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Abstract 
In the present paper, the governing equations of a linear transversely isotropic mi-
cropolar piezoelectric medium are specialized for x-z plane after using symmetry re-
lations in constitutive coefficients. These equations are solved for the general surface 
wave solutions in the medium. Following radiation conditions in the half-space, the 
particular solutions are obtained, which satisfy the appropriate boundary conditions 
at the stress-free surface of the half-space. A secular equation for Rayleigh type surface 
wave is obtained. An iteration method is applied to compute the non-dimensional 
wave speed of the Rayleigh surface wave for specific material parameters. The effects 
of piezoelectricity, non-dimensional frequency and non-dimensional material con-
stant, charge free surface and electrically shorted surface are shown graphically on 
the wave speed of Rayleigh wave. 
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1. Introduction 

The materials possessing linear coupling between mechanical and electric fields are 
termed as piezoelectric materials. Wave propagation in piezoelectric media has nu-
merous applications in various fields of engineering. Some problems about propagation 
of plane waves in piezoelectric medium are studied by Kyame [1], Pailloux [2] and 
Hruska [3]. Various other problems related to the phenomena of reflection and refrac-
tion of plane waves in piezoelectric materials are studied by Auld [4], Parton and 
Kudryavtsev [5], Galassi, et al. [6], Singh [7] and Sharma [8]. Recently Salah et al. [9] 
studied the propagation of Rayleigh waves in a functionally graded piezoelectric mate-
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rial half-space. 
Eringen [10] [11] [12] introduced the micro-continuum field theories of solids with 

electro-magnetic and thermal interactions. Craciun [13] formulated the basic equations 
of the linear theory of piezoelectric micropolar thermoelasticity with quasi-static elec-
tric fields. Ciumasu and Vieru [14] presented the variational formulation for the free 
vibration of a micropolar piezoelectric body. Zhilin [15] developed a theory of the mi-
cropolar piezoelectric materials. Iesan [16] established a uniqueness result and a recip-
rocal theorem in the linear theory of microstretch piezoelectricity. Aouadi [17] consid-
ered the linear dynamic theory of micropolar piezoelectricity and established a recip-
rocity relation with two processes at different instants. Gales [18] considered the linear 
theory of micromorphic piezoelectricity and formulated the initial boundary value 
problem and presented some uniqueness results. Chen [19] derived the linear constitu-
tive equations for micropolar electromagnetic elastic solids.  

The propagation of surface waves in a transversely isotropic micropolar piezoelectric 
medium is not attempted so far. Following Aouadi [17], the governing equations for a 
transversely isotropic micropolar piezoelectric medium are formulated in x-z plane and 
are solved for possible surface waves. After considering the required radiation condi-
tions in half-space and boundary conditions at free surface, a secular equation for 
non-dimensional wave speed of Rayleigh surface wave is obtained. The dependence of 
non-dimensional wave speed on frequency, material constants and electric field is 
shown graphically. 

2. Governing Equations and Solution 

We consider a homogeneous and transversely isotropic micropolar piezoelectric half 
space. We take the origin of the coordinate system on the free surface and the positive z 
axis along the normal into the half-space ( )0z ≥ . We assume the components of the 
displacement and microrotation vectors of the form ( )1 3,0,u u=u  and ( )20, ,0ϕ=ϕ . 
Using symmetry relations in the coefficients, the governing equations given in 
Aouadi [17] are specialized for x-z plane in the following from after a lengthy calcu-
lation  

( ) ( )
22 2 22

31 1 2 1
11 13 56 55 1 15 312 2 2

uu u uA A A A K
x z z x zx z t

ϕ ψλ λ ρ
∂∂ ∂ ∂ ∂∂

+ + + + − + =
∂ ∂ ∂ ∂ ∂∂ ∂ ∂

      (1) 

( )
2 2 22 2 2

3 3 31 2
66 13 56 33 2 15 332 2 2 2 2

u u uuA A A A K
x z xx z x z t

ϕ ψ ψλ λ ρ
∂ ∂ ∂∂ ∂ ∂ ∂

+ + + + − − =
∂ ∂ ∂∂ ∂ ∂ ∂ ∂

     (2) 

2 2 22 2
32 2 1 2

77 66 2 1 2 14 362 2 2 2 2

uuB B K K j
z xx z x z t

ϕ ϕ ϕψ ψχϕ β β ρ
∂∂ ∂ ∂ ∂∂ ∂

+ − − − − − =
∂ ∂∂ ∂ ∂ ∂ ∂

     (3) 

( )
2 2 2 2 2 2 2

3 3 1 2 2
15 33 15 31 14 36 11 332 2 2 2 2 2 0,

u u u
x zx z x z x z

ϕ ϕ ψ ψλ λ λ λ β β γ γ
∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + + + + + =
∂ ∂∂ ∂ ∂ ∂ ∂ ∂

  (4) 

where 11 13 55 56 66 66 15 31 33 14 36 11 33, , , , , , , , , , , ,A A A A A B λ λ λ β β γ γ  are constitutive coefficients. 

1 56 55 2 66 56 2 1, ,K A A K A A K Kχ= − = − = − .  
We seek the surface wave solution of Equations (1) to (4) in the following form  
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{ } ( ) ( ) ( ) ( ){ } ( )
1 3 2 1 3 2, , , , , , eik x ctu u u z u z z zϕ ψ ϕ ψ −=                 (5) 

Making use of Equation (5) in Equations (1) to (4) and applying the radiation condi-
tions 1 0u → , 3 0u → , 2 0ϕ → , 0ψ →  as z →∞ , we obtain the following par-
ticular solutions in half-space  

( ) ( )31 2 4
1 1 2 3 4e e e e eik x ctm zm z m z m zu A A A A −−− − −= + + +                (6) 

( ) ( )31 2 4
3 1 1 2 2 3 3 4 4e e e e eik x ctm zm z m z m zu A A A Aζ ζ ζ ζ −−− − −= + + +            (7) 

( ) ( )31 2 4
2 1 1 2 2 3 3 4 4e e e e ik x ctm zm z m z m zA A A A eϕ η η η η −−− − −= + + +            (8) 

( ) ( )31 2 4
1 1 2 2 3 3 4 4e e e e eik x ctm zm z m z m zA A A Aψ ξ ξ ξ ξ −−− − −= + + +            (9) 

where the expressions for coupling coefficients  ( ), , 1, 2,3, 4i i i iξ ζ η =  and the relations 
between ( )1,2,3,4im i =  are given in Appendix.  

3. Boundary Conditions 

The appropriate boundary conditions at 0z =  are vanishing of normal and tangential 
force stress components, tangential couple stress component 

313 323 0,  0,  0,mσ σ= = =                        (10) 

And vanishing of electric displacement component or electric potential 
  3 0D =  (for charge free case) or 0ψ =  (for electrically shorted case),        (11) 
where 

33 13 1,1 33 3,3 35 ,1 33 ,3 ,A u A uσ λ ψ λ ψ= + − −  

( )31 56 3,1 55 1,3 56 55 2 31 ,1 35 ,3 ,A u A u A Aσ ϕ λ ψ λ ψ= + + − − −  
32 66 2,3 36 ,3m B ϕ β ψ= − , 

3 15 1,1 33 3,3 36 2,3 33 ,3.D u uλ λ β ϕ γ ψ= + + +  

4. Secular Equations 

The particular solutions (6) to (9) satisfy the boundary conditions (10) and (11) at the 
free surface 0z =  and we obtain the following secular equation  

1 2 3 4 1 2 4 3 1 3 2 4 1 3 4 2

1 4 2 3 1 4 3 2 2 1 3 4 2 1 4 3

2 3 1 4 2 3 4 1 2 4 1 3 2 4 3 1

3 1 2 4 3 1 4 2 3 2 1 4 3 2

A B C D A B C D A B C D A B C D

A B C D A B C D A B C D A B C D

A B C D A B C D A B C D A B C D

A B C D A B C D A B C D A B

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

− − +

+ − − +

+ − − +

+ − − + 4 1

3 4 1 2 3 4 2 1 4 2 3 4 3 2

2 1 3 4 2 3 1 4 3 1 2 4 3

* *
1 1

*
4 2 1 0

C D

A B C D A B C D A B C D A B C D

A B C D A B C D A B C D A B C D

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

+ − − +

+ − − + =

          (12) 

where 

( )35
13 33 33 , 1, 2,3, 4i i i i

i
i

ik
A ikA m A m i

m
λ

ζ ξ λ∗  
= − + − = 
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( )56 55 56 55 31 ,i i i i iB ik A m A A A ikζ η λ ξ∗ = − + − −  

36 66 ,i i i i iC m m Bξ β η∗ = −  

15 33 36 33i i i i i i iD ik m m mλ ζ λ η β ξ γ∗ = − − −  (for charge free case), 
Or i iD ξ∗ =  (for electrically shorted). 

5. Particular Cases 

a) The secular Equation (12) reduces for a transversely isotropic micropolar elastic 
case when  

33 35 31 15 36 33 110,  0,  0,  0,  0,  0,  0.λ λ λ λ β γ γ= = = = = = =  

b) The secular Equation (12) reduces for a transversely isotropic piezoelectric case 
when 

1 2 11 11 33 33 55 66 56 44 13 13 66 770,  ,  ,  ,  ,  0.K K K A C A C A A A C A C B B= = = = = = = = = = =  

6. Numerical Results and Discussion 

For numerical computation of non-dimensional wave speed of Rayleigh wave, the fol-
lowing relevant physical constants of a transversely isotropic micropolar piezoelectric 
material are considered  

10 2
11 17.8 10  N m ,A −= × ⋅  10 2

33 18.43 10  N m ,A −= × ⋅  10 2
13 7.59 10  N m ,A −= × ⋅  

10 2
56 1.89 10  N m ,A −= × ⋅  10 2

55 4.357 10  N m ,A −= × ⋅  10 2
66 4.42 10  Nm ,A −= ×  

10 2
65 1.99 10  N m ,A −= × ⋅  9

77 0.278 10  N,B = ×  9
66 0.268 10  N,B = ×  

2
15 37 C m ,λ −⋅=  2

31 12 C m ,λ −⋅=  2
33 1.33 C m ,λ −⋅=  2

35 0.23 C mλ −⋅=  

14 0.0001 C,β =  36 0.0002 C,β =  2 1 2
11 0.000852 C N m ,γ − −⋅ ⋅=  

2 1 2
33 0.000287 C N m ,γ − −⋅ ⋅=  3 31.74 10  kg m ,ρ −= × ⋅  20.196 mj =  

For above physical constants and by using a Fortran program of Iteration method, 
the secular Equation (12) is solved numerically to obtain the non-dimensional speed 

2

33

c
A
ρ

 for certain ranges of non-dimensional frequency and non-dimensional 

constant.  

The variation of non-dimensional speed 
2

33

c
A
ρ

 against non-dimensional frequency 

* 2

j
χ
ρ

ω ω
  
  

 
=


 are shown graphically in Figure 1 for charge free (CF) and  

electrically shorted (ES) cases. For CF case, the value of speed at * 2.5ω =  is 1.5109. It 
decreases to a value 1.4907 at * 10ω = . This variation is shown by solid line in Figure 
1. For ES case, the value of speed at * 2.5ω =  is 0.8036. It decreases to value 0.5991 at 

* 10ω = . This variation is shown by dotted line in Figure 1. Comparing the solid and 
dotted lines in Figure 1, we can observe the effect of charge free surface over electrically  
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Figure 1. Variation of non-dimensional speed 
2

33

c
A
ρ  against non-dimensional frequency 

* 2

j
ω ω χ

ρ
   
  
   

=  for charge free (CF) and electrically shorted (ES) cases. 

 
shorted surface on non-dimensional speed of the Rayleigh wave in a transversely iso-
tropic micropolar piezoelectric solid half-space.  

The variation of non-dimensional speed 
2

33

c
A
ρ

 is shown graphically in Figure 2 

against non-dimensional frequency * 2

j
χ
ρ

ω ω
  
  

 
=


 for charge free (CF) case to  

observe the piezoelectric effects. The variation non-dimensional speed as shown by 
solid line (transversely isotropic micropolar piezoelectric case) in Figure 2 is same as 
shown in Figure 1. For transversely isotropic micropolar case, the variation of 
non-dimensional speed is shown by dotted line in Figure 2. It has value 2.2224 at 

* 2.5ω =  and it increases to value 2.8541 at * 10ω = . The comparison of solid and 
dotted lines in Figure 2 shows the piezoelectric effect on non-dimensional speed of 
Rayleigh wave in a transversely isotropic micropolar piezoelectric solid half-space with 
charge free surface. 

The variation of non-dimensional speed 
2

33

c
A
ρ

 is shown graphically in Figure 3 

against non-dimensional constant 11

33

A
A

 
 
 

 for charge free (CF) case when * 5,10ω =   
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Figure 2. Piezoelectric effect on non-dimensional speed 
2

33

c
A
ρ  against non-dimensional fre-

quency * 2

j
ω ω χ

ρ
   
  
   

=  for charge free (CF) case. 

 

 

Figure 3. Variation of non-dimensional speed 
2

33

c
A
ρ  against non-dimensional constant 11

33

A
A

 
 
 

 

for charge free (CF) case when * 5,10ω =  and 15. 

 

and 15. For * 5ω = , the non-dimensional speed is 0.9541 at 11

33

2
A
A

= . It decreases to 

its minimum value 0.9010 at 11

33

3
A
A

=  and then it increases to a maximum value 0.9642 
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at 11

33

10
A
A

= . For * 10ω = , the non-dimensional speed is 0.9559 at 11

33

2
A
A

= . It de-

creases to its minimum value 0.9043 at 11

33

3
A
A

=  and then it increases to value 0.9499 at 

11

33

10
A
A

= . For * 15ω = , the non-dimensional speed is 0.9567 at 11

33

2
A
A

= . It decreases 

to its minimum value 0.9057 at 11

33

3
A
A

=  and then it increases to value 0.9472 at 

11

33

10
A
A

= . The comparison of solid ( * 5ω = ), dotted ( * 10ω =  and dotted with star  

( * 15ω = ) lines in Figure 3 show the effect of non-dimensional frequency and 
non-dimensional material constant on non-dimensional speed of Rayleigh wave in a 
transversely isotropic micropolar piezoelectric solid half-space with charge free surface. 

7. Conclusion 

Using symmetry relations in constitutive coefficients and assuming the components of 
the displacement and microrotation vectors in the form ( )1 3,0,u u=u  and 

( )20, ,0ϕ=ϕ , the governing equations given in Aouadi [17] are derived as a special 
case for transversely isotropic micropolar piezoelectric medium in x-z plane. Rayleigh 
type surface wave is studied in this medium. A secular equation for non-dimensional 
speed of Rayleigh wave is obtained. Using Fortran program of Iteration method, the 
secular equation is solved numerically. The values of non-dimensional wave speed of 
the Rayleigh wave are obtained for a specific material modelling the medium. The non- 
dimensional wave speed is shown graphically against the non-dimensional frequency 
and the non-dimensional material constant. From theory and numerical discussion, the 
effects of piezoelectricity, charge free surface, electrically shorted surface, non-dimensional 
frequency and non-dimensional material constant are observed on non-dimensional 
wave speed. 
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Nomenclature 

u : the displacement vector. 
ϕ : the microrotation vector. 
ρ : the mass density.  
j : the micro-inertia.  
ψ : the electrostatic potential.  
k : the wave number.  
c : the phase velocity of the wave. 

kcω = : the angular frequency. 

ijσ : the force stress tensor. 

ijm : the couple stress tensor. 
( ), , 1, 2,3, 4i i i iξ ζ η = : the coupling coefficients. 

Appendix  

The relations between ( ), 1, 2,3, 4im i =  are given as  
2 2 2 2
1 2 3 4 1,m m m m S+ + + =  

2 2 2 2 2 2 2 2
1 2 2 3 3 4 4 21 ,m m m m m m m m S+ + + =  

2 2 2 2 2 2 2 2 2
1 2 3 2 3 34 3 4 1 ,m m m m m m m m m S+ + =  

2 2 2 2
1 2 3 4 4 ,m m m m S=  

(
)

2 2 2 2
1 33 55 33 33 55 66 11 55 33 55 66 33 55 36 33 66 33 33 36

2 2 2 2 2
66 33 66 33 36 33 66 33 55 14 36 55 66 33 15 66 33

2
33 33 33 33 55 6

2 2
1 1 6 33 3

2 2      2

      

 

 

S k A A P A A B A P A B N A N LA B LA

LB B M M A B R A A A B MB R

K A K A A B A

γ γ λ γ β γ β

λ γ β β β λ λ λ

γ λ γ

= + + + + + +

+ − − + + + −

− − + ( )2 2
3 55 36 55 66 33 ,A A Bβ λ+  

(4 2 2 2
2 55 66 11 33 55 11 33 55 14 55 33 33 33 66 33 36 55 66 15

2 2 2 2 2
33 33 66 11 33 66 66 11 33 33 14 36 55 14 36

55 33 15 66 33 15 14 36

      2 2

      2 2 2

S k A B N A A P A A A NP A LP B LN LN A B

LP A B L A PR B NR B M PM A L A N

A P B L

γ

γ γ β γ γ γ β λ

λ γ γ β β β β

λ λ λ λ β β

= + + + + + + +

+ + + + − − + +

+ + − ) (
) ( )

2 2 2 2
66 15 33 33 11 1 55 33 2

2 2 2 2
33 1 33 15 1 33 1 2 33 1 2 33 55 66 33 33 55 36 55 66 33

2 2

     2 2 2 ,

M B MR MPR k A K A K

NK K MK K RK K A A B A A A B

λ λ γ γ

γ λ λ γ λ γ β λ

− − − +

+ + − − + +


 

(
) (

)

6 22 2
14 14

2
2

2 2 2 2
1 15 1

2
3 55 11 55 66 11 33 11 33 33 55 15 66 15

2 2 2 2 4 2
11 14 14 36 33 15 15 55 11 33 2

2
11 1 2 11 1 2152 3

      2 2 2

      2 2

S k A NP A N B LN A LP A L LNP A P B L

M P M PR N LN LP MPR k A K LK

NK K K R K K M K K R A

γ β γ γ β γ λ λ

γ β β β λ λ λ γ γ

γ λ γ

= + + + + + + +

− − + + +



− − +

+ + + − − 



( )3 55 66 33 33 55 55 6
2 2
3 366 3A B A A A Bγ β λ+ +

 

( ) ( ) ( )8 2 2 6 2 2 2
4 11 14 15 11 2 33 55 66 33 33 55 36 55 66 33S k LNP LN LP k LK A A B A A A Bγ β λ γ γ β λ = + + − + +   

( ) ( ) ( )2 2
11 13 56 66, , ,  L A c M A A N A cρ ρ= − = + = − , 

( )2
77 15 312 ,  P B jc R

k
χρ λ λ = − + = + 

 
 

and 
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( )

1

,  ,  

i i
i i i

i i i i i i i i i
i i

ii i i i i

m mw iM iRp q u v r k kp s
mq s t r r k K
k

ζ ξ
ζ η

ζ ξ

  − −   + − −     = = =
+

  

2 55 2 12 2

2 2

,i i
i

m m
p iK A iK L iMK

k k
 

= − − 
 

 

2

36 14 33 11 662 2 2

2 2 2

,i
i

i im m m
q B P

k k k
β β γ γ

      = − + − −     
      

 

2 15 1 33 1 3

3

,  i i i
i

m m m
r RK K K

k k k
λ λ

 
= − + 
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