharan [4] and Apostol [13]). Such functions are the 
Möbius function ( )nµ  and the Mangoldt function ( )nΛ  as the best known ones. A 
short representation of the connection of the Riemann zeta function to number analysis 
and of some of the functions defined there became now standard in many monographs 
about complex analysis (e.g., [15]). 

Our means for the proof of the Riemann hypothesis in present article are more 
conventional and “old-fashioned” ones, i.e. the Real Analysis and the Theory of Com- 
plex Functions which were developed already for a long time. The most promising way 
for a proof of the Riemann hypothesis as it seemed to us in past is via the already 
mentioned entire function ( )sξ  which is closely related to the Riemann zeta function 
( )sζ . It contains all important elements and information of the last but excludes its 

trivial zeros and its only singularity and, moreover, possesses remarkable symmetries 
which facilitate the work with it compared with the Riemann zeta function. This 
function ( )sξ  was already introduced by Riemann [1] and dealt with, for example, in 
the classical books of Titchmarsh [3], Edwards [5] and in almost all of the sources cited 
at the beginning. Present article is mainly concerned with this xi function ( )sξ  and  

its investigation in which, for convenience, we displace the imaginary axis by 1
2

 to the  

right that means to the critical line and call this Xi function ( )zΞ  with iz x y= + . 
We derive some representations for it among them novel ones and discuss its 
properties, including its derivatives, its specialization to the critical line and some other 
features. We make an approach to this function via the second mean value theorem of 
analysis (Gauss-Bonnet theorem, e.g., [37] [38]) and then we apply an operator identity 
for analytic functions which is derived in Appendix B and which is equivalent to a 
somehow integrated form of the Cauchy-Riemann equations. This among other not so 
successful trials (e.g., via moments of function ( )uΩ ) led us finally to a proof of the 
Riemann hypothesis embedded into a proof for a more general class of functions. 

Our approach to a proof of the Riemann hypothesis in this article in rough steps is as 
follows: 

First we shortly represent the transition from the Riemann zeta function ( )sζ  of 
complex variable is tσ= +  to the xi function ( )sξ  introduced already by Riemann 
and derive for it by means of the Poisson summation formula a representation which is 
convergent in the whole complex plane (Section 2 with main formal part in Appendix  

A). Then we displace the imaginary axis of variable s  to the critical line at 1 i
2

s t= +  

by 1
2

s z s→ = −  that is purely for convenience of further working with the formulae.  

However, this has also the desired subsidiary effect that it brings us into the fairway of 
the complex analysis usually represented with the complex variable iz x y= + . The 
transformed ( )sξ  function is called ( )zΞ  function. 



A. Wünsche 
 

976 

The function ( )zΞ  is represented as an integral transform of a real-valued function  
( )uΩ  of the real variable u  in the form ( ) ( ) ( )

0
d chz u u uz

+∞
Ξ = Ω∫  which is related  

to a Fourier transform (more exactly to Cosine Fourier transform). If the Riemann 
hypothesis is true then we have to prove that all zeros of the function ( )zΞ  occur for 

0x = . 
To the Xi function in mentioned integral transform we apply the second mean-value 

theorem of real analysis first on the imaginary axes and discuss then its extension from 
the imaginary axis to the whole complex plane. For this purpose we derive in Appendix 
B in operator form general relations which allow to extend a holomorphic function 
from the values on the imaginary axis (or also real axis) to the whole complex plane 
which are equivalents in integral form to the Cauchy-Riemann equations in differential 
form and apply this in specific form to the Xi function and, more precisely, to the 
mean-value function on the imaginary axis (Sections 3 and 4). 

Then in Section 5 we accomplish the proof with the discussion and solution of the 
two most important equations (10) and (11) for the last as decisive stage of the proof. 
These two equations are derived in preparation before this last stage of the proof. From 
these equations it is seen that the obtained two real equations admit zeros of the Xi 
function only on the imaginary axis. This proves the Riemann hypothesis by the 
equivalence of the Riemann zeta function ( )sζ  to the Xi function ( )zΞ  and embeds 
it into a whole class of functions with similar properties and positions of their zeros. 

The Sections 6-7 serve for illustrations and graphical representations of the specific 
parameters (e.g., mean-value parameters) for the Xi function to the Riemann hy- 
pothesis and for other functions which in our proof by the second mean-value problem 
are included for the existence of zeros only on the imaginary axis. This is, in particular,  

also the whole class of modified Bessel functions ( ) 1,
2

I zν ν − < < +∞ 
 

 with real  

indices ν  which possess zeros only on the imaginary axis y  and where a proof by 
means of the differential equations exists and certain classes of almost-periodic 
functions. We intend to present this last topics in detail in future. 

2. From Riemann Zeta Function ( )ζ s  to Related Xi Function  

( )ζ s  and Its Argument Displacement to Function ( )zΞ  

In this Section we represent the known transition from the Riemann zeta function 
( )sζ  to a function ( )sξ  and finally to a function ( )zΞ  with displaced complex  

variable 1
2

s z s→ = −  for rational effective work and establish some of the basic  

representations of these functions, in particular, a kind of modified Cosine Fourier 
transformations of a function ( )uΩ  to the function ( )zΞ . 

As already expressed in the Introduction, the most promising way for a proof of the 
Riemann hypothesis as it seems to us is the way via a certain integral representation of 
the related xi function ( )sξ . We sketch here the transition from the Riemann zeta 
function ( )sζ  to the related xi function ( )sξ  in a short way because, in principle, 
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it is known and we delegate some aspects of the derivations to Appendix A. 
Usually, the starting point for the introduction of the Riemann zeta function ( )sζ  

is the following relation between the Euler product and an infinite series continued to 
the whole complex s -plane  

( ) ( )( )
1

11

1 11 ,  Re 1 ,s s
nk k

s s
p n

ζ σ
−

∞ ∞

==

 
≡ − = ≡ > 

 
∑∏              (2.1) 

where kp  denotes the ordered sequence of primes ( 1 2 32, 3, 5,p p p= = =  ). The 
transition from the product formula to the sum representation in (2.1) via transition to  

the Logarithm of ( )sζ  and Taylor series expansion of the factors 
1

1log 1 s
kp

−
 
− 

 
 in  

powers of 1 s
kp  using the uniqueness of the prime-number decomposition is well  

known and due to Euler in 1737. It leads to a special case of a kind of series later 
introduced and investigated in more general form and called Dirichlet series. The 
Riemann zeta function ( )sζ  can be analytically continued into the whole complex 
plane to a meromorphic function that was made and used by Riemann. The sum in 
(2.1) converges uniformly for complex variable is tσ= +  in the open semi-planes 
with arbitrary 1σ >  and arbitrary t . The only singularity of the function ( )sζ  is a 
simple pole at 1s =  with residue 1 that we discuss below. 

The product form (2.1) of the zeta function ( )sζ  shows that it involves all prime 
numbers np  exactly one times and therefore it contains information about them in a 
coded form. It proves to be possible to regain information about the prime number 
distribution from this function. For many purposes it is easier to work with mero- 
morphic and, moreover, entire functions than with infinite sequences of numbers but 
in first case one has to know the properties of these functions which are determined by 
their zeros and their singularities together with their multiplicity. 

From the well-known integral representation of the Gamma function  

( ) ( )( )1
0

d e ,   Re 0 ,z tz tt z
+∞ − −Γ = >∫                   (2.2) 

follows by the substitutions ,  t n x z sµ µ= =  with an appropriately fixed parameter 
0µ >  for arbitrary natural numbers n   

1

0

1 1 d e ,   Re 0 .
s

n x
s

sxx
n s

µµ

µ
µ

−+∞ −   
= >      Γ 

 

∫               (2.3) 

Inserting this into the sum representation (2.1) and changing the order of summation 
and integration, we obtain for choice 1µ =  of the parameter using the sum evaluation 
of the geometric series  

( ) ( ) ( )( )
1

0

1 d ,   Re 1 ,
e 1

s

p

ps p s
s

ζ
−

+∞
= >
Γ −∫                (2.4) 

and for choice 2µ =  with substitution 2πp q=  of the integration variable (see [1] 
and, e.g., [3] [4] [5] [7] [9])  
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( ) ( ) ( )( )
2

1 2 2
0

1
d exp π ,   Re 1 .

1
2

s

s

n

ss qq n q s
s
πζ

∞+∞ −

=

= − >
 Γ + 
 

∑∫         (2.5) 

Other choice of µ  seems to be of lesser importance. Both representations (2.4) and 
(2.5) are closely related to a Mellin transform ( )f̂ s  of a function ( )f t  which 
together with its inversion is generally defined by (e.g., [15] [32] [33] [34] [35])  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )0

1
0

0

1ˆ ˆd ,   ,  0 ,

1ˆ ˆ ˆd ,    ,
i2π

s
s

c i ss
c i

f t f tt f t f t f s

f s f t st f s f s s t f t

λ λ
λ

+∞ −

+ ∞ −

− ∞

→ ≡ ⇒ → >

→ = ⇒ − →

∫

∫
       (2.6) 

where c  is an arbitrary real value within the convergence strip of ( )f̂ s  in complex 
s -plane. The Mellin transform ( )f̂ s  of a function ( )f t  is closely related to the 
Fourier transform ( )yϕ  of the function ( ) ( )exx fϕ ≡  by variable substitution 

ext =  and iy s= . Thus the Riemann zeta function ( )sζ  can be represented, 
substantially (i.e., up to factors depending on s ), as the Mellin transforms of the  

functions ( ) 1

1e
e 1

nt
tnf t ∞ −

=
= =

−
∑  or of ( ) ( )2 2

1exp πnf t n t∞

=
= −∑ , respectively. The  

kernels of the Mellin transform are the eigenfunctions of the differential operator  

( )t t∂ ∂  to eigenvalue 1s −  or, correspondingly, of the integral operator exp t
t

α ∂ 
 ∂ 

  

of the multiplication of the argument of a function by a factor eα  (scaling of 
argument). Both representations (2.4) and (2.5) can be used for the derivation of 
further representations of the Riemann zeta function and for the analytic continuation. 
The analytic continuation of the Riemann zeta function can also be obtained using the 
Euler-Maclaurin summation formula for the series in (2.1) (e.g., [5] [11] [15]). 

Using the Poisson summation formula, one can transform the representation (2.5) of 
the Riemann zeta function to the following form  

( )
( )

( ) ( )
12

2 2
1

1

π 1 1 d exp π .
2! 1

2

s
s s

n

q qs s s q n q
s qs

ζ
− ∞+∞

=

 +
= − − − 
   − 
 

∑∫       (2.7) 

This is known [1] [3] [5] [7] [9] but for convenience and due to the importance of 
this representation for our purpose we give a derivation in Appendix A. From (2.7) 
which is now already true for arbitrary complex s  and, therefore, is an analytic 
continuation of the representations (2.1) or (2.5) we see that the Riemann zeta function 
satisfies a functional equation for the transformation of the argument 1s s→ − . In 
simplest form it appears by “renormalizing” this function via introduction of the xi 
function ( )sξ  defined by Riemann according to [1] and to [5] [20]1  

 

 

1Riemann [1] defines it more specially for argument 1 i
2

s t= +  and writes it ( )tξ  with real t  corres-

ponding to our 
1 i
2

tξ  + 
 

. Our definition agrees, e.g., with Equation (1) in Section 1.8 on p. 16 of Edwards 

[5] and with [20] and many others. 
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( )
( )

( )
2

1 !
2 ,

π
s

ss
s sξ ζ

 −  
 ≡                         (2.8) 

and we obtain for it the following representation converging in the whole complex 
plane of s  (e.g., [1] [4] [5] [7] [9])  

( ) ( ) ( )
1

2 2
1

1

1 1 d exp π ,
2

s s

n

q qs s s q n q
q

ξ
− ∞+∞

=

+
= − − −∑∫             (2.9) 

with the “normalization”  

( ) ( ) ( ) 10 1 0 .
2

ξ ξ ζ= = − =                       (2.10) 

For 1
2

s =  the xi function and the zeta function possess the (likely transcendental)  

values  

1
4

1 !
1 1 14 0.4971207782, 1.4603545088.
2 2 2

2π
ξ ζ ζ

 
       = − = = −     

     
     (2.11) 

Contrary to the Riemann zeta function ( )sζ  the function ( )sξ  is an entire 
function. The only singularity of ( )sζ  which is the simple pole at 1s = , is removed 
by multiplication of ( )sζ  with 1s −  in the definition (2.8) and the trivial zeros of 
( )sζ  at ( )2 , 1, 2,s n n= − =   are also removed by its multiplication with  

! 1
2 2
s s   ≡ Γ +   

   
 which possesses simple poles there. 

The functional equation  

( ) ( )1 ,s sξ ξ= −                           (2.12) 

from which follows for the n -th derivatives  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 11 1 ,     0,  , 0,1, 2, ,
2

nn n ms s n mξ ξ ξ +  = − − ⇒ = = 
 

     (2.13) 

and which expresses that ( )sξ  is a symmetric function with respect to 1
2

s =  as it is  

immediately seen from (2.9) and as it was first derived by Riemann [1]. It can be easily 
converted into the following functional equation for the Riemann zeta function ( )sζ 2  

( ) ( )

( )
( )

2π
1 .

2 1 !cos π
2

s

s s
ss

ζ ζ= −
 −  
 

                 (2.14) 

Together with ( ) ( )( )**6s sξ ξ=  we find by combination with (2.12)  

( ) ( ) ( )( ) ( )( )* ** *1 1 ,s s s sξ ξ ξ ξ= − = − =              (2.15) 

 

 

2According to Havil [10], (p. 193), already Euler correctly conjectured this relation for the zeta function 
( )sζ  which is equivalent to relation (2.12) for the function ( )sξ  but could not prove it. Only Riemann 

proved it first. 
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that combine in simple way, function values for 4 points ( )* *,1 ,1 ,s s s s− −  of the 
complex plane. Relation (15) means that in contrast to the function ( )sζ  which is 
only real-valued on the real axis the function ( )sξ  becomes real-valued on the real  

axis ( *s s σ= = ) and on the imaginary axis ( 1 i
2

s t− = ). 

As a consequence of absent zeros of the Riemann zeta function ( )itζ σ +  for 
( )Re 1sσ ≡ >  together with the functional relation (14) follows that all nontrivial 

zeros of this function have to be within the strip 0 1σ≤ ≤  and the Riemann 
hypothesis asserts that all zeros of the related xi function ( )sξ  are positioned on the  

so-called critical line ( )1 i ,
2

s t t= + −∞ < < +∞ . This is, in principle, well known. 

We use the functional Equation (2.12) for a simplification of the notations in the 
following considerations and displace the imaginary axis of the complex variable  

is tσ= +  from 0σ =  to the value 1
2

σ =  by introducing the entire function ( )zΞ   

of the complex variable iz x y= +  as follows  

( ) 1 1 1,   i i ,
2 2 2

z z z x y t sξ σ Ξ ≡ + = + = − + = − 
 

           (2.16) 

with the “normalization” (see (2.10) and (2.11))  

( )1 1 1,   0 0.4971207782.
2 2 2

ξ   Ξ ± = Ξ = ≈   
   

            (2.17) 

following from (2.10). Thus the full relation of the Xi function ( )zΞ  to the Riemann 
zeta function ( )sζ  using definition (2.8) is  

( ) 1 2
4

1 1 2 !
12 4 .
2

π
z

zz
z zζ+

+  −      Ξ = + 
 

                (2.18) 

We emphasize again that the argument displacement (2.16) is made in the following 
only for convenience of notations and not for some more principal reason. 

The functional equation (2.12) together with (2.13) becomes  

( ) ( ) ( ) ( ) ( ) ( ) ( ),   1 ,nn nz z z zΞ = Ξ − Ξ = − Ξ −               (2.19) 

and taken together with the symmetry for the transition to complex conjugated variable  

( ) ( ) ( )( ) ( )( )* ** * .z z z zΞ = Ξ − = Ξ − = Ξ                (2.20) 

This means that the Xi function ( )zΞ  becomes real-valued on the imaginary axis 
iz y=  which becomes the critical line in the new variable z   

( ) ( ) ( )( ) ( )( )* *
i i i i .y y y yΞ = Ξ − = Ξ = Ξ −                (2.21) 

Furthermore, the function ( )zΞ  becomes a symmetrical function and a real-valued 
one on the real axis z x=   

( ) ( ) ( )( ) ( )( )* *
.x x x xΞ = Ξ − = Ξ − = Ξ                 (2.22) 
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In contrast to this the Riemann zeta function ( )sζ  the function is not a real-valued  

function on the critical line 1 i
2

s t= +  and is real-valued but not symmetric on the real  

axis. This is represented in Figure 1. (calculated with “Mathematica 6” such as the  

further figures too). We see that not all of the zeros of the real part 1Re i
2

tζ  +  
  

 are 

also zeros of the imaginary part 1Im i
2

tζ  +  
  

 and, vice versa, that not all of the  

zeros of the imaginary part are also zeros of the real part and thus genuine zeros of the  

function 
1 i
2

tζ  + 
 

 which are signified by grid lines. Between two zeros of the real 

part which are genuine zeros of 
1 i
2

tζ  + 
 

 lies in each case (exception first interval)  

an additional zero of the imaginary part, which almost coincides with a maximum of 
the real part. 
 

 
Figure 1. Real and imaginary part and absolute value of Riemann zeta function on critical line. The position of the zeros of the whole 

function 1 i
2

tζ  + 
 

 on the critical line are shown by grid lines. One can see that not all zeros of the real part are also zeros of the 

imaginary part and vice versa. The figures are easily to generate by program “Mathematica” and are published in similar forms already in 
literature. 
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Using (2.9) and definition (2.16) we find the following representation of ( )zΞ   

( ) ( )2 2 2
1

1

1 1 d exp π .
2 4

z z

n

q qz z q n q
q

− ∞+∞

=

+ Ξ = − − − 
 

∑∫           (2.23) 

With the substitution of the integration variable euq =  (see also (2.10) in Appendix 
A) representation (2.23) is transformed to  

( ) ( ) ( )2 2 22
0

1

1 12 d ch e exp π e .
2 4

u
u

n
z z u uz n

∞+∞

=

 Ξ ≡ − − − 
 

∑∫          (2.24) 

In Appendix A we show that (2.24) can be represented as follows (see also Equation 
(2.2) on p. 17 in [5] which possesses a similar principal form)  

( ) ( ) ( )
0

d ch ,z u u uz
+∞

Ξ = Ω∫                    (2.25) 

with the following explicit form of the function ( )uΩ  of the real variable u   

( ) ( ) ( )2 2 2 2 2 22

1
4e π e 2π e 3 exp π e 0,  ( ).

u
u u u

n
u n n n u

∞

=

Ω ≡ − − > −∞ < < +∞∑      (2.26) 

The function ( )uΩ  is symmetric  

( ) ( ) ( ) ,u u uΩ = +Ω − = Ω                    (2.27) 

that means it is an even function although this is not immediately seen from 
representation (2.26)3. We prove this in Appendix A. Due to this symmetry, formula 
(2.25) can be also represented by  

( ) ( ) ( ) ( )1 1d ch d e .
2 2

uzz u u uz u u
+∞ +∞

−∞ −∞
Ξ = Ω = Ω∫ ∫            (2.28) 

In the formulation of the right-hand side the function ( )zΞ  appears as analytic 
continuation of the Fourier transform of the function ( )uΩ  written with imaginary 
argument iz y=  or, more generally, with substitution iz z′→  and complex z′ . 
From this follows as inversion of the integral transformation (2.28) using (2.27)  

( ) ( ) ( ) ( )i1 1d i e d i cos ,
π

uyu y y y y uy
π

+∞ +∞−

−∞ −∞
Ω = Ξ = Ξ∫ ∫           (2.29) 

or due to symmetry of the integrand in analogy to (2.25)  

( ) ( ) ( )
0

2 d i cos ,
π

u y y uy
+∞

Ω = Ξ∫                   (2.30) 

where ( )iyΞ  is a real-valued function of the variable y  on the imaginary axis  

( ) ( ) ( ) ( )( ) ( )*

0
i d cos ,   i i ,y u u uy y y

+∞
Ξ = Ω Ξ = Ξ∫             (2.31) 

due to (2.25). 
A graphical representation of the function ( )uΩ  and of its first derivatives 

 

 

3It was for us for the first time and was very surprising to meet a function where its symmetry was not easily 
seen from its explicit representation. However, if we substitute in (2.26) u u→−  and calculate and plot the 
part of ( )uΩ  for 0u ≥  with the obtained formula then we need much more sum terms for the same ac-
curateness than in case of calculation with (2.26). 
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( ) ( ) ( )1 , 1, 2,3u nΩ =  is given in Figure 2. The function ( )uΩ  is monotonically de-  

creasing for 0 u≤ < +∞  due to the non-positivity of its first derivative ( ) ( ) ( )1 u
u

u
∂Ω

Ω ≡
∂

  

which explicitly is (see also Appendix A)  

( ) ( ) ( )( ) ( )
( )

21 2 2 2 2 2 2 2 22

1
2e π e 8 π e 30π e 15 exp π e

0,   0 ,

u
u u u u

n
u n n n n

u

∞

=

Ω = − − + −

≤ ≤ < +∞

∑     (2.32) 

 

 

 

Figure 2. Function ( )uΩ  and its first derivative ( ) ( )1 uΩ  (see (2.25) and (2.34)). 

The function ( )uΩ  is positive for 0 u≤ < +∞  and since its first derivative 
( ) ( )1 uΩ  is negative for 0 u< < +∞  the function ( )uΩ  is mono- tonically 

decreasing on the real positive axis. It vanishes in infinity more rapidly than any 
exponential function with a polynomial in the exponent. 
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with one relative minimum at min 0.237266u =  of depth ( ) ( )1
min 4.92176uΩ = − . 

Moreover, it is very important for the following that due to presence of factors 

( )2 2exp π e un−  in the sum terms in (2.26) or in (2.32) the functions ( )uΩ  and 
( ) ( )1 uΩ  and all their higher derivatives are very rapidly decreasing for u → +∞ , more 

rapidly than any exponential function with a polynomial of u  in the argument. In this 
sense the function ( )uΩ  is more comparable with functions of finite support which 
vanish from a certain 0u u≥  on than with any exponentially decreasing function. 
From (2.27) follows immediately that the function ( ) ( )1 uΩ  is antisymmetric  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1, 0 0,uu u u
u u

∂
Ω = −Ω − = Ω ⇒Ω =

∂
          (2.33) 

that means it is an odd function. 
It is known that smoothness and rapidness of decreasing in infinity of a function 

change their role in Fourier transformations. As the Fourier transform of the smooth 
(infinitely continuously differentiable) function ( )uΩ  the Xi function on the critical 
line ( )iyΞ  is rapidly decreasing in infinity. Therefore it is not easy to represent the 
real-valued function ( )iyΞ  with its rapid oscillations under the envelope of rapid 
decrease for increasing variable y  graphically in a large region of this variable y . An 
appropriate real amplification envelope is seen from (2.18) to be  

( )
1
4

2

1 2π
1 i2 1 4!

4

y
y y

α =
+  + 

 

 which rises ( )iyΞ  to the level of the Riemann zeta 

function 
1 i
2

tζ  + 
 

 on the critical line iz y= . This is shown in Figure 3. The partial  

picture for ( ) ( )iy yα Ξ  in Figure 3. with negative part folded up is identical with the  

absolute value 
1 i
2

tζ  + 
 

 of the Riemann zeta function ( )sζ  on the imaginary axis 

1 i
2

s t= +  (fourth partial picture in Figure 1). 

We now give a representation of the Xi function by the derivative of the Omega  

function. Using ( ) ( )1ch shuz uz
z u
∂

=
∂

 one obtains from (2.25) by partial integration  

the following alternative representation of the function ( )zΞ   

( ) ( ) ( ) ( )1

0

1 d sh ,z u u uz
z

+∞
Ξ = − Ω∫                    (2.34) 

that due to antisymmetry of ( ) ( )1 uΩ  and ( )sh uz  with respect to u u→ −  can also 
be written  

( ) ( ) ( ) ( ) ( ) ( )1 11 1= d sh = d e .
2 2

uzz u u uz u u
z z

+∞ +∞

−∞ −∞
Ξ − Ω − Ω∫ ∫           (2.35) 

Figure 2 gives a graphical representation of the function ( )uΩ  and of its first  

derivative ( ) ( ) ( )1 u u
u

∂Ω
Ω ≡

∂
 which due to rapid convergence of the sums is easily to  
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Figure 3. Xi Function ( )iyΞ  on the imaginary axis iz y=  (corresponding to 
1 i
2

s y= + ). The envelope over the oscillations of the 

real-valued function ( )iyΞ  decreases extremely rapidly with increase of the variable y  in the shown intervals. This behavior makes it 

difficult to represent this function graphically for large intervals of the variable y . By an enhancement factor which rises the amplitude to 

the level of the zeta function ( )sζ  we may see the oscillations under the envelope (last partial picture). A similar picture one obtains for 

the modulus of the Riemann zeta function 
1 i
2

yζ  + 
 

 only with our negative parts folded to the positive side of the ordinate, i.e. 

( ) 1i i
2

y yζ  Ξ = + 
 

 (see also Figure 1 (last partial picture)). The given values for the zeros at 
1 i
2 ny±  were first calculated by J.-P. 

Gram in 1903 up to 15y  [5]. We emphasize here that the shown very rapid decrease of the Xi function at the beginning of y  and for 

y →±∞  is due to the “very high” smoothness of ( )uΩ  for arbitrary u . 

 
generate by computer. One can express ( )zΞ  also by higher derivatives  

( ) ( ) ( )
n

n
nu u

u
∂ Ω

Ω ≡
∂

 of the Omega function ( )uΩ  according to  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
2 0

2 1
2 1 0

1 d ch

1 d sh , 0,1,2, ,

m
m

m
m

z u u uz
z

u u uz m
z

+∞

+∞ +
+

Ξ = Ω

= − Ω =

∫

∫ 

         (2.36) 

with the symmetries of the derivatives of the function ( )uΩ  for u u↔ −   
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 1 2 1 2 1, ,     0 0, 0,1, .m m m m mu u u u m+ + +Ω = +Ω − Ω = −Ω − ⇒ Ω = =   (2.37) 
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This can be seen by successive partial integrations in (2.25) together with complete 
induction. The functions ( ) ( )n uΩ  in these integral transformations are for 1n ≥  not 
monotonic functions. 

We mention yet another representation of the function ( )zΞ . Using the trans- 
formations  

2 2 2 2π e ,     d 2π e d 2 d ,u u
n n nt n t n u t u≡ ⇒ = =              (2.38) 

the function ( )zΞ  according to (2.28) with the explicit representation of the function 
( )uΩ  in (2.26) can now be represented in the form  

( )
( )

( ) ( )

( ) ( )

2 2 2 2
1

1 2 4

2 2 2 2

1 9 92 π ,π π ,π2 2
4 2 4 2

π

5 5           3 π ,π π ,π ,2 2
4 2 4 2

z z

n

z z

z zz n n n n
n

z zn n n n

∞ −

=

−

      Ξ = Γ + + Γ −     
     

    − Γ + + Γ −    
     

∑
   (2.39) 

where ( )Γ , xα  denotes the incomplete Gamma function defined by (e.g., [18] [21] 
[36])  

( ) ( ) ( )1, d e , .t
x

x t t xαα α γ α
+∞ − −Γ ≡ ≡ Γ −∫               (2.40) 

However, we did not see a way to prove the Riemann hypothesis via the repre- 
sentation (2.39). 

The Riemann hypothesis for the zeta function ( )is tζ σ= +  is now equivalent to 
the hypothesis that all zeros of the related entire function ( )iz x yΞ = +  lie on the 
imaginary axis iz y=  that means on the line to real part 0x =  of iz x y= +  which 
becomes now the critical line. Since the zeta function )(sζ  does not possess zeros in 
the convergence region 1σ >  of the Euler product (2.1) and due to symmetries (2.27) 
and (2.31) it is only necessary to prove that ( )zΞ  does not possess zeros within the  

strips 1 0
2

x− ≤ <  and 10
2

x< ≤ +  to both sides of the imaginary axis iz y=  where  

for symmetry the proof for one of these strips would be already sufficient. However, we 
will go another way where the restriction to these strips does not play a role for the 
proof. 

3. Application of Second Mean-Value Theorem of Calculus to Xi  
Function 

After having accepted the basic integral representation (2.25) of the entire function 
( )zΞ  according to  

( ) ( ) ( )
0

d ch ,z u u uz
+∞

Ξ ≡ Ω∫                      (3.1) 

with the function ( )uΩ  explicitly given in (2.26) we concentrate us on its further 
treatment. However, we do this not with this specialization for the real-valued function 
( )uΩ  but with more general suppositions for it. Expressed by real part ( ),U x y  and 

imaginary part ( ),V x y  of ( )zΞ   
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( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )* *
i , i , ,   , , ,   , , ,x y U x y V x y U x y U x y V x y V x yΞ + ≡ + = =    (3.2) 

we find from (3.1)  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

, d ch cos ,   , d sh sin .U x y u u ux uy V x y u u ux uy
+∞ +∞

= Ω = Ω∫ ∫    (3.3) 

We suppose now as necessary requirement for ( )uΩ  and satisfied in the special 
case (2.26)  

( ) ( ) ( )0,   0 ,   0 0.u uΩ > ≤ < +∞ ⇒Ω >                (3.4) 

Furthermore, ( )zΞ  should be an entire function that requires that the integral (3.1) 
is finite for arbitrary complex z  and therefore that ( )uΩ  is rapidly decreasing in 
infinity, more precisely  

( )
( )

lim 0,   0 0 ,
expu

u
u

λ
λ→∞

Ω
= < ≤ < +∞

−
                 (3.5) 

for arbitrary 0λ ≥ . This means that the function ( )uΩ  should be a nonsingular 
function which is rapidly decreasing in infinity, more rapidly than any exponential 
function e uλ−  with arbitrary 0λ > . Clearly, this is satisfied for the special function 
( )uΩ  in (2.26). 
Our conjecture for a longer time was that all zeros of ( )zΞ  lie on the imaginary 

axis iz y=  for a large class of functions ( )uΩ  and that this is not very specific for 
the special function ( )uΩ  given in (2.26) but is true for a much larger class. It seems 
that to this class belong all non-increasing functions ( )uΩ , i.e such functions for 
which holds ( ) ( )1 0uΩ ≤  for its first derivative and which rapidly decrease in infinity. 
This means that they vanish more rapidly in infinity than any power functions 

( ), 1, 2,nu n− =   (practically they vanish exponentially). However, for the conver- 
gence of the integral (3.1) in the whole complex z -plane it is necessary that the 
functions have to decrease in infinity also more rapidly than any exponential function 

( )exp uλ−  with arbitrary 0λ >  expressed in (3.5). In particular, to this class belong 
all rapidly decreasing functions ( )uΩ  which vanish from a certain 0u u≥  on and 
which may be called non-increasing finite functions (or functions with compact 
support). On the other side, continuity of its derivatives ( ) ( ) ( ), 1, 2,n u nΩ =   is not 
required. The modified Bessel functions ( )I zν  “normalized” to the form of entire  

functions ( )2 I z
z

ν

ν
 
 
 

 for 1
2

ν ≥  possess a representation of the form (3.1) with  

functions ( )uΩ  which vanish from 1u ≥  on but a number of derivatives of ( )uΩ  
for the functions is not continuous at 1u =  depending on the index ν . It is valuable 
that here an independent proof of the property that all zeros of the modified Bessel 
functions ( )I uν  lie on the imaginary axis can be made using their differential eq- 
uations via duality relations. We intend to present this in detail in a later work. 

Furthermore, to the considered class belong all monotonically decreasing functions 
with the described rapid decrease in infinity. The fine difference of the decreasing 
functions to the non-increasing functions ( )uΩ  is that in first case the function 
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( )uΩ  cannot stay on the same level in a certain interval that means we have 
( ) ( )1 0uΩ <  for all points 0u >  instead of ( ) ( )1 0uΩ ≤  only. A function which de- 

creases not faster than e uλ−  in infinity does not fall into this category as, for example,  

the function ( ) ( )
1sech

ch
z

z
≡  shows. 

To apply the second mean-value theorem it is necessary to restrict us to a class of 
functions ( ) ( )u f uΩ →  which are non-increasing that means for which for all 

1 2u u<  in considered interval holds  

( ) ( ) ( ) ( ) ( )1 2 1 20,   ,f a f u f u f b a u u b≥ ≥ ≥ ≥ ≤ ≤ ≤          (3.6) 

or equivalently in more compact form  
( ) ( ) ( )1 0,   .f u a u b≤ ≤ ≤                     (3.7) 

The monotonically decreasing functions in the interval a u b≤ ≤ , in particular, 
belong to the class of non-increasing functions with the fine difference that here  

( ) ( ) ( ) ( ) ( )1 2 1 20,   ,f a f u f u f b a u u b> > > > < < <            (3.8) 

is satisfied. Thus smoothness of ( )f u  for a u b< <  is not required. If furthermore 
( )g u  is a continuous function in the interval a u b≤ ≤  the second mean-value 

theorem (often called theorem of Bonnet (1867) or Gauss-Bonnet theorem) states an 
equivalence for the following integral on the left-hand side to the expression on the 
right-hand side according to (see some monographs about Calculus or Real Analysis; 
we recommend the monographs of Courant [37] (Appendix to chap IV) and of Widder 
[38] who called it Weierstrass form of Bonnet’s theorem (chap. 5, § 4))  

( ) ( ) ( ) ( ) ( ) ( ) ( )0
0

0
d d d ,   ,

b u b

a a u
u f u g u f a ug u f b ug u a u b= + ≤ ≤∫ ∫ ∫      (3.9) 

where 0u  is a certain value within the interval boundaries a b<  which as a rule we 
do not exactly know. It holds also for non-decreasing functions which include the 
monotonically increasing functions as special class in analogous way. The proof of the 
second mean-value theorem is comparatively simple by applying a substitution in the 
(first) mean-value theorem of integral calculus [37] [38]. 

Applied to our function ( ) ( )f u u= Ω  which in addition should rapidly decrease in 
infinity according to (3.5) this means in connection with monotonic decrease that it has 
to be positively semi-definite if ( )0 0Ω >  and therefore  

( ) ( ) ( ) ( ) ( ) ( )10 0,   0, 0 ,   0,u u u uΩ ≥ Ω ≥ Ω ≤ ≤ ≤ +∞ Ω → +∞ →       (3.10) 

and the theorem (3.9) takes on the form  

( ) ( ) ( ) ( ) ( )0
00 0

d 0 d ,   0 ,
u

u u g u ug u u
+∞

Ω = Ω ≤ < +∞∫ ∫             (3.11) 

where the extension to an upper boundary b → +∞  in (3.9) for ( ) 0f +∞ =  and in 
case of existence of the integral is unproblematic. 

If we insert in (3.9) for ( )g u  the function ( )ch uz  which apart from the real 
variable u  depends in parametrical way on the complex variable z  and is an analytic 
function of z  we find that 0u  depends on this complex parameter also in an analytic 
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way as follows  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )00

0 0 00 0

sh
d ch 0 d ch 0 ,   , i , ,

w z w z z
z u u uz u uz w z u x y v x y

z
+∞

Ξ ≡ Ω = Ω = Ω = +∫ ∫  (3.12) 

where ( ) ( ) ( )0 0 0i , i ,w x z u x y v x y+ = +  is an entire function with ( )0 ,u x y  its real and 
( )0 ,v x y  its imaginary part. The condition for zeros 0z ≠  is that ( )( )0sh w z z  

vanishes that leads to  

( ) ( ) ( )( )( ) ( )0 0 0, i , i i π,   0, 1, 2, ,w z z u x y v x y x y n n= + + = = ± ±        (3.13) 

or split in real and imaginary part  

( ) ( )0 0, , 0,u x y x v x y y− =                      (3.14) 

for the real part and  

( ) ( ) ( )0 0, , π, 0, 1, 2, ,u x y y v x y x n n+ = = ± ±               (3.15) 

for the imaginary part. 
The multi-valuedness of the mean-value functions in the conditions (3.13) or (3.15) 

is an interesting phenomenon which is connected with the periodicity of the function 
( ) ( )chg u uz=  on the imaginary axis iz y=  in our application (3.12) of the second 

mean-value theorem (3.11). To our knowledge this is up to now not well studied. We 
come back to this in the next Sections 4 and, in particular, Section 7 brings some 
illustrative clarity when we represent the mean-value functions graphically. At present 
we will say only that we can choose an arbitrary n  in (3.15) which provides us the 
whole spectrum of zeros 1 2, ,z z   on the upper half-plane and the corresponding 
spectrum of zeros 1 1 2 2, ,z z z z− −= − = −   on the lower half-plane of   which as will 
be later seen lie all on the imaginary axis. Since in computer calculations the values of  

the Arcus Sine function are provided in the region from π
2

−  to π
2

+  it is convenient  

to choose 0n =  but all other values of n  in (3.15) lead to equivalent results. 
One may represent the conditions (3.14) and (3.15) also in the following equivalent 

form  

( ) ( )0 02 2 2 2, π,   , π,y xu x y n v x y n
x y x y

= =
+ +

             (3.16) 

from which follows  

( ) ( )( )( ) ( ) ( )
( )

2 02 2 2 2
0 0

0

,
, , π , .

,
v x y xu x y v x y x y n
u x y y

+ + = =           (3.17) 

All these forms (3.14)-(3.17) are implicit equations with two variables ( ),x y  which 
cannot be resolved with respect to one variable (e.g., in forms ( )ky y x=  for each 
fixed n  and branches k ) and do not provide immediately the necessary conditions 
for zeros in explicit form but we can check that (3.16) satisfies the Cauchy-Riemann 
equations as a minimum requirement  

( ) ( ) ( ) ( )0 0 0 0, , , ,
, .

u x y v x y u x y v x y
x y y x

∂ ∂ ∂ ∂
= = −

∂ ∂ ∂ ∂
           (3.18) 
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We have to establish now closer relations between real and imaginary part ( )0 ,u x y  
and ( )0 ,v x y  of the complex mean-value parameter ( )0 iw z x y= + . The first step in 
preparation to this aim is the consideration of the derived conditions on the imaginary 
axis. 

4. Specialization of Second Mean-Value Theorem to Xi Function  
on Imaginary Axis 

By restriction to the real axis 0y =  we find from (3.3) for the function ( )zΞ   

( ) ( ) ( ),0 ,   ,0 0,x U x V xΞ = =                     (4.1) 

with the following two possible representations of ( ),0U x  related by partial in- 
tegration  

( ) ( ) ( ) ( ) ( ) ( )1

0 0

1,0 d ch d sh 0.U x u u ux u u ux
x

+∞ +∞
= Ω = − Ω >∫ ∫         (4.2) 

The inequality ( ),0 0U x >  follows according to the supposition ( ) ( )0, 0 0uΩ ≥ Ω >  
from the non-negativity of the integrand that means from ( ) ( )ch 0u uxΩ ≥ . Therefore, 
the case 0y =  can be excluded from the beginning in the further considerations for 
zeros of ( ),U x y  and ( ),V x y . 

We now restrict us to the imaginary axis 0x =  and find from (3.3) for the function 
( )zΞ   

( ) ( ) ( )i 0, ,   0, 0.y U y V yΞ = =                    (4.3) 

with the following two possible representations of ( )0,U y  related by partial in- 
tegration  

( ) ( ) ( ) ( ) ( ) ( )1

0 0

10, d cos d sin .U y u u uy u u uy
y

+∞ +∞
= Ω = − Ω∫ ∫          (4.4) 

From the obvious inequality  

( )1 cos 1,uy− ≤ ≤ +                         (4.5) 

together with the supposed positivity of ( )uΩ  one derives from the first repre- 
sentation of ( )0,U y  in (4) the inequality  

( ) ( ) ( )0 0 0 0
0, , 0,0 d 0.U y U u u

+∞
−Ω ≤ ≤ +Ω Ω = ≡ Ω ≥∫           (4.6) 

In the same way by the inequality  

( )1 sin 1,uy− ≤ ≤ +                         (4.7) 

one derives using the non-positivity of ( ) ( )1 uΩ  (see (3.10)) together with the second 
representation of ( )0,U y  in (4.4) the inequality  

( ) ( ) ( ) ( ) ( ) ( )1

0
0 0, 0 , 0 d 0.U y y u u

+∞
−Ω ≤ ≤ +Ω Ω = − Ω ≥∫            (4.8) 

which as it is easily seen does not depend on the sign of y . Therefore we have two 
non-negative parameters, the zeroth moment 0Ω  and the value ( )0Ω , which 
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according to (4.6) and (4.8) restrict the range of values of ( )0,U y  to an interior range 
both to (4.6) and to (4.8) at once. 

For mentioned purpose we now consider the restriction of the mean-value parameter 
( )0w z  to the imaginary axis iz y=  for which ( ) ( )( ) ( )ch i cosg u u y uy= =  is a real- 

valued function of y . For arbitrary fixed y  we find by the second mean-value 
theorem a parameter 0u  in the interval 0 y≤ < +∞  which naturally depends on the 
chosen value y  that means ( )0 0 0,u u y= . The extension from the imaginary axis 

iz y=  to the whole complex plane   can be made then using methods of complex 
analysis. We discuss some formal approaches to this in Appendix B. Now we apply 
(3.12) to the imaginary axis iz y= . 

The second mean-value theorem (3.12) on the imaginary axis iz y=  (or 0x = ) 
takes on the form  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( )
( )( ) ( ) ( )( )

0,0
0 0 0

0
0 0

d ch i d cos 0 d cos

sin 0,
0 ,  0, 0,   0, 0 .

u y
u u u y u u uy u uy

u y y
u y v y

y

+∞ +∞
Ω = Ω = Ω

= Ω ≠ =

∫ ∫ ∫    (4.9) 

As already said since the left-hand side is a real-valued function the right-hand side 
has also to be real-valued and the parameter function ( )0 iw y  is real-valued and there- 
fore it can only be the real part ( )0 0,u y  of the complex function  

( ) ( ) ( )0 0 0i , i ,w z x y u x y v x y= + = +  for 0x = . 
The second mean-value theorem states that ( )0 0,u y  lies between the minimal and 

maximal values of the integration borders that is here between 0 and +∞  and this 
means that ( )0 0,u y  should be positive. Here arises a problem which is connected 
with the periodicity of the function ( ) ( )cosg u uy=  as function of the variable u  for 
fixed variable y  in the application of the mean-value theorem. Let us first consider 
the special case 0y =  in (4.9) which leads to  

( ) ( ) ( ) ( ) ( ) ( )00
0 0 0 00 0 0

0
1

sin
d 0 d 0 0 lim ,   0,0 0.

u

y

u y
u u u u u u u

u y
+∞

→

=

Ω = Ω = Ω = Ω ≡ >∫ ∫


  (4.10) 

From this relation follows ( )0 0 0,0 0u u≡ >  and it seems that all is correct also with 
the continuation to ( )0 0, 0u y >  for arbitrary y . One may even give the approximate 
values ( )0 1.78679Ω ≈  and 0 0.27822u ≈  and therefore ( )0 00 0.49712uΩ ≡ Ω ≈  
which, however, are not of importance for the later proofs. If we now start from 

( )0 0,0 0u >  and continue it continuously to ( )0 0,u y  then we see that ( )0 0,u y  
goes monotonically to zero and approaches zero approximately at 1 14.135y y= ≈  
that is at the first zero of the function ( )iyΞ  on the positive imaginary axis and goes 
then first beyond zero and oscillates then with decreasing amplitude for increasing y  
around the value zero with intersecting it exactly at the zeros of ( )iyΞ . We try to 
illustrate this graphically in Section 7. All zeros lie then on the branch ( )0 0, πu y y n=  
with 0n = . That ( )0 0,u y  goes beyond zero seems to contradict the content of the 
second mean-value theorem according which ( )0 0,u y  has to be positive in our 
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application. Here comes into play the multi-valuedness of the mean-value function 
( )0 0,u y . For the zeros of ( )( )0sin 0,u y y  in (4.9) the relations ( )0 0, πu y y n=  with 

different integers n  are equivalent and one may find to values ( )0 0, 0u y <  
equivalent curves ( )0 ;0,u n y  with ( )0 ;0, 0u n y >  and all these curves begin with 

( )0 0;0,0u n ≠ →∞  for 0y → . However, we cannot continue ( )0 0,0u  in 
continuous way to only positive values for ( )0 0,u y . 

For y →∞  the inequality (4.8) is stronger than (4.6) and characterizes the restric- 
tions of ( )0,U y  and via the equivalence ( ) ( ) ( )( )00, 0 sin 0,U y y u y y= Ω  follows 
from (4.8)  

( ) ( )
( ) ( )0

0,1 1π 0, arcsin π, 0, 1, 2, ,
2 0 2

U y y
n u y y n n

    − ≤ = ≤ + = ± ±     Ω    


    (4.11) 

where the choice of n  determines a basis interval of the involved multi-valued 
function ( )arcsin z  and the inequality says that it is in every case possible to choose it 
from the same interval of length π . The zeros ky  of the Xi function ( )ix yΞ +  on 
the imaginary axis 0x =  (critical line) are determined alone by the (multi-valued) 
function ( )0 0,u y  whereas ( )0 0,v y  vanishes automatically on the imaginary axis in 
considered special case and does not add a second condition. Therefore, the zeros are 
the solutions of the conditions  

( ) ( ) ( )( )0 00, π, 0, 1, 2, , 0, 0 .u y y n n v y= = ± ± =             (4.12) 

It is, in general, not possible to obtain the zeros ky  on the critical line exactly from 
the mean-value function ( )0 0,u y  in (4.9) since generally we do not possess it ex- 
plicitly. 

In special cases the function ( )0 0,u y  can be calculated explicitly that is the case, for  

example, for all (modified) Bessel functions ( )2 I z
z

ν

ν
 
 
 

. The most simple case among 

these is the case 1
2

ν =  when the corresponding function ( )uΩ  is a step function  

( ) ( ) ( )00 ,u u uθΩ = Ω −                       (4.13) 

where ( )
0, 0
1, 0

x
x

x
θ

<
=  >

 is the Heaviside step function. In this case follows  

( ) ( ) ( ) ( ) ( ) ( ) ( )
1
2

00
0 0 1 00

0 0 20

sh
0 d ch 0 0 ,

2
u u z

z u uz u u I u z
u z u z

π

=Ω

 
Ξ = Ω = Ω = Ω  

 
∫



   (4.14) 

where ( ) ( )0 0
0 du u u

+∞
Ω = Ω∫  is the area under the function ( ) ( ) ( )00u u uθΩ = Ω −   

(or the zeroth-order moment of this function. For the squared modulus of the function 
( )zΞ  we find  

( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )
( )

2 2
* 2 20 0 0 0

2 2 2 2

sh ch 2 cos 2sin0 0 ,
2

u x u y u x u y
z z

x y x y
+ −

Ξ Ξ = Ω = Ω
+ +

 (4.15) 

from which, in particular, it is easy to see that this special function ( )ix yΞ +  possesses 
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zeros only on the imaginary axis iz y=  or 0x =  and that they are determined by  

( )0
0

ππ,     , 1, 2, .n n
nu y n y n
u

= ⇒ = = ± ±                  (4.16) 

The zeros on the imaginary axis are here equidistant but the solution 0 0y =  is 
absent since then also the denominators in (4.15) are vanishing. The parameter ( )0w z  
in the second mean-value theorem is here a real constant 0u  in the whole complex plane  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0 0i , i , , , 0, , , 0, 0.w x y u x y v x y u u x y u y u v x y v y+ = + = ⇒ = = = =  (4.17) 

Practically, the second mean-value theorem compares the result for an arbitrary 
function ( )uΩ  under the given restrictions with that for a step function  
( ) ( ) ( )00u u uθΩ = Ω −  by preserving the value ( )0Ω  and making the parameter 0u  

depending on z  in the whole complex plane. Without discussing now quantitative 
relations the formulae (4.17) suggest that ( )0 ,v x y  will stay a “small” function 
compared with ( )0 ,u x y  in the neighborhood of the imaginary axis (i.e. for x y ) 
in a certain sense. 

We will see in next Section that the function ( )0 0,u y  taking into account 
( )0 0, 0v y =  determines the functions ( )0 ,u x y  and ( )0 ,v x y  and thus ( )0w z  in 

the whole complex plane via the Cauchy-Riemann equations in an operational ap- 
proach that means in an integrated form which we did not found up to now in 
literature. The general formal part is again delegated to an Appendix B. 

5. Accomplishment of Proof for Zeros of Xi Functions on  
Imaginary Axis Alone 

In last Section we discussed the application of the second mean-value theorem to the 
function ( )zΞ  on the imaginary axis iz y= . Equations (3.14) and (3.15) or their 
equivalent forms (3.16) or (3.17) are not yet sufficient to derive conclusions about the 
position of the zeros on the imaginary axis in dependence on 0x ≠ . We have yet to 
derive more information about the mean-value functions ( )0w z  which we obtain by 
relating the real-valued function ( )0 ,u x y  and ( )0 ,v x y  to the function ( )0 ,u x y  
on the imaginary axis taking into account ( )0 0, 0v y = . 

The general case of complex z  can be obtained from the special case iz y=  in  

(4.9) by application of the displacement operator exp ix
y

 ∂
− ∂ 

 to the function ( )iyΞ   

according to  

( ) ( )

( ) ( )

( )
( )( )

( )
( ) ( )( )

( )

0

0

0

i exp i i exp i

exp i d ch i exp i

sh i 0,
exp i 0 exp i

i
sh 0, i i i

0 .
i i

x y x y x
y y

x u u uy x
y y

u y y
x x

y y y
u y x y x

y x

+∞

   ∂ ∂
Ξ + = − Ξ   ∂ ∂   

   ∂ ∂
= − Ω   ∂ ∂   

   ∂ ∂
= − Ω   ∂ ∂   

− −
= Ω

−

∫
         (5.1) 



A. Wünsche 
 

994 

The function ( ) ( ) ( ) ( )0 0 0 00, i i , i ,u y x w x y u x y v x y− = + = +  is related to ( )0 0,u y  
as follows  

( ) ( ) ( )0 0 0 0, cos 0, ,    ( , ) sin 0, ,u x y x u y v x y x u y
y y

   ∂ ∂
= = −   ∂ ∂   

       (5.2) 

or in more compact form  

( ) ( )0 0 0i exp i 0, (0, i ).w x y x u y u y x
y

 ∂
+ = − = − ∂ 

             (5.3) 

This is presented in Appendix B in more general form for additionally non- vanishing 
( )0 0,v y  and arbitrary holomorphic functions. It means that we may obtain ( )0 ,u x y   

and ( )0 ,v x y  by applying the operators cos x
y

 ∂
 ∂ 

 and sin x
y

 ∂
−  ∂ 

, respectively, to  

the function ( )0 0,u y  on the imaginary axis (remind ( )0 0, 0v y =  vanishes there in 
our case). Clearly, Equations (5.2) are in agreement with the Cauchy-Riemann eq-  

uations 0 0u v
x y

∂ ∂
=

∂ ∂
 and 0 0u v

y x
∂ ∂

= −
∂ ∂

 as a minimal requirement. 

We now write ( )zΞ  in the form equivalent to (5.1)  

( ) ( )
( ) ( )( )( )( )

( )
( ) ( )( ) ( ) ( )( )( )

0 0

0 0 0 0

sh , i , i
i 0

i

sh , , i , ,
0 .

i

u x y v x y x y
x y

x y

u x y x v x y y u x y y v x y x

x y

+ +
Ξ + = Ω

+

− + +
= Ω

+

   (5.4) 

The denominator ix y+  does not contribute to zeros. Since the Hyperbolic Sine 
possesses zeros only on the imaginary axis we see from (5.4) that we may expect zeros 
only for such related variables ( ),x y  which satisfy the necessary condition of 
vanishing of its real part of the argument that leads as we already know to (see (3.14))  

( ) ( )0 0, , 0.u x y x v x y y− =                        (5.5) 

The zeros with coordinates ( ),k kx y  themselves can be found then as the (in general 
non-degenerate) solutions of the following equation (see (3.15))  

( ) ( ) ( )0 0, , π,   0, 1, 2, ,u x y y v x y x n n+ = = ± ±                  (5.6) 

if these pairs ( ),x y  satisfy the necessary condition (5.5). Later we will see that it 
provides the whole spectrum of solutions for the zeros but we can also obtain each 
( ),k kx y  separately from one branch n  and would they then denote by ( ),n nx y . 
Thus we have first of all to look for such pairs ( ),x y  which satisfy the condition (5.5) 
off the imaginary axis that is for 0x ≠  since we know already that these functions may 
possess zeros on the imaginary axis iz y= . 

Using (5.2) we may represent the necessary condition (5.5) for the proof by the 
second mean-value theorem in the form  

( ) ( )0 0cos 0, sin 0, 0,x x u y y x u y
y y

   ∂ ∂
+ =   ∂ ∂   

                (5.7) 
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and Equation (5.6) which determines then the position of the zeros can be written with 
equivalent values n   

( ) ( ) ( )0 0cos 0, sin 0, π,  0, 1, 2, .y x u y x x u y n n
y y

   ∂ ∂
− = = ± ±   ∂ ∂   

      (5.8) 

We may represent Equations (5.7) and (5.8) in a simpler form using the following 
operational identities  

cos sin sin ,   cos sin cos ,x x y x x y y x x x x y
y y y y y y

           ∂ ∂ ∂ ∂ ∂ ∂
+ = − =           ∂ ∂ ∂ ∂ ∂ ∂           

 (5.9) 

which are a specialization of the operational identities (B.11) in Appendix B with 
( ) ( ) ( ), i , iw z u x y v x y z x y= + → = +  and therefore ( ) ( ), , ,u x y x v x y y→ → . If we 

multiply (5.7) and (5.8) both by the function ( )0 0,u y  then we may write (5.7) in the 
form (changing order ( ) ( )0 00, 0,yu y u y y= )  

( )( )0sin 0, 0,x u y y
y

 ∂
= ∂ 

                    (5.10) 

and (5.8) in the form  

( )( ) ( )0cos 0, π,  0, 1, 2, .x u y y n n
y

 ∂
= = ± ± ∂ 

             (5.11) 

The left-hand side of these conditions possess the general form for the extension of a 
holomorphic function ( ) ( ) ( )i , i ,W z x y U x y V x y≡ + = +  from the functions ( )0,U y  
and ( )0,V y  on the imaginary axis to the whole complex plane in case of ( )0, 0V y =  
and if we apply this to the function ( ) ( )00, 0,U y u y y= . Equations (5.10) and (5.11) 
possess now the most simple form, we found, to accomplish the proof for the exclusive 
position of zeros on the imaginary axis. All information about the zeros of the Xi 
function ( ) ( ) ( ), i ,z U x y V x yΞ = +  for arbitrary x  is now contained in the 
conditions (5.10) and (5.11) which we now discuss. 

Since cos x
y

 ∂
 ∂ 

 is a nonsingular operator we can multiply both sides of equation 

(5.11) by the inverse operator 1cos x
y

−  ∂
 ∂ 

 and obtain  

( ) ( )
2

1
0

10, π 1 π π,   0, 1, .cos
2

u y y x n x n n n
y y

−
    ∂ ∂ = = + + = = ±    ∂ ∂     

     (5.12) 

This equation is yet fully equivalent to (5.11) for arbitrary x  but it provides only the 
same possible solutions for the values y  of zeros as for zeros on the imaginary axis. 
This alone already suggests that it cannot be that zeros with 0x ≠  if they exist possess 
the same values of y  as the zeros on the imaginary axis. But in such form the proof of 
the impossibility of zeros off the imaginary axis seemed to be not satisfactory and we 
present in the following some slightly different variants which go deeper into the details 
of the proof. 
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In analogous way by multiplication of (5.10) with the operator sin x
y

 ∂
 ∂ 

 and 

(5.11) with the operator cos x
y

 ∂
 ∂ 

 and addition of both equations we also obtain  

condition (5.12) that means  

( ) ( ) ( )2 2
0 00, 0, π,   0, 1, 2, ,sin cosu y y x x u y y n n

y y
    ∂ ∂ = + = = ± ±    ∂ ∂     

    (5.13) 

The equal conditions (5.12) and (5.13) which are identical with the condition for 
zeros on the imaginary axis are a necessary condition for all zeros. For each chosen 
equivalent n  (remind ( )0 0,u y  depends then on n  which we do not mention by 
the notation) one obtains an infinite series of solutions ky  for the zeros of the 
function ( )iyΞ   

( ) ( )0 00, π,    { 0, } π,k k y yk
u y y n u y y n≠= ≠                 (5.14) 

whereas for ky y≠  Equation (5.12), by definition of ky , is not satisfied. Supposing 
that we know ( )0 0,u y  that is as a rule not the case, we could solve for each  

0, 1, 2,n = ± ±   the usually transcendental Equation (5.13) graphically, for example, by 
drawing the equivalent functions ( )0 0,u y y  over variable y  as abscissa and looking 
for the intersections points with the lines πn  over y  (Section 7). These intersection 
points ky y=  are the solutions for zeros ky  on the imaginary axis. Choosing 0x =  
the condition (5.10) is identically satisfied that, however, is not the case for 0x ≠  in 
general. 

Now we have to look for zeros ( ), kx y  in case 0x ≠  by an additional independent 
condition in comparison to (5.13). Whereas for zeros with 0x =  the condition (5.10) 
is identically satisfied we have to examine this condition for zeros with 0x ≠ . In the 
case of 0x ≠  we may divide both sides of the condition (5.10) by x  and obtain  

( )( ) ( )( )0 0

sin sin
0, 0, 0.

x x
y y

u y y u y y
x yx

y

   ∂ ∂
   ∂ ∂ ∂   = =

∂ ∂
∂

          (5.15) 

Since 
sin x

y

x
y

 ∂
 ∂ 
∂
∂

 is a nonsingular operator (in contrast to sin x
y

 ∂
 ∂ 

 which pos-  

sesses 0 as eigenvalue to eigenfunction  
( ) ( ) ( ) ( )1 2, const const , 0,1,nf x y x x f y nδ= + =   ( )f y  arbitrary) we may multiply  

Equation (5.15) by the inverse operator 
sin

x
y

x
y

∂
∂

 ∂
 ∂ 

 and obtain  

( )( ) ( ) ( )0
0 00, 0, 0, 0.

u
u y y y y u y

y y
∂∂

= + =
∂ ∂

               (5.16) 
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This condition has also to be satisfied for the solution ky y=  of (5.12) in case of 
0x ≠  that means  

( ) ( ) ( ) ( )0 0
0

π0, 0, 0, 0,   0, 1, 2, .k k k kk
k

u u ny u y y y n
y y y

∂ ∂
+ = + = = ± ±

∂ ∂
     (5.17) 

Both conditions (5.13) and (5.16) taken together mean that a corresponding zero ky  
must possess a twofold degeneration. 

From condition (5.11) combined with (5.10) follows by Taylor series expansion with  

respect to x
y
∂
∂

 for arbitrary complex λ   

( )( )

( ) ( ) ( )( ) ( )( ) ( ) ( )( )

0

2 2 2 1 2 1

0 0 0 02 2 1
1 1

π cos sin 0,

0, 0, 0, 0, ,
2 ! 2 1 !

l l l l

l l
l l

n x x u y y
y y

x xu y y u y y x u y y u y y
l y ly y

λ

λ
+ +∞ ∞

+
= =

    ∂ ∂
= +    ∂ ∂    

 ∂ ∂ ∂
= + + +  ∂ +∂ ∂ 

∑ ∑
  (5.18) 

and the independence of the left-hand side of x  for arbitrary complex λ  requires  

vanishing of the coefficients ( )( )0 0,
m

m u y y
y
∂
∂

 for 1m ≥  for solutions ky y= . Let us  

assume  

( )( ) ( )0 0, 0,   1 .
m

m
y yk

u y y m
y =

 ∂
= ≥ 

∂ 
                  (5.19) 

From the Taylor series expansion of the function ( )0 0,u y y  in the neighborhood of 
a solution ky y=  follows then  

( ) ( ) ( )( ) ( )0 0 0
1

10, 0, 0, π.
!

m
m

k k km
m y yk

u y y u y y u y y y y n
m y

∞

= =

 ∂
= + − = 

∂ 
∑      (5.20) 

Thus using (5.19) we can find zeros for 0x ≠  that means off the imaginary axis if 
the mean-value function ( )0 0,u y  possesses the form  

( ) ( ) ( )0 0
π0, π, 0, , 0, 1, 2, ,nu y y n u y n
y

= ⇔ = = ± ±              (5.21) 

for a certain integer n . According to (5.2) the whole mean-value functions ( )0 ,u x y  
and ( )0 ,v x y  are then  

( )0

2 2

π π 1, cos exp i exp i
2

π 1 1 π ,
2 i i

n nu x y x x x
y y y y y

n yn
y x y x x y

      ∂ ∂ ∂ = = + −      ∂ ∂ ∂       
 

= + = + − + 

      (5.22) 

( )0

2 2

π π 1, sin exp i exp i
i2

π 1 1 π ,
i2 i i

k nv x y x x x
y y y y y

n xn
y x y x x y

      ∂ ∂ ∂ = − = − − −      ∂ ∂ ∂       
 

= − − = + − + 
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or in compact form  

( ) ( ) ( ) ( )0 0 0 02 2

i π π, i , π i i ,     i π.
i

y x n nw z u x y v x y n w z z n
x y zx y

+
= + = = = ⇔ =

++
 (5.23) 

If we insert ( )0 i πw z z n=  into Equation (3.12) then we get ( ) 0zΞ =  for all z  
and 0, 1, 2,n = ± ±  . This means that all conditions for zeros with 0x ≠  together do 
not lead to a solution for certain ( ) 0zΞ ≠ . Under the assumption (5.19) we have 
proved that all zeros of Xi functions ( )zΞ  lie on the imaginary axis 0x = . 

For an alternative proof let us now solve the two Equations (5.15) and (5.11) directly 
and to show in this way the impossibility of zeros for 0x ≠ . To solve these equations 
we make a Fourier decomposition of the function ( ) ( )0 0,f y u y y≡  as follows  

( ) ( ) ( ) ( )( )i i
0 0

10, d e , d 0, e .
2

py pyu y y pf p f p y u y y
π

+∞ +∞ −

−∞ −∞
≡ =∫ ∫         (5.24) 

Then (5.15) takes on the form  

( )( ) ( ) ( ) i
0

sin
sh10, d e 0,

2π
py

x
pxy

u y y p f p
x x

+∞

−∞

 ∂
 ∂  = =∫           (5.25) 

that due to the uniqueness of the Fourier decomposition of a function in a Fourier 
integral is only possible if  

( ) ( )
sh

0,
px

f p
x

=                           (5.26) 

as a necessary condition. Nontrivial solutions of this equation for ( )f p  are only  

possible for such p  for which 
( )sh px
x

 vanishes that means for  

( )i π,   1, 2,px n n= = ± ±   and where ( )f p  is then proportional to a delta function. 
Thus the general solution of (5.26) possesses the following form of a generalized 
function (the prime at the sum means that the term to 0m =  is absent)  

( ) π' i ,m
m

f p a p m
x

δ
+∞

=−∞

 = − 
 

∑                       (5.27) 

with complex numbers *
m ma a−=  as amplitudes. As remark we mention that de- 

rivatives of delta functions we do not have to include in this solution since all zeros of 
( )sin px  are simple zeros and, furthermore, that ( )f p  is a generalized analytic 

function (also called analytical functional) with the possible extension of the variable 
p  to the whole complex plane. 

The inverse Fourier transformation of ( )f p  according to (5.27) provides  

( )0
1 π0, ' exp .

2π m
m

yu y y a m
x

+∞

=−∞

 = − 
 

∑                   (5.28) 

Already this form excludes (5.28) as a possible solution for ( )0 0,u y y  which does 
not have to depend on variable x  with exception of the case 0, 0y x= ≠  which we 
already could exclude as possible case for zeros (see beginning of Section 4). In addition, 
we will show that it is not compatible with the general solution of (5.11) which 
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determines the position of the zeros and which with the Fourier decomposition (5.24) 
takes on the form  

( )( ) ( ) ( )

( ) ( )

i
0

i

1cos 0, d ch e
2π

π d e , 0, 1, 2, .

py

py

x u y y p px f p
y

n p p nδ

+∞

−∞

+∞

−∞

 ∂
= ∂ 

= = ± ±

∫

∫





         (5.29) 

It leads to the following equation for the Fourier coefficients ( )f p   

( ) ( ) ( ) ( )ch π2π ,   = 0, 1, 2, ,px f p n p nδ= ± ±

               (5.30) 

with the general solution (analogously to (5.27))  

( ) ( ) ( )1 ππ2π i ,   0, 1, 2, ,
2l

l
f p n p b p l n

x
δ δ

+∞

=−∞

  = + − + = ± ±  
  

∑

       (5.31) 

with arbitrary coefficients *
1l lb b− −= . The inversion of this solution is  

( ) ( ) ( )0
1 1 π0, π exp , 0, 1, 2, .

2π 2l
l

yf y u y y n b l n
x

+∞

=−∞

  ≡ = + − + = ± ±  
  

∑     (5.32) 

which for 0x ≠  is only possible if all coefficients ma  and lb  are vanishing. 
The two general solutions (5.28) and (5.32) of the two Equations (5.15) and (5.11) for 
( )0 0,yu y , the first for the case 0x ≠  only, are incompatible for any choice of the 

coefficients ma  and lb  with the only exception of 0y =  that means on the real axis 
where the exponential functions in (5.28) and (5.32) become constant functions. How- 
ever, the case 0y =  for arbitrary 0x ≠  could be excluded from the beginning 
according to (4.2) as a consequence of the positive (semi-)definiteness of the function 
( )uΩ  by supposition. 
We have now finally proved that all Xi functions ( )zΞ  of the form (3.1) for which 

the second mean-value theorem is applicable (function ( )uΩ  positively semi-definite 
and non-increasing) may possess zeros only on the imaginary axis. The decisive dif- 
ference for possible zeros on and off the imaginary axis in the approach by the second 
mean-value theorem was that we have to satisfy in general case two independent 
real-valued conditions from which one in case of the imaginary axis and only there is 
automatically satisfied for the whole imaginary axis and not only for the zeros on it. 

6. Some Consequences from Proof of the Riemann Hypothesis 

The given proof for zeros only on the imaginary axis 0x =  for the considered Xi 
function ( ) ( )iz x yΞ = Ξ +  includes as special case the function ( )uΩ  to the Rie- 
mann hypothesis which is given in (2.26). However, it includes also the whole class of 
modified Bessel functions of imaginary argument ( )I zν  which possess zeros only on 
the imaginary axis and if we make the substitution iz z↔  also the usual Bessel 
function ( )J zν  which possess zeros only on the real axis. 

We may ask about possible degeneracies of the zeros of the Xi functions ( )zΞ  on 
the imaginary axis iz y= . Our proof does not give a recipe to see whether such 
degeneracies are possible or not. In case of the Riemann zeta function  
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( ) ( ) ( )z s sξ ζΞ ↔ ↔  one cannot expect a degeneracy because the countable number 
of all nontrivial zeros are (likely) irrational (transcendental?, proof?) numbers but we 
do not know a proof for this. 

For ( )zΞ  as an entire function one may pose the question of its factorization with  

factors of the form 1
n

z
z

−  where nz  goes through all roots where in case of de-  

generacy the same factors are taken multiple times according to the degeneracy. It is 
well known that an entire function using its ordered zeros ( )1,n n nz z z +≤  can be 
represented in Weierstrass product form multiplied by an exponential function ( )eh z  
with an entire function function ( )h z  in the exponent with the result that ( )eh z  is an 
entire function without zeros. This possesses the form (e.g., [15])  

( ) ( )e 1 exp ,h z m
kn

n n n

z zz z P
z z

    
Ξ = −          

∏                  (6.1) 

with a polynomial ( )kP w  of degree k  which depending on the roots nz  must be 
appropriately chosen to guarantee the convergence of the product. This polynomial is 
defined by first k  sum terms in the Taylor series for ( )log 1 w− − 4  

( ) ( )
2 3

1
log 1 .

2 3

k l

k
l k

w w w wP w w w
k l

∞

= +

≡ + + + + = − − − ∑           (6.2) 

By means of these polynomials the Weierstrass factors are defined as the functions  

( ) ( ) ( )( )1 exp ,k kE w w P w≡ −                      (6.3) 

from which follows  

( )( ) ( ) ( )
1 1

log log 1 log 1 .
l l

k
l k l k

w wE w w w
l l

∞ ∞

= + = +

 
= − − − + = − 

 
∑ ∑         (6.4) 

From this form it is seen that ( )kE w  possesses the following initial terms of the 
Taylor series  

( ) ( )
1

1
1 exp 1 ,

1

l k

k
l k

w wE w w
l k

+∞

= +

 
= − − = − +  + 

∑               (6.5) 

and is a function with a zero at 1w =  but with a Taylor series expansion which begins  

with the terms 
1

1
1

kw
k

+

−
+

. 

Hadamard made a precision of the Weierstrass product form by connecting the 
degree nk  of the polynomials in (6.1) with the order ρ  of growth of the entire 
function and showed that nk  can be chosen independently of the n -th root nz  by 

1nk k ρ→ ≥ − . The order of ( )zΞ  which is equal to 1 is not a strict order 1ρ =  (for 
this last notion see [15]). However, this does not play a role in the Hadamard product 
representation of ( )zΞ  and the polynomials ( )

nkP w  in (6.1) can be chosen as 
( )0P w  that means equal to 0 according to 1nk k ρ= = − . The entire function ( )h z  

 

 

4Sometimes our ( )1kP w−  is denoted by ( )kP w . 
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in the exponent in (6.1) can be only a constant since in other case it would introduce a 
higher growth of ( )zΞ . Thus the product representation of ( )zΞ  possesses the form  

( ) ( ) ( )

( ) ( )

2

20
1

2

0 02 0
1

0 1 d 1

11 ,   0 d 0.49712 ,
2

n
nn n

n n

z zz u u
z z

z u u
y

ξ

+∞+∞+∞

=−∞
=

+∞ +∞

=

  ′Ξ = Ξ − = Ω −  
   

   = Ω + Ξ = Ω ≡ Ω = =   
  

∏ ∏∫

∏ ∫ 

     (6.6) 

where we took into account the symmetry ( )*n n nz z z− = − =  of the zeros and the proof 
in nz y=  that all zeros lie on the imaginary axis and a zero 0 0z =  is absent. With 0Ω  

we denoted the first moment of the function ( )uΩ . 
Formula (6.6) in connection with his hypothesis was already used by Riemann in [1] 

and later proved by von Mangoldt where the product representation of entire functions 
by Weierstrass which was later stated more precisely by Hadamard plays a role. There is 
another formula for an approximation to the number of nontrivial zeros of ( )sζ  or 
( )sξ  which in application to the number of zeros ( )N Y  of ( )zΞ  on the imaginary 

axis iz y=  in the interval between 0y =  and y Y= . It takes on the form ( Y  for 
( )zΞ  is equivalent to usual T  for ( )sζ )  

( ) ( ) ( )
0
d log , 0 ,

2π 2π 2π
Y Y Y YN Y y y Yν  = ≈ − 

 ∫               (6.7) 

with the logarithmically growing density  

( ) ( )1 log , 1 .
2π 2π

yy yν  ≈  
 

                     (6.8) 

As long as the Riemann hypothesis was not proved it was formulated for the critical 
strip 0 1σ≤ ≤  of the complex coordinate is tσ= +  in ( )sξ  parallel to the 
imaginary axis and with t  between 0t =  and t T=  (with T  equal to our Y  in 
(6.7)). It was already suggested by Riemann [1] but not proved in detail there and was 
later proved by von Mangoldt in 1905. A detailed proof by means of the argument 
principle can be found in [12]. It seems that from our approach also follows a simple 
proof. The result of Hardy (1914) (cited in [5]) that there exist an infinite number of 
zeros on the critical line is a step to the full proof of the Riemann hypothesis. Section 4 
of present article may be considered as involving such proof of this last statement. 

We have now proved that functions ( )zΞ  defined by integrals of the form (3.1) 
with non-increasing functions ( )uΩ  which decrease in infinity sufficiently rapidly in 
a way that ( )zΞ  becomes an entire function of z  possess zeros only on the im- 
aginary axis iz y= . As already said this did not provide a recipe to see in which cases 
all zeros on the imaginary axis are simple zeros but it is unlikely that within a countable 
sequence of (pseudo-) randomly chosen real numbers (the zeros) two of them are 
coincident (it seems to be difficult to formulate last statement in a more rigorous way). 
It also did not provide a direct formula for the number of zeros in an interval 
( ) ( )0,0 , 0,Y    from zero to Y  on the imaginary axis or of its density there but, as 

mentioned, Riemann [1] suggested for this an approximate formula and von Mangoldt 
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proved it 
The proof of the Riemann hypothesis is included as the special case (2.26) of the 

function ( )uΩ  into a wider class of functions with an integral representation of the 
form (3.1) which under the discussed necessary conditions allowing the application of 
the second mean-value theorem of calculus possess zeros only on the imaginary axis. 
The equivalent forms (2.35) and (2.36) of the integral (3.1) where the functions, for 
example ( ) ( )1 uΩ , are no more generally non-increasing suggest that conditions for 
zeros only on the imaginary axis are existent for more general cases than such 
prescribed here by the second mean-value theorem. A certain difference may happen 
then, for example, for 0z =  because powers of it are in the denominators in the 
representations in (2.36). 

7. Graphical Illustration of Mean-Value Parameters to Xi  
Function for the Riemann Hypothesis 

To get an imagination how the mean-value function ( ) ( )0 0 iw z w x y= +  looks like we 
calculate it for the imaginary axis and for the real axis for the case of the function 
( )uΩ  in (2.26) that is possible numerically. From the two equations for general z  

and for 0z =   

( )
( )( ) ( ) ( ) ( ) ( ) ( )0

00 0

sh
0 d ch , 0 0 d ,

w z z
u u uz w u u

z
+∞ +∞

Ω = Ω Ω = Ω∫ ∫       (7.1) 

follows  

( ) ( ) ( ) ( )

( ) ( ) ( )

0 0

0 0

1 Arsh d ch ,   
0

10 d ,
0

zw z u u uz
z

w u u

+∞

+∞

 
= Ω  Ω 

= Ω
Ω

∫

∫
                (7.2) 

with the two initial terms of the Taylor series  

( ) ( ) ( ) ( ) ( ) ( ) ( )
3

0 0 0

1 1d ch d ch ,
0 6 0

z zw z u u uz u u uz
z

+∞ +∞
   = Ω − Ω +   Ω Ω   

∫ ∫ 
    (7.3) 

and with the two initial terms of the asymptotic series  

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

0 0 0

1 1log 2 d ch d ch .
0 4 0

z zw z u u uz u u uz
z

−
+∞ +∞

     = Ω + Ω +       Ω Ω     
∫ ∫ 

  (7.4) 

From (7.2) follows  

( )
( )

( )
( ) ( ) ( ) ( )0

0
0

0

0
Arsh d ch .

0 0d

w z z u u uz
w z u u

+∞

+∞

 Ω
= Ω  ΩΩ  

∫
∫

            (7.5) 

This can be numerically calculated from the explicit form (2.26) of ( )uΩ . For  

0y =  and for 0x =  (and only for these cases) the function 
( )
( )

0

0 0
w z
w

 is real-valued, in  
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particular, for 0y =   

( )
( )

( )
( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )

( )
( )

0
0

0
0

2
0

0

0

0

0

0
Arsh d ch

0 0d

d ch 11 d ch
6 ( )d

,0
,

0,0

w x x u u ux
w x u u

u u ux x u u ux
uu u

u x
u

+∞

+∞

+∞
+∞

+∞

 Ω
= Ω  ΩΩ  

 Ω   = − Ω +  Ω Ω   

=

∫
∫

∫
∫

∫


      (7.6) 

and for 0x =   

( )
( )

( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( )
( )

0
0

0
0

2

0
0

0

0

0

i 0
arcsin d cos

0 0d

d cos 11 d cos
6d

0,
,

0,0

w y y u u uy
w y u u

u u uy y u u uy
uu u

u y
u

+∞

+∞

+∞
+∞

+∞

 Ω
= Ω  ΩΩ  

 Ω   = + Ω +   ΩΩ    

=

∫
∫

∫
∫

∫


    (7.7) 

where we applied the first two terms of the Taylor series expansion of ( )arcsin x  in 
powers of x . A small problem is here that we get the value for this multi-valued  

function in the range ( )π πarcsin
2 2

x− ≤ ≤ + . Since ( )1arcsin x
x

 is an even function  

with only positive coefficients in its Taylor series the term in braces is in every case 
positive that becomes important below. 

The two curves which we get for 
( )
( )

0

0 0
w x
w

 and for 
( )
( )

0

0

i
0

w y
w

 are shown in Figure 4.  

The function for ( )0 ,0w x  on the real axis 0y =  (second partial picture) is not very 
exciting. The necessary condition ( )0 ,0 0xu x =  (see (5.5)) can be satisfied only for  

0x =  but it is easily to see from ( ) ( )
0

0 d 1.7868 0u u
+∞

Ξ = Ω ≈ ≠∫  that there is no zero.  
For the function ( )0 0,w y  on the imaginary axis 0x =  the necessary condition 

( )0 0, 0yv y =  (see (5.5)) is trivially satisfied since ( )0 0, 0v y =  and does not restrict 
the solutions for zeros. In this case only the sufficient condition  

( ) ( )0 0, π, 0, 1, 2,yyu y n n= = ± ±   determines the position of the zeros on the im- 
aginary axis. The first two pairs of zeros are at 1 214.135, 21.022y y≈ ± ≈ ±  and the 
reason that we do not see them in Figure 4 is the rapid decrease of the function 

( )0 0,u y  with increasing y . If we enlarge this range we see that the curve goes 
beyond the y -axis after the first root at 14.135 of the Xi function. As a surprise for the 
second mean-value method we see that the parameter ( )0 0,u y  becomes oscillating 
around this axis. This means that the roots which are generally determined by the 
equation ( )0 0, πyu y n=  (see (5.6)) are determined here by the value 0n =  alone. 
The reason for this is the multi-valuedness of the ArcSine function according to  

( ) ( ) ( ) ( )π πarcsin π 1 arcsin ,   1 1,   arcsin ,   .
2 2

nx n x x x n ≅ + − − ≤ ≤ + − ≤ ≤ + ∈ 
 

  (7.8) 
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Figure 4. Mean value parameters ( ) ( )0 0i 0,w y u y=  and ( ) ( )0 0 ,0w x u x=  for the Xi 

function in the proof of the Riemann hypothesis. It is not to see in the chosen scale 
that the curve ( )0 0,u y  goes beyond the y -axis and oscillates around it due to 

extremely rapid vanishing of the envelope of ( )0 0,u y  with increasing y  but we do 

not resolves this here by additional graphics because this behavior is better to see in 
the case of modified Bessel functions intended to present in future. Using (7.2) we 
calculate numerically ( ) ( )0 00 0,0 0.27822w u= ≈  that is the value which we call the 

optimal value for the moment series expansion. The part in the second partial figure 
which at the first glance looks like a straight line as asymptote is not such. 

 
If we choose the values for the ( )arcsin x -function not in the basic interval  
π π
2 2

x− ≤ ≤ +  for which the Taylor series provides the values but from other equivalent  

intervals according to (7.8) we get other curves for ( )0 0,u y  and ( )0 0,yu y  from 
which we also may determine the zeros (see Figure 5), however, with other values n   
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Figure 5. Mean value parameters in the proof of the Riemann hypothesis. On the left-hand side 

there are shown the mean value parameters 
( )
( )

( )
( )

0 0

0

i 0,
0 0,0

w y u y
w u

=  for the Xi function to the 

Riemann hypothesis if we do not take the values of the function ( )arcsin t  in the basic range 

π π
2 2

t− ≤ ≤  but in equivalent ranges according to (7.8). On the right-hand side are shown the 

corresponding functions ( )0 0,u y y  which according to ( ) ( ) ( )cos π 1 sinnx n x+ = −  and the 

condition for zeros ( )( )0cos 0, 0u y y =  lead to equivalent ranges  

( ) ( ) ( ) ( )0 0π 0, 0, π π, 1, 2, ; 0, 1, 2,k u y y u y y n k n k n= ≅ + = + = ± ± = ± ±   (see (4.12)) determine 

the zeros of the Xi function on the imaginary axis. We see that the multi-valuedness of the 
( )arcsin x  function does not spoil a unique result for the zeros because every branch find the 

corresponding n  of πn  where then all zeros lie. Due to extremely rapid decrease of the 
function ( )0 0,u y  with increasing y  this is difficult to see (position of first three zero at 

1 2 314.1, 21.0, 25.0y y y≈ ≈ ≈  is shown) but if we separate small intervals of y  and enlarge the 

range of values for ( )0 0,y y  this becomes visible (similar as in Figure 3). We do not make this 

here because this effect is better visible for the modified Bessel functions which we intend to 
consider at another place. 
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in the relation ( ) ( )0 0, π, 0, 1, 2,yu y n n= = ± ±   and the results are invariant with 
respect to the multi-valuedness. This is better to see in case of the modified Bessel 
functions for which the curves vanish less rapidly with increasing y  as we intend to 
show at another place. All these considerations do not touch the proof of the non- 
existence of roots off the imaginary axis but should serve only for better understanding 
of the involved functions. It seems that the specific phenomenons of the second 
mean-value theorem (3.9) if the functions ( )g u  there are oscillating functions (re- 
mind, only continuity is required) are not yet well illustrated in detail. 

We now derive a few general properties of the function ( )0 0,u y  which can be seen 
in the Figures. From (4.9) written in the form and by Taylor series expansion according 
to  

( ) ( ) ( ) ( )
( )( )

( ) ( ) ( ) ( )( )
2

20
0 0 00

0

sin 0,
d cos 0 0, 0 0, 1 0, ,

0, 6
u y y yu u uy u y u y u y

u y y
+∞  

Ω = Ω = Ω − + 
 

∫   (7.9) 

follows from the even symmetry of the left-hand side that ( )0 0,u y  also has to be a  

function of the variable y  with even symmetry (notation 
( ) ( ) ( )0

0

0,
0,

n
n

n

u y
u y

y
∂

≡
∂

)  

( ) ( )0 00, 0, ,u y u y= + −                         (7.10) 

with the consequence  

( ) ( )
( ) ( )
( )

( ) ( )
2

2 10 2
0 0 0

1

0,0
0, 0,0 ,   0,0 0.

2 !

m
mm

m

u
u y u y u

m

∞
+

=

= + =∑           (7.11) 

Concretely, we obtain by n -fold differentiation of both sides of (7.9) at 0y =  for 
the first coefficients of the Taylor series  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

1
0 00

322
0 00

d 0 0,0 ,0 0 0,0 ,

1d 0 0,0 0,0 ,
3

u u u u

u u u u u

+∞

+∞

Ω = Ω = Ω

 − Ω = Ω − 
 

∫

∫
             (7.12) 

from which follows  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1
0 00

3
2 2

0 0 0

0 0

10,0 d , 0,0 0,
0

1 1 10,0 d d .
0 3 0

u u u u

u u u u u u

+∞

+∞ +∞

< >

= Ω =
Ω

 
= − Ω + Ω  Ω Ω 

∫

∫ ∫




          (7.13) 

Since the first sum term on the right-hand side is negative and the second is positive 
it depends from their values whether or not ( ) ( )2

0 0,0u  possesses a positive or negative 
value. For the special function ( )uΩ  in (2.26) which plays a role in the Riemann 
hypothesis we find approximately  

( ) ( )

( ) ( ) ( ) ( )

2
0 20 0

2
0 0

d 0.497121,   2! d 0.0229719,

0 1.78679,   0,0 0.278220,   0,0 0.00567784,

u u u u u

u u

+∞ +∞
Ω ≡ Ω ≈ Ω ≡ Ω ≈

Ω ≈ ≈ ≈ −

∫ ∫        (7.14) 
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meaning that the second coefficient in the expansion of ( )0 0,u y  in a Taylor series in 
powers of y  is negative that can be seen in the first part of Figure 4. However, as we 
have seen the proof of the Riemann hypothesis is by no means critically connected with 
some numerical values. 

In principle, the proof of the Riemann hypothesis is accomplished now and 
illustrated and we will stop here. However, for a deeper understanding of the proof it 
would be favorable to consider some aspects of the proof such as, for example, 
analogues to other functions with a representation of the form (3.1) and with zeros only 
on the imaginary axis and some other approaches although they did not lead to the full 
proof that, however, we cannot make here. 

8. Equivalent Formulations of the Main Theorems in a Summary 

In present article we proved the following main result 
Theorem 1: 
Let ( )uΩ  be a real-valued function of variable u  in the interval 0 u≤ < +∞  

which is positive semi-definite in this interval and non-increasing and is rapidly 
vanishing in infinity, more rapidly than any exponential function ( )exp uλ− , that 
means  

( ) ( ) ( ) ( ) ( )
( ) ( )10, 0, 0 , lim 0, .

expu

u
u u u

u
λ

λ
+

→∞

Ω
Ω ≥ Ω ≤ ≤ < +∞ = ∈

−
       (8.1) 

Then the following integral with arbitrary complex parameter iz x y= +   

( ) ( ) ( ) ( )
0

d ch ,   ,z u u uz z
+∞

Ξ = Ω ∈∫                   (8.2) 

is an entire function of z  with possible zeros 0 0 0iz z x y= = +  only on the imaginary 
axis 0x =  that means  

( ) ( )0 0 0 00,     i ,   or  0 .z z y xΞ = ⇒ = =                 (8.3) 

Proof: 
The proof of this theorem for non-increasing functions ( )uΩ  takes on Sections 3-5 

of this article. The function ( )uΩ  in (2.26) satisfies these conditions and thus 
provides a proof of the Riemann hypothesis.  

Remark: 
An analogous theorem is obviously true by substituting in (8.2) ( ) ( )ch cosu u↔  

and by interchanging the role of the imaginary and of the real axis y x↔ . 
Furthermore, a similar theorem with a few peculiarities (e.g., degeneracy) is true for 
substituting ( )ch uz  in (8.2) by ( )sh uz . 

Theorem 1 can be formulated in some equivalent ways which lead to interesting 
consequences5. The Mellin transformation ( )f̂ s  of an arbitrary function ( )f t  
together with its inversion is defined by [32] [33] [34]  

 

 

5Some of these equivalences now formulated as consequences originate from trials to prove the Riemann hy-
pothesis in other way. 
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( ) ( ) ( ) ( )i1
0 i

1ˆ ˆ= d ,   = d ,
i2π

cs s
c

f s tf t t f t sf s t
+∞ + ∞− −

− ∞∫ ∫                (8.4) 

where the real value c  has only to lie in the convergence strip for the definition of 
( )f̂ s  by the integral. Formula (8.2) is an integral transform of the function ( )ch z  

and can be considered as the application of an integral operator to the function ( )ch z  
which using the Mellin transform ( )ˆ sΩ  of the function ( )uΩ  can be written in the 
following convenient form  

( ) ( )ˆ ch .z z z
z
∂ Ξ = Ω ∂ 

                          (8.5) 

This is due to  

( ) ( ) ( ) ( ) ( ) ( )
1

0 0 0
d ch d ch d ch ,

z z
z zu u uz u u u z u u u z
∂ ∂

−+∞ +∞ +∞
∂ ∂Ω = Ω = Ω∫ ∫ ∫      (8.6) 

where 
z

zu
∂
∂  is the operator of multiplication of the argument of an arbitrary function  

( )g z  by the number u , i.e. it transforms as follows  

( ) ( ) ( ) ,
z

zg z g uz u g z
∂
∂→ =                        (8.7) 

according to the following chain of conclusions starting from the property that all  

functions ( ), 0,1, 2,nz n =   are eigenfunctions of z
z
∂
∂

 to eigenvalue n   

( ) ( )

( ) ( ) ( ) ( )

,     ,     exp e ,

  exp e ,     ,   (e ).

nn n n n n

z
z

z z nz f z z f n z z z z
z z z

z g z g z u g z g uz u
z

λ

λ λ

λ

λ
∂
∂

∂ ∂ ∂     = ⇒ = ⇒ =     ∂ ∂ ∂     

∂ ⇒ = ⇒ = ≡ ∂ 

  (8.8) 

This chain is almost obvious and does not need more explanations. The operators  
z

zu
∂
∂  are linear operators in linear spaces depending on the considered set of numbers  

u . 
Expressed by real variables ( ),x y  and by  

*

1 1, i , i
2 2z x y x yz

    ∂ ∂ ∂ ∂ ∂ ∂  = − +     ∂ ∂ ∂ ∂ ∂∂      
 we find from (8.5)  

( ) ( )1 iˆi = 1 ch i .
2 2

x y x y y x x y
x y x y

    ∂ ∂ ∂ ∂ Ξ + Ω + + + − +    ∂ ∂ ∂ ∂     
        (8.9) 

From this formula follows that ( )iyΞ  may be obtained by transformation of 
( ) ( )ch i cosy y=  alone via  

( ) ( ) ( ) ( )iˆ ˆ ˆi 1 i ch i 1 i ch cos .
2

y y x y y z y y
x y z y

    ∂ ∂ ∂ ∂   Ξ = Ω + − + = Ω + = Ω     ∂ ∂ ∂ ∂      
 (8.10) 

On the right-hand side we have a certain redundance since in analytic functions the 
information which is contained in the values of the function on the imaginary axis is 
fully contained also in other parts of the function (here of ( )ch z ). 

The most simple transformation of ( )ch z  is by a delta function ( )0u uδ −  as 
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function ( )uΩ  which stretches only the argument of the Hyperbolic Cosine function 
( ) ( )0ch chz u z→ . The next simple transformation is with a function function ( )uΩ  

in form of a step function ( )0u uθ −  which leads to the transformation  

( ) ( )0
1ch shz u z
z

→ . Our application of the second mean-value theorem reduced other  

cases under the suppositions of the theorem to this case, however, with parameter 
( )0 0u u z=  depending on complex variable z . 

The great analogy between displacement operators (infinitesimal i
x
∂

−
∂

) of the 

argument of a function and multiplication operator (infinitesimal x
x
∂
∂

) of the argu-  

ment of a function with respect to the role of Fourier transformation and of Mellin 
transformation can be best seen from the following two relations  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

i

1
0 0

d = i ,    d e ,

ˆ ˆd = ,   d .

ty

s

y f y g x y f g x f t yf y
x

u f u g ux f x g x f s uf u u
x

+∞ +∞ −

−∞ −∞

+∞ +∞ −

∂ − − ≡ ∂ 
∂  ≡ ∂ 

∫ ∫

∫ ∫

 

        (8.11) 

We remind that Mellin and Fourier transform are related by substituting the in- 
tegration variables e yu =  and the independent variables is t= −  and by the sub- 
stitutions ( ) ( )e yf f y↔  and ( ) ( )ˆ if t f t− ↔   in (8.11). 

Using the discussed Mellin transformation Theorem 1 can be reformulated as follows 
Theorem 1 : 
The mapping of the function ( )ch z  of the complex variable z  into the function  

( )zΞ  by an operator ˆ z
z
∂ Ω ∂ 

 according to  

( ) ( ) ( ) ( ) 1
0

ˆ ˆch ,   d ,sz z z s u u u
z

+∞ −∂ Ξ = Ω Ω ≡ Ω ∂  ∫              (8.12) 

where ( )ˆ sΩ  is the Mellin transformation of the function ( )uΩ  which last possesses 
the properties given in Theorem 1 maps the function ( )ch z  with zeros only on the 
imaginary axis again into a function ( )zΞ  with zeros only on the imaginary axis. 

Proof: 
It is proved as a reformulation of the Theorem 1 which is supposed here to be 

correctly proved. 
It was almost evident that the theorem may be formulated for more general functions 
( )uΩ  as supposed for the application of the second mean-value theorem as was 

already mentioned. Under the suppositions of the theorem the integral on the left-hand 
side of (8.5) can be transformed by partial integration to (notation:  

[ ] ( ) ( ) ( )1 1 1
0

ˆ d ss u u u
+∞ −Ω ≡ Ω∫ )  

( ) ( ) ( ) ( ) [ ] ( )11

0

1 1 ˆd sh sh .z u u uz z z
z z z

+∞ ∂ Ξ = − Ω = − Ω  ∂ ∫            (8.13) 

The derivative ( ) ( )1 uΩ  of the function ( )uΩ  to the Riemann hypothesis although 
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semi-definite (here negatively) and rapidly vanishing in infinity is not monotonic and 
possesses a minimum (see (2.26) and Figure 2). In case of the (modified) Bessel 
functions we find by partial integration (e.g., [32])  

( ) ( ) ( )

( ) ( )

1
1 2 2

0

3
1 2 2

0

2

0

2 !! d 1 ch
1 1! !
2 2

2 ! 1 d 1 sh
3 1! !
2 2

! ,
!( )! 2

m

m

I z u u uz
z

u u u uz
z

z
m m

ν
ν

ν

ν

νν
ν

ν

ν

ν
ν

−+

−+

∞

=

  = −       −   
   

= −
   −   
   

 =  +  

∫

∫

∑

           (8.14) 

where the functions in the second transform ( )
3

2 21 u u
ν −

−  for 3
2

ν >  are non-negative  

but not monotonic and possess a maximum for a certain value maxu  within the interval 

max0 1u< < . The forms (8.13) for ( )zΞ  and (8.14) suggest that there should be true a 
similar theorem to the integral in (8.2) with substitution ( ) ( )ch shuz uz→  and that 
monotonicity of the corresponding functions should not be the ultimate requirement 
for the zeros in such transforms on the imaginary axis. 

Another consequence of the Theorem 1 follows from the non-negativity of the 
squared modulus of the function ( )zΞ  resulting in the obvious inequality (here 

( )( ) ( )* *z zΞ = Ξ )  

( ) ( )( )

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( )

*

1 2 1 2 1 2 1 2 1 2 1 20 0

0

1= d d ch cos ch cos ,
2

z z

u u u u u u x u u y u u x u u y
+∞ +∞

≤ Ξ Ξ

Ω Ω ⋅ + − + − +∫ ∫
 (8.15) 

which can be satisfied with the equality sign only on the imaginary axis iz y=  for 
discrete values ky y=  (the zeros of ( )iz x yΞ = + ). By transition from Cartesian 
coordinates ( )1 2,u u  to inertial-point coordinates ( ),u u∆  according to  

( )1 2
2 1 1 2 1 2,   ,   ,   ,   d d d d ,

2 2 2
u u u uu u u u u u u u u u u u+ ∆ ∆

= ∆ = − = − = + ∧ = ∧ ∆   (8.16) 

Equation (8.15) can be also written  

( ) ( ) ( ) ( ) ( )( )2

0 2

10 d d ch 2 cos ch cos 2 .
2 2 2

u

u

u uu u u u ux uy ux uy
+∞ +

−

∆ ∆   ≤ ∆ Ω − Ω + ⋅ ∆ + ∆   
   ∫ ∫  (8.17) 

As already said the case of the equality sign in (8.15) or (8.17) can only be obtained 
for 0x =  and then only for discrete values of ky y=  by solution of this inequality 
with the specialization for 0x =   

( ) ( )( )

( ) ( ) ( )( ) ( )( )( )

( ) ( ) ( )( )

*

1 2 1 2 1 2 1 20 0

2

0 2

0

1 d d cos cos
2
1 d d cos cos 2 .
2 2 2

u

u

iy iy

u u u u u u y u u y

u uu u u u uy uy

+∞ +∞

+∞ +

−

= Ξ Ξ

= Ω Ω − + +

∆ ∆   = ∆ Ω − Ω + ∆ +   
   

∫ ∫

∫ ∫

       (8.18) 
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A short equivalent formulation of the inequality (8.15) and (8.17) together with (8.18) 
is the following 

Theorem 2: 
If the function ( )uΩ  satisfies the suppositions in Theorem 1 then with k ky y− = −   

( ) ( )( ) ( )
( )

*
0,

0,
0, ,    1, 2, ,i i

0, 0,  ,   1, 2, .
k

k

x
x y y kx y x y

x y y k

 ∀ ≠
> ⇒  = ∀ ≠ = ± ±Ξ + Ξ +  
= ⇒ = ∃ = = ± ±





     (8.19) 

Proof: 
As a consequence of proved Theorem 1 it is also true.  
The sufficient condition that this inequality is satisfied with the equality sign is that 

we first set 0x =  in the expressions on the right-hand side of (8.15) and that we then 
determine the zeros ky y=  of the obtained equation for ( ) ( )( )*i i 0y yΞ Ξ = . In case 
of indefinite ( )uΩ  there are possible in addition zeros on the x -axis. 

Remark: 
Practically, (8.15) is an inequality for which it is difficult to prove in another way that 

it can be satisfied with the equality sign only for 0x = . Proved in another way with 
specialization (2.26) for ( )uΩ  it would be an independent proof of the Riemann 
hypothesis. 

9. Conclusion 

We proved in this article the Riemann hypothesis embedded into a more general 
theorem for a class of functions ( )zΞ  with a representation of the form (3.1) for real- 
valued functions ( )uΩ  which are positive semi-definite and non-increasing in the 
interval 0 u≤ < +∞  and which are vanishing in infinity more rapidly than any 
exponential function ( )exp uλ−  with 0λ > . The special Xi function ( )zΞ  to the 
function ( )uΩ  given in (26) which is essentially the xi function ( )sξ  equivalent to 
the Riemann zeta function ( )sζ  concerning the hypothesis belongs to the described 
class of functions. 

Modified Bessel functions of imaginary argument “normalized” to entire functions  

( ) ( )2 2i
i

J z I z
z z

ν ν

ν ν
   =   
   

 for 1
2

ν ≥  belong also to this class of functions with a re-  

presentation of the form (3.1) with ( )uΩ  which satisfy the mentioned conditions and 
in this last case it is well known and proved in independent way that their zeros lie only 
on the imaginary axis corresponding to the critical line in the Riemann hypothesis. 
Knowing this property of the modified Bessel functions we looked from beginning for 
whole classes of functions including the Riemann zeta function which satisfy analogous 
conditions as expressed in the Riemann hypothesis. The details of the approach to 
Bessel functions and also to certain classes of almost-periodic functions we prepare for 
another work. 

The numerical search for zeros of the Riemann zeta function ( ) , is s tζ σ= +  in the 
critical strip, in particular, off the critical line may come now to an end by the proof of 
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the Riemann hypothesis since its main purpose was, in our opinion, to find a counter- 
example to the Riemann hypothesis and thus to disprove it. We did not pay attention in 
this article to methods of numerical calculation of the zeros with (ultra-)high precision 
and for very high values of the imaginary part. However, the proof if correct may 
deliver some calculators now from their pain to have to calculate more and more zeros 
of the Riemann zeta function. 

We think that some approaches in this article may possess importance also for other 
problems. First of all this is the operational approach of the transition from real and 
imaginary part of a function on the real or imaginary axis to an analytic function in the 
whole complex plane. In principle, this is possible using the Cauchy-Riemann eq- 
uations but the operational approach integrates this to two integer instead of dif- 
ferential equations. We think that this is possible also in curved coordinates and is in 
particular effective starting from curves of constant real or imaginary part of one of 
these functions on a curve. 

One of the fascinations of prime number theory is the relation of the apparently 
chaotic distribution function of prime numbers ( )xπ  on the real axis 0x ≥  to a 
fully well-ordered analytic function, the Riemann zeta function ( )sζ , at least, in its 
representation in sum form as a special Dirichlet series and thus providing the relations 
between multiplicative and additive representations of arithmetic functions. 
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Appendix A 
Transformation of the Xi Function 

In this Appendix we transform the function ( )sξ  defined in (2.8) by means of the 
zeta function ( )sζ  from the form taken from (2.5) to the form (2.9) using the 
Poisson summation formula. The Poisson summation formula is the transformation of 
a sum over a lattice into a sum over the reciprocal lattice. More generally, in one- 
dimensional case the decomposition of a special periodic function ( ) ( )F q F q a= +  
with period a  defined by the following series over functions ( )f q na+   

( ) ( ) ( ) ,
n

F q f q na F q a
+∞

=−∞

≡ + = +∑                    (A.1) 

can be transformed into the reciprocal lattice providing a Fourier series as follows. For 
this purpose we expand ( )F q  in a Fourier series with Fourier coefficients mF  and  

make then obvious transformations (
( )1

,
n a

n na
q na q dq dq

+ +∞+∞

=−∞ −∞
′ ′′ ′′ ′′+ → →∑ ∫ ∫  and ch-  

anging the order of summation and integration) according to  

( ) ( )

( )

0

( 1)

1 2π 2πd exp i exp i

1 2π 2πd exp i exp i

1 2π exp i

a

m n

Fm

n a

na
m n

m

q qF q q f q na m m
a a a

q qq f q m m
a a a

f m
a a

+∞ +∞

=−∞ =−∞

=

+∞ +∞ +

=−∞ =−∞

+∞

=−∞

′    ′ ′= + −    
    

′′    ′′ ′′= −    
    

 =  
 

∑ ∑∫

∑ ∑ ∫

∑





2π ,qm
a

 
 
 

     (A.2) 

where the coefficients mF  of the decomposition of ( )F q  are given by the Fourier 
transform ( )f k  of the function ( )f q  defined in the following way  

( ) ( ) ( ) ( )2π 2πd exp i , d exp i .qf k qf q kq f m qf q m
a a

+∞ +∞

−∞ −∞

   = − ⇒ = −   
   ∫ ∫    (A.3) 

Using the period 
2πb
a

=  of the reciprocal lattice relation on the right-hand side of  

(A.2) it may be written in the forms  

( ) ( ) ( ) ( )2π exp i
2π

1 2π 2πexp i ,   2π.

n n m

m

bF q f q na f q n f mb mbq
b

f m m q ab
a a a

+∞ +∞ +∞

=−∞ =−∞ =−∞

+∞

=−∞

 ≡ + = + = 
 

   = =   
   

∑ ∑ ∑

∑





   (A.4) 

In the special case 0q =  one obtains from (A.4) the well-known basic form of the 
Poisson summation formula  

( ) ( ) ( )0 ,   2π.
2πn m

bF f na f mb ab
+∞ +∞

=−∞ =−∞

≡ = =∑ ∑              (A.5) 

Formula (A.5) applied to the sum ( )2 2exp πn n q+∞

=−∞
−∑  corresponding to  

( ) ( )2exp πf q q= −  with Fourier transform ( )
2

exp
4π
kf k

 
= − 

 
  provides a relation  
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which can be written in the following symmetric form (we need it in the following only 
for 0q ≥ )  

( ) ( ) ( )2 2 2 2

1

2 2

2 2
1

1 exp π exp π
2 2

1 1 1 1exp π exp π .
22

n n

m m

q
q q n q n q

m m
qq qq q

∞ +∞

= =−∞

+∞ ∞

=−∞ =

 Ψ ≡ + − = − 
 

       = − = + − ≡ Ψ      
       

∑ ∑

∑ ∑
   (A.6) 

This is essentially a transformation of the Theta function ( )3 ,u qϑ  in special case  
( ) ( )2π

3

2
0,e q

q

q
ϑ −Ψ

≡ . We now apply this to a transformation of the function ( )sξ . 

From (2.9) and (2.5) follows  

( ) ( ) ( )

( ) ( ) ( )

1 2 2
0

1

1 1 2 2 1 2 2
0 1

1 1

1 d exp π

1 d exp π d exp π .

s

n

s s

n n

s s s qq n q

s s qq n q qq n q

ξ
∞+∞ −

=

∞ ∞+∞− −

= =

= − −

 = − − + − 
 

∑∫

∑ ∑∫ ∫
   (A.7) 

The second term in braces is convergent for arbitrary q  due to the rapid vanishing 
of the summands of the sum for q →∞ . To the first term in braces we apply the 
Poisson summation formula (A.5) and obtain from the special result (A.6)  

( )

( )

21 11 2 2 1
20 0

1 1

2 2
1

1

1 1 1d exp π d 1 exp π
2

1 d exp π ,
2 ( 1)

s s

n m

s

m

mqq n q qq
q q q

q q m q
s s

∞ ∞
− −

= =

∞+∞ −

=

    − = − + −   
     

′ ′ ′= + −
−

∑ ∑∫ ∫

∑∫
    (A.8) 

with the substitution 1q
q

=
′

 of the integration variable made in last line. Thus from  

(A.7) we find  

( ) ( ) ( )
1

2 2
1

1

1 1 d exp π .
2

s s

n

q qs s s q n q
y

ξ
− ∞+∞

=

+
= − − −∑∫           (A.9) 

With the substitution of the integration variable  

( )e ,  0, ,uq q u= ≥ ⇔ −∞ < < +∞                  (A.10) 

and with displacement of the complex variable s  to 1
2

z s≡ +  and introduction of  

( )zΞ  instead of ( )sξ  this leads to the representation  

( ) ( ) ( )2 2 22
0

1

1 1 12 d ch e exp π e ,
2 2 4

u
u

n
z z z u uz nξ

∞+∞

=

   Ξ ≡ + = − − −   
   

∑∫    (A.11) 

given in (2.24). In the following we transform this representation by means of partial 
integration to a form which due to symmetries is particularly appropriate for the 
further considerations about the Riemann zeta function. 

Using the substitution (A.10) we define a function ( )uΦ  by means of the function 
( )yΨ  in (A.6) as follows  

( ) ( ) ( ) ( )e , 0 1 0.543217,uuΦ ≡ Ψ ⇒Φ = Ψ =              (A.12) 
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and explicitly due to Poisson summation formula  

( ) ( ) ( )

( ) ( )

2 2 2 22 2

1

2 2 2 22 2

1

1 1e exp π e e exp π e
2 2

1 1e exp π e e exp π e .
2 2

u u
u u

n n

u u
u u

n n

u n n

n n

∞ +∞

= =−∞

+∞ ∞− −− −

=−∞ =

 Φ ≡ + − = − 
 

 = − = + − 
 

∑ ∑

∑ ∑
       (A.13) 

From ( ) 1y
y

 
Ψ = Ψ 

 
 according to (A.6) follows that ( )uΦ  is a symmetric function  

( ) ( ) ( ).u u uΦ = Φ − = Φ                      (A.14) 

Therefore, all even derivatives of ( )uΦ  are also symmetric functions, whereas all 
odd derivatives of ( )uΦ  are antisymmetric functions (we denote these derivatives by  

( ) ( ) ( )
n

n u u
u

∂ Φ
Φ ≡

∂
)  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 2

2 1 2 1 2 1

,

, 0 0,  0,1, 2, .

m m m

m m m

u u u

u u m+ + +

Φ = +Φ − = Φ

Φ = −Φ − ⇒ Φ = = 

      (A.15) 

Explicitly, one obtains for the first two derivatives  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

1 2 2 2 22

1

22 2 2 2 2 2 22

1

1 1e 1 4π e exp π e ,
2 2

1 1e 1 6 4π e 4π e exp π e .
4 2

u
u u

n

u
u u u

n

u n n

u n n n

∞

=

∞

=

 Φ = + − − 
 

 Φ = + − + − 
 

∑

∑
    (A.16) 

As a subsidiary result we obtain from vanishing of the odd derivatives of ( )uΦ  at 
0u =  that means from ( ) ( ) ( )2 1 0 0, 0,1,2,m m+Φ = =   an infinite sequence of special 

sum evaluations from which the first two are  

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

2 2 2 2

1

3 22 2 2 2

1

14π 1 exp π , 4π 1 exp π 0,
2

14π 15 4π 31 4π 1 exp π .
2

n n

n

n n n n

n n n n

∞ +∞

= =−∞

∞

=

− − = ⇔ − − =

− + − − =

∑ ∑

∑
     (A.17) 

We checked relations (A.17) numerically by computer up to a sufficiently high 
precision. We also could not find (A.17) among the known transformations of theta 
functions. The interesting feature of these sum evaluations is that herein power 
functions as well as exponential functions containing the transcendental number π  in 
the exponent are involved in a way which finally leads to a rational number that should 
also be attractive for recreation mathematics. In contrast, in the well-known series for 
the trigonometric functions one obtains for certain rational multiples of π  as argu- 
ment also rational numbers but one has involved there only power functions with 
rational coefficients that means rational functions although an infinite number of them. 

Using the function ( )uΦ  the function ( )zΞ  in (A.11) can be represented as  

( ) ( ) ( ) ( ) ( )
2

2 2 2
20 0

1 1 1 1 1 12 d e ch 2 d e ch .
2 4 2 2 2 4

u u

z z u u uz u u uz
u

+∞ +∞       ∂  Ξ = + − Φ − = + Φ − −           ∂        
∫ ∫  (A.18) 
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From this we obtain by partial integration  

( ) ( ) ( )
2

2
20

1 12 d e ch ,
4 2

u

z u u uz
u

+∞    ∂ Ξ = − Φ −    ∂    
∫           (A.19) 

where the contribution from the lower integration limit at 0u =  has exactly canceled  

the constant term 1
2

 on the right-hand side of (A.18) and the contributions from the  

upper limit x → +∞  is vanishing. Using (A.16) we find with abbreviation ( )uΩ  
according to  

( ) ( )
2

2
2

1 12 e ,
4 2

u

u u
u

  ∂
Ω ≡ − Φ −   ∂  

                 (A.20) 

the following basic structural form of the Xi function  

( ) ( ) ( )
0

d ch ,z u u uz
+∞

Ξ = Ω∫                     (A.21) 

with the following explicit representation of ( )uΩ   

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 22

1

12 4e π e 2π e 3 exp π e > 0.
2

u
u u u

n
u u u n n n

∞

=

Ω = Φ − Φ = − −∑     (A.22) 

Since according to (A.15) the even derivatives of ( )uΦ  are symmetric functions it 
follows from relation (A.22) that ( )uΩ  is also a symmetric function and (A.27) holds. 
This is not immediately seen from the explicit representation (A.22). Furthermore, 
( )uΩ  is positively definite for u−∞ < < +∞  since the factor ( )2 22π e 3un −  in (A.22) 

is positive for 1n ≥  and 0u ≥  and all other factors too. It goes rapidly to zero for 
u → ±∞ , more rapidly than any exponential function ( )exp x ργ−  with arbitrary 

0γ >  and arbitrary 0ρ >  due to factors ( )2 2exp π e un−  in the sum terms in (A.22). 
For the first derivative of ( )uΩ  we find  

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )
( ) ( ) ( ) ( )

1 3 1

22 2 2 2 2 2 2 22

1

1 1 1

12
2

2e π e 8 π e 30π e 15 exp π e

( ), (0) 0, ( ) 0, 0 .

u
u u u u

n

u u u

n n n n

u u u

∞

=

Ω = Φ − Φ

= − − + −

= −Ω − ⇒ Ω = Ω < >

∑      (A.23) 

It is vanishing for 0u =  due to its antisymmetry and negatively definite for 0u >  
as the negative sign of ( ) ( )2 0Ω  together with considerations of the sum for 0u >  
show (i.e., the polynomial ( ) 2 28π 30π 15 0f N N N≡ − + ≥  for  

15 105 1.00454
8π

N +
≥ ≈  and negativity is already obtained taking the first two sum  

terms to 1n =  and 2n =  alone). Thus ( )uΩ  is monotonically decreasing for 
0u ≥ . A few approximate numerical values of parameters for the function ( )uΩ  are  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1
0 0 0

1 1 2

0 0

d d 0.497121,

0 d 1.78679, 0 d 0.

u u u u u

x u u u

+∞ +∞

+∞ +∞

Ω ≡ Ω = − Ω =

Ω = − Ω = Ω = − Ω =

∫ ∫

∫ ∫
        (A.24) 

In next Appendix we consider the transition from analytic functions given on the 
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real or imaginary axis to the whole complex plane. 

Appendix B 
Transition from Analytic Functions on Real or Imaginary Axis to  
Whole Complex Plane 

The operator 
x
∂
∂

 is the infinitesimal displacement operator and 0exp x
x
∂ − ∂ 

 the  

finite displacement operator for the displacement of the argument of a function 
( ) ( )0f x f x x→ − . In complex analysis the real variable x  can be displaced with view 

to an analytic function to the complex variable iz x y= +  in the whole complex plane 
by  

( )2iiexp i exp i , , , i ,
1! 2!

yyy x y x x x x y
x x x x x
∂ ∂ ∂  ∂ ∂        − = + + + = +        ∂ ∂ ∂ ∂ ∂        

    (B.1) 

where [ ],A B AB BA≡ −  denotes the commutator of two operators A and B, in 

particular , 1x
x
∂  = ∂ 

 and (B.1) may be written in the form  

( )exp i i exp i .y x x y y
x x
∂ ∂   = +   ∂ ∂   

                 (B.2) 

Analogously, the transition from the variable y  on the imaginary axis iy  to the 
variable ( )i i iz y x x y= − = +  in the whole complex plane may be written as  

( )exp i i i exp i ,x y x y x
y y

   ∂ ∂
− = + −   ∂ ∂   

               (B.3) 

In the following we consider only the case (B.2) since the case (B.3) is completely 
analogous with simple substitutions. 

We wrote the Equations (B.1), (B.2) and (B.3) in a form which we call operational 
form and meaning that they may be applied to further functions on the left-hand and 
correspondingly right-hand side6. It is now easy to see that an analytic function  

( ) ( ) ( )*i ; 0w z w x y w z
z
∂

= + =
∂

 can be generated from ( )w x  on the x -axis in ope-  

rational form by  

( ) ( )exp i i exp i ,y w x w x y y
x x
∂ ∂   = +   ∂ ∂   

             (B.4) 

and analogously from ( )iw y  on the imaginary axis by  

( ) ( )exp i i i exp i .x w y w x y x
x y

 ∂ ∂ − = + −  ∂ ∂   
           (B.5) 

Writing the function ( )w z  with real part ( ),u x y  and imaginary part ( ),v x y  in 
the form  

 

 

6Non-operational form would be if we write, for example, exp i iy x x y
x
∂  = + ∂ 

 instead of (B.2) which is 

correct but cannot be applied to further functions ( ) const 1f x ≠ ⋅ , for example to ( )f x x= . 
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( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )

*

* *

i , i , , i , i , ,   

1 i     , i i ,   , i i ,
2 2

w x y u x y v x y w x y u x y v x y

u x y w x y w x y v x y w x y w x y

+ = + + = −

⇒ = + + + = − + − +
 (B.6) 

we find from (B.4)  

( ) ( ) ( )( )

( ) ( )( )

( ) ( )( )

exp i exp i ,0 i ,0

i ,0 i i ,0 exp i

, i , exp i ,

y w x y u x v x
x x

u x y v x y y
x

u x y v x y y
x

∂ ∂   = +   ∂ ∂   
∂ = + + +  ∂ 

∂ = +  ∂ 

            (B.7) 

and correspondingly  

( ) ( ) ( )( )

( ) ( )( )

( ) ( )( )

*

exp i exp i ,0 i ,0

i ,0 i i ,0 exp i

, i , exp i .

y w x y u x v x
x x

u x y v x y y
x

u x y v x y y
x

 ∂  ∂   = − −    ∂ ∂    
∂ = − − − − ∂ 

∂ = − − ∂ 

          (B.8) 

From (B.7) and (B.8) follows forming the sum and the difference  

( ) ( ) ( ) ( )cos ,0 sin ,0 , cos , sin ,y u x y v x u x y y v x y y
x x x x
∂ ∂ ∂ ∂       − = −       ∂ ∂ ∂ ∂       

 

( ) ( ) ( ) ( )sin ,0 cos ,0 , sin , cos .y u x y v x u x y y v x y y
x x x x
∂ ∂ ∂ ∂       + = +       ∂ ∂ ∂ ∂       

 (B.9) 

These are yet operational identities which can be applied to arbitrary functions 
( )f x . Applied to the function ( ) 1f x =  follows  

( ) ( ) ( )

( ) ( ) ( )

cos ,0 sin ,0 , ,

sin ,0 cos ,0 , .

y u x y v x u x y
x x

y u x y v x v x y
x x

∂ ∂   − =   ∂ ∂   
∂ ∂   + =   ∂ ∂   

               (B.10) 

In full analogy we may derive the continuation of an analytic function from the 
imaginary axes iz y=  to the whole complex plane iz x y= +  in operational form  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

cos 0, sin 0, , cos , sin ,

sin 0, cos 0, , sin , cos ,

x u y x v y u x y x v x y x
y y y y

x u y x v y u x y x v x y x
y y y y

       ∂ ∂ ∂ ∂
+ = +       ∂ ∂ ∂ ∂       

       ∂ ∂ ∂ ∂
− + = − +       ∂ ∂ ∂ ∂       

 (B.11) 

and this applied to the function ( ) 1f y =   

( ) ( ) ( )

( ) ( ) ( )

cos 0, sin 0, , ,

sin 0, cos 0, , .

x u y x v y u x y
y y

x u y x v y v x y
y y

   ∂ ∂
+ =   ∂ ∂   

   ∂ ∂
− + =   ∂ ∂   

               (B.12) 
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It is easy to check that both (B.10) and (B.12) satisfy the Cauchy-Riemann equations  

( ) ( ) ( ) ( ), , ,   , , ,u v u vx y x y x y x y
x y y x
∂ ∂ ∂ ∂

= = −
∂ ∂ ∂ ∂

             (B.13) 

and it is even possible to derive these relations from these equations by Taylor series 
expansions of ( ),u x y  and ( ),v x y  in powers of y  or x  in dependence from 
which axis we make the continuation to the whole complex plane. For example, in 
expansion in powers of y  we obtain using (B.13) (and the resulting equations  

( ) ( )
2 2 2 2

2 2 2 2, , 0u x y v x y
x y x y

   ∂ ∂ ∂ ∂
+ = + =   

∂ ∂ ∂ ∂   
 from them)  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 1 2 1

2 2 1
0 00 0

2 2 2 1 2 1

2 2 1
0 00 0

i , ,
2 ! 2 1 !

                 , , ,
2 ! 2 1 !

m m m m

m m
m my y

m m m m

m m
m my y

y yw x y u x y u x y
m my y

y yi v x y v x y
m my y

+ +∞ ∞

+
= == =

+ +∞ ∞

+
= == =

   ∂ ∂
+ = +   +∂ ∂   

    ∂ ∂ + +    +∂ ∂     

∑ ∑

∑ ∑
 (B.14) 

that can be written in compact form  

( ) ( ) ( ) ( ) ( )

( ) ( )

i cos ,0 sin ,0 i cos ,0 sin ,0

, i , ,

w x y y u x y v x y v x y u x
x x x x

u x y v x y

∂ ∂  ∂ ∂        + = − + +        ∂ ∂ ∂ ∂        
= +

 (B.15) 

and is equivalent to (B.10). Analogously by expansion in powers of x  as intermediate 
step we obtain  

( ) ( ) ( ) ( ) ( )

( ) ( )

i cos 0, sin 0, i cos 0, sin 0,

, i , ,

w x y x u y x v y x v y x u y
y y y y

u x y v x y

        ∂ ∂ ∂ ∂ + = + + −        ∂ ∂ ∂ ∂         
= +

 (B.16) 

that is equivalent to (B.12). Therefore, relations (B.15) and (B.16) represent some 
integral forms of the Cauchy-Riemann equations. 
In cases if one of the functions ( ),0u x  or ( )( ,0v x  in (B.10) or ( )0,u y  or ( )0,v y  
in (B.12) is vanishing these formulae simplify and the case ( )0, 0v y =  is applied in 
Section 5. We did not find up to now such representations in textbooks to complex 
analysis but it seems to be possible that they are somewhere. 
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