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Abstract 
Spatial causal effects on water quality are essential in identification of vulnerable wa-
tersheds. Modelling landuse variables is an effective method of projecting localized 
impairment. This study presents an integrated index, designed to gauge the ability of 
an 8-digit Hydrologic Unit Code watershed in its ability to produce clean water.  
This index, IAPCW, can be successfully applied on a geospatial platform. In this study 
we utilized IAPCW to address forest cover dynamics of an impaired watershed, that is, 
Missouri Watershed James Sub-region in North Dakota. Specific parametric func-
tions were analysed and combined within a customized GIS interface to provide a 
multi-faceted structured technique to derive IAPCW. These included ambient forest 
cover, housing density, agricultural land, soil erodibility and road density; it can be 
lucidly ascertained that where a prevailing forest cover undergoes conversion proc-
esses, the secondary effect may spur an exponential increase in water treatment costs. 
These parameters when projected statistically validated temporal and spatial rela-
tions of landuse/land cover dynamics to nutrient concentrations especially those that 
would be noted at the mouth of the watershed. In this study, we found that the levels 
of Total Dissolved Solids (TDS) were much higher for the years 2014 to 2016 with a 
discernible increased alkalizing effect within the watershed. When IAPCW was com-
pared to Annualized Agricultural Nonpoint Source (AnnAGNPS), the spatial distri-
bution generated by the AnnAGNPS study showed that fallow areas produced sig-
nificant amounts of sediment loads from the sub-watershed. These same locations in 
this study generated a low IAPCW. 
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1. Introduction 

Water and sediment supply, and their management, are critical to many hydraulic 
project operations. Trend analysis of water quality data is an essential environmental 
diagnosis of a stream allowing evaluation of how the water body has responded to 
change in landuse over a period of time. Change in landuse and land cover directly im-
pact sustainable use of reservoirs, water quality, and riparian habitat [1]. However, we 
are limited by the tools and methodology available to understand the future impacts on 
a larger scale. Water and sediment supply has been measured only at limited locations 
and over a limited time period and hence the growing need for predictive models. Sekar 
and Randhir (2007) developed prioritization maps to characterize conjunctive water 
harvesting potential that is based on benefits and costs [2]. The results of their study 
demonstrate that a spatially variable harvesting strategy can be used to minimize runoff 
loss and to augment water supplies. 

Changes in the composition of soil take place due to change in Landuse Land Cover 
(LULC). LULC is an integrated term that includes both categories of LULC and analysis 
of changes is of prime importance to understand many social, economic and environ-
mental problems [3]. Landuse (LU) and Land Cover (LC) are the two fundamental 
components describing the terrestrial environment in relation to both natural and 
anthropogenic processes [4] [5] [6]. Environmental modifications worldwide are most-
ly caused due to LU and LC changes, thus it emerges as a key research question [7]. 
Quantifying landscape patterns enable us to identify and evaluate temporal changes and 
enable the study of the effects of pattern on ecological processes [8]. Jensen in his inves-
tigation of urban landscape perceived landuse as a way by which human beings utilize 
land while land cover exists as a natural environmental system [9]. Remote sensing and 
Geographic Information Science (GIS) techniques have been effectively utilized to 
identify and quantify periodic change in the landscape and its consequent environ-
mental impacts [10]. Land cover is an important parameter for monitoring agricultural, 
hydrological and watershed modelling which constitute necessary tools for develop-
ment, planning and management of natural resources in a particular region [10]. 

Past research has shown that increase in agricultural landuse has direct consequence 
on sedimentation, nutrients, and pesticides in streams [11] [12]. Landuse change detec-
tion is therefore a critical requirement for the assessment of potential environmental 
impacts and developing effective land management and planning strategies [13]. Sur-
face water bodies are the potential recipients of the contaminations contained in surface 
runoff from their catchments [14]. This makes surface water quality monitoring an 
important parameter. There are limited resources available for conservation that can be 
allocated to the erosion of susceptible areas. These areas can be highlighted through 



P. F. Rozario et al. 
 

665 

mapping, monitoring and prioritizing [15]. Erosion risk mapping of the area can enable 
decision makers to prioritize susceptible areas for conservation measures in accordance 
with the level of vulnerability [16]. According to USDA Forest Service, protecting and 
managing forests in source watersheds is an essential part of future strategies for pro-
viding clean safe drinking water. An Index of the Ability to Produce Clean water 
(APCW) can be generated through GIS overlay Analysis to prioritize impaired water-
sheds. Spatial Multi Criteria Decision Making (MCDM) has also become one of the 
most useful methods for landuse and environmental planning, as well as water and 
agricultural management [17]. 

The request for GIS models and tools supporting collaborative decisions has in-
creased over the last decade [18]. GIS-based MCDM involves a set of geographically de-
fined basic units (e.g. polygons in vectors, or cells in rasters), and a set of evaluation 
criteria represented as map layers or attributes. Based on a particular ranking schema, it 
ultimately informs a spatially complex decision process by deriving a utility of these 
spatial entities through overlaying the criterion maps according to the attribute values 
and decision maker’s preferences using a set of weights. Therefore, besides criteria se-
lection, criteria weight severely impacts the results of the MCDM [19]. Nutrients in a 
water body such as nitrogen and phosphorus are considered to be pollutants when 
these nutrient concentrations become excessive, causing some organisms to proliferate 
at the expense of others [20]. The situation is significantly multiplied by eutrophication, 
which is caused by excessive algae growth in a water body from surrounding agricul-
tural watersheds due to the excessive presence of the necessary growth nutrients and 
ambient conditions that promote algal blooms. This enhanced plant growth reduces the 
dissolved oxygen levels when the plants decompose, potentially hindering the survival 
of fish and other aquatic life that depend on pristine conditions [21]. These physical 
and chemical changes may interfere with the recreational and aesthetic uses of the wa-
ter body, while both taste and odour problems may make the water less desirable for 
water supply and human consumption [21]. Thus it is essential to estimate and qualify 
nutrient contaminations within the watershed. The objectives of this current study were 
to assess and analyze the LULC changes and to prepare a risk map through weighted 
overlay of influencing factors such as vegetation, rainfall, LULC, soil data and water 
quality data. In the process, we also identified the potential areas showing levels of vul-
nerability to change in soil and water quality. 

2. Description of Study Area 

The sub-basin of the Missouri River spreads over four counties of North Dakota name-
ly Foster, Kidder, Stutsman, and Wells in the Missouri Region-James River Sub-Region 
[22]. James River, Maple River, Pipestem Creek, Beaver Creek and Spring Creek are lo-
cated in this sub basin (Figure 1). Pipestem Creek starts from the Pipestem Dam 
downstream to its confluence with the James River which is about 5.6 miles. The mean 
annual precipitation is between 13 to 22 inches. Mean Annual air temperature ranges 
between 37˚F to 16˚F for mean elevation ranging from 1280 to 2560 feet. The type of 
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soil found at this location is Williams-Bowbells loam which is a well-drained, 
non-saline clay loam with calcium carbonate of about 20%. Figure 2 shows a part of the 
watershed near Pingree, North Dakota which was one of the sampling locations. Figure 
3 shows a view of the watershed. Riparian forests (Figure 4) are predominant along the 
rivers.  
 

 
Figure 1. Location of study area—Pipestem Creek in North Dakota, USA showing sampling 
sites. 

 

 
Figure 2. Collecting water samples at the Pipestem Creek. 



P. F. Rozario et al. 
 

667 

 
Figure 3. Pipestem Creek near Pingree in North Dakota, USA. 

 

 
Figure 4. GIS weighted scoring showing percentage change in riparian forests. 

3. Materials and Methods 
3.1. Data Processing and GIS Analysis 

Historic data of Pipestem Creek was used to perform a spatial analysis and identify lo-
calised areas of impairment within the watershed. Forest Cover including riparian fo-
rests and agricultural landuse data was acquired from United States Department of 
Agriculture National Agricultural Statistics Service (NASS). Soil erodibility dataset was 
acquired from United States Department of Agriculture National Resources Conserva-
tion Service (NRCS). Road network data and year 2000 Housing Density data was ac-
quired from the North Dakota GIS Hub. The landuse and land cover was classified us-
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ing the Anderson classification system [23]. NLCD data, a raster dataset, was imported 
to ArcMap® 9.3, a GIS software, where only the study area was clipped. Each attribute 
dataset was processed individually to produce a raster grid. To summarize forest cover, 
the “Tabulate Areas” function was used in ArcMap® 9.3, to calculate the acreage of fo-
rested land for the watershed. The percent of the watershed that is forested was calcu-
lated by dividing the acreage of forested land by the total watershed land acreage [24]. 
The results were saved to the attribute field of this shapefile which was then converted 
to a 30 m raster dataset (Figure 5). The percent forest was reclassified into the four 
categories (Table 1(a)). Category break points were entered as half integers between 
the intervals. For example, a value of 24.5 was the break point for percent forest land 
scored as low or moderate. The results were saved in the corresponding attribute field. 
Agricultural land was summarized using grid values from the NLCD 2001 dataset of 
North Dakota. The same method was replicated to tabulate the areas under agricul- 
tural land. The percent agricultural land was reclassified into the four categories sum-
marized in Table 1(b). Category break points were entered as half integers between the 
intervals. For example, 30 was the threshold for percent agricultural land scored as low. 
The results were saved in the attribute field of this shapefile which was then converted 
to a 30 m raster dataset (Figure 6). For riparian forest cover, the acreage of riparian fo-
rested land was divided by the total acreage of riparian buffer in the watershed. The 
percent riparian forest cover was reclassified into the four categories summarized in 
Table 1(c). Category break points were entered as half integers between the intervals. A 
value of 29 was the break point for percent riparian forest scored as low. The results 
were saved in the attribute field of this shapefile which was then converted to a 30 m 
raster dataset (Figure 4). The North Dakota national roads dataset was split into East 
 

 
Figure 5. GIS weighted scoring showing percentage change in other forests. 
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Table 1. (a) Percent forest cover reclassification; (b) Percent agricultural land reclassification; (c) 
Percent riparian forest cover reclassification; (d) Road density reclassification; (e) Soil erodibility 
reclassification; (f) Housing density reclassification. 

(a) 

Attribute 

Rating for 30-meter grid cell 

Low 
(1 point) 

Moderate 
(2 points) 

High 
(3 points) 

Very High 
(4 points) 

Percent forest land (F) 0 - 24 25 - 49 50 - 75 >75 

(b) 

Attribute 

Rating for 30-meter grid cell 

Low 
(1 point) 

Moderate 
(2 points) 

High 
(3 points) 

Very High 
(4 points) 

Percent agricultural land (A) >30 21 - 30 10 - 20 <10 

(c) 

Attribute 

Rating for 30-meter grid cell 

Low 
(1 point) 

Moderate 
(2 points) 

High 
(3 points) 

Very High 
(4 points) 

Percent riparian forest cover (R) 0 - 29 30 - 50 51 - 70 >70 

(d) 

Attribute 

Rating for 30-meter grid cell 

Low 
(1 point) 

Moderate 
(2 points) 

High 
(3 points) 

Very High 
(4 points) 

Road density (D, quartiles) 
75 - 100th 
percentile 

50 - 74th 
percentile 

25 - 49th 
percentile 

0 - 24th 
percentile 

(e) 

Attribute 

Rating for 30-meter grid cell 

Low 
(1 point) 

Moderate 
(2 points) 

High 
(3 points) 

Very High 
(4 points) 

Soil erodibility (S, k factor) >0.34 0.28 - 0.34 0.2 - 0.28 0 - 0.2 

(f) 

Attribute 

Rating for 30-meter grid cell 

Low 
(1 point) 

Moderate 
(2 points) 

High 
(3 points) 

Very High 
(4 points) 

Housing density  
(H, acres per housing unit in 2000) 

<0.6 
acre/unit 

0.6 - 5.0 
acres/unit 

5.0 - 20.0 
acres/unit (east) 

>20.0 acres/unit 
(east) 

 
and West portions using the county boundary shape files. The “Repair geometry” tool 
for the east and west roads dataset was used to repair self-intersecting lines. The “mul-
tipart to single part” tool on each dataset was used to join multipart lines. Each road 
shapefile was converted to a coverage arc. A “Simplify Line” tool was run on each  
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Figure 6. GIS weighted scoring showing percentage of agricultural land. 

 
layer to remove excessive vertices. The simplification tolerance was set to 10 m. A “Line 
Density” function was applied on each of the resulting coverage. Parameters were set as 
cell size of 30 m, search radius of 565 m (to equal a search area of approximately 1 km2) 
and the units were set as square kilometre. Finally, the East and West line density raster 
was merged into one raster dataset (Figure 7). The results were sorted into four quar-
tiles, and reclassified with values 1 - 4 as shown in Table 1(d). To summarize the soil 
erodibility map, first, the soil dataset was clipped to the watershed boundary. Then this 
dataset was converted to a raster format using kffact field as the grid value. The kffact 
field is the k factor in the soil which contains the erodibility values in the dataset. The 
grid (Figure 8) was then reclassified as shown in Table 1(e). The raw housing data file 
was reclassified into 15 classes to reduce the file size. The classification used was based 
on 2000 US Census Bureau block (SFI) data developed by the Natural Recourse Ecology 
Lab [24]. Each of the 15 classes was assigned a value range of housing density, for ex-
ample, class 5 ranged from 32 to 49. To summarize the housing density data, the raw 
2000 housing density data was clipped to the watershed area and resampled from a 100 
m grid to a 30 m grid (Figure 9). The raw grid values in units per hectare were con-
verted to acres/unit using the relation [24]: 

( )( ) ( )units ha 1,000 1 ha 2.47acres units acre invert acres unit× = =       (1) 

This generated a new reclassified dataset with 15 classes. The 15 value classes were 
categorised into four housing density classes: rural, exurban, suburban, and urban 
where rural ranged from 1 to 8 and assigned a reclassified value of 4; exurban was 9 to 
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10 assigned a value of 3; suburban was 11 to 12 which was assigned a value of 2 and for 
the urban class, ranging from 13 to 15 assigned a value of 1. So the weightage was as-  

 

 
Figure 7. GIS weighted scoring showing percentage of road density. 

 

 
Figure 8. GIS weighted scoring showing soil erodibility. 
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signed based on this as shown in Table 1(f). Using raster calculator add function for 
the six rasters, resulted in a grid output with values ranging from 6 to 24 for each 30 m 
grid cell. Using ArcMap® 9.3 Spatial Analyst, a weighted overlay was done using the da-
ta that included forested land, riparian cover, agricultural land suitability, soil erodibil-
ity, road density and housing density data. Equation 1 shows the underlying concept in 
a weighted overlay process [24]: 

,APCWI R F S A D H= + + + + +                       (2) 

where, F = forest land (percent); A = agricultural land (percent); R = riparian forest 
cover (percent); D = road density (quartiles); S = soil erodibility (k factor); H = housing 
density (acres per housing unit in 2000). IAPCW is the Index of the Ability to Produce 
Clean Water. All the variables were classified into four classes: low, moderate, high and 
very high. This was done to maintain an equal influence. The weighted overlay tool 
generated a final raster dataset which was a mean composite score by watershed. Figure 
10 shows the map of the study area with the APCW Index. The APCW index was orig-
inally used in a study conducted by Barnes et al., in 2009 [24] where the index was gen-
erated for watershed at a regional level. 

3.2. Analysis of Soil Data 

Soil samples were collected in 2011 from the top soil layer (0 - 6 inches) to capture 
leachable ions within Pipestem Creek watershed. The sampling sites were selected such 
that they incorporated the entire study area. Areas that depicted a low composite score 
in the map of the IAPCW (Figure 10) were kept under consideration while choosing the 
sampling points. Soil testing was done to analyze 12 different elements, which included  
 

 
Figure 9. GIS weighted scoring showing percentage of housing density. 
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Figure 10. Index of the ability to produce clean water within the study area. 

 
Sodium, Potassium, Calcium, Magnesium, Copper, Chlorine, Nitrate, Phosphate, Zinc, 
Iron, Manganese and sulphur. Nitrate Electrode Method was used to determine the Ni-
trate concentration in the soil where 20 g of the soil sample was added to 50 ml of an ex-
tracting solution. The suspension was stirred with a magnetic stirrer and then read on a 
pH/ion meter. Chlorides were also estimated using a pH/ion meter. The Olsen Test was 
used to detect Phosphorus levels in the soil where the colorimeter is used to produce an 
intensity and standard curve to determine phosphorus concentration in the soil. Esti-
mates of available Potassium (K) in the soil were done by Atomic adsorption/emission 
Spectrometer which gives a standard curve for K by emission. The result was multiplied 
by 10 to give ppm in a soil (mg·K/kg). Estimates of exchangeable calcium and magne-
sium were also acquired using Atomic adsorption/emission Spectrometer by adsorption 
and Sodium estimates by emission. Inductively coupled plasma (ICP) was used to 
measure sulphate levels in solution, as well as organic and inorganic S. The advantage 
of ICP is in its low standard errors [25]. Micronutrients such as Zinc, Iron, Manganese 
and Copper were estimated using an Atomic absorption spectrophotometer. 

3.3. Analysis of Water Quality Data 

Water samples were collected from 8 different sites along the Pipestem Creek-James 
sub region of the Missouri river in 2011. Again, areas that depicted a low composite 
score in the map of the IAPCW (Figure 10) were kept under consideration while choosing 
the sampling points. These were independently tested in an EPA certified laboratory 
(Fargo Cass Public Health Environmental Laboratory in North Dakota) using standard 
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EPA methods, sound Colorimetric and Ion Chromatography (IC) principles. The EPA 
300.0 method [26] was used to analyse Nitrate-Nitrite, Sulphate, Chloride and fluoride 
amounts in the water. All samples that contained particles larger than 0.45 microns and 
reagent solutions that contain particles larger than 0.20 microns were filtered prior to 
any IC analysis. This method involves introducing 2 - 3 ml of the water sample to an 
Ion Chromatograph where the anions of interest are separated, measured, using a sys-
tem comprised of a guard column, analytical column, suppressor device, and conduc-
tivity detector. A 1 mL of concentrated eluent (7.3 100×) to l00 mL of each standard 
and sample was added for presence of negative peaks near the fluoride peak which can 
usually be eliminated by the addition of the equivalent. The EPA 200.7 method [27] was 
used to quantify amounts of Calcium, Iron, Manganese, Magnesium, Sodium, Potas-
sium and total hardness. This method involves multi-elemental determinations by an 
Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) using sequen-
tial or simultaneous instruments. The instruments measure characteristic atomic-line 
emission spectra by optical spectrometry. SM2320 B Titration Method was used for 
carbonates, bicarbonates, hydroxides and total alkalinity where a pH meter was used 
[28]. This method involves hydrolysis of solutes that react with the addition of standard 
acid whereas alkalinity would depend on the pH used. The amount of Total Dissolved 
Solids (TDS) was analyzed using the SM2540C method where a well-mixed sample is 
filtered through a standard glass fiber filter, and the filtrate is evaporated till dry in a 
weighed dish to constant weight at 180˚C. The increase in dish weight represents the 
total dissolved solids [29]. 

4. Results and Discussion 

GIS Weighted Overlay scoring (Figure 10) on a 30-meter grid generated an index that 
ranked (high to low) the watershed based on its ability to produce clean water. Results 
generated were primarily driven by affiliated landuse. Areas that are darker with a high 
composite score from 25 to 30 represent areas within the watershed having a higher 
ability to produce clean water which corresponds to high riparian cover, high forest 
cover, low soil erodibility, low agricultural land area, low road density and low housing 
density. Similarly, areas that are lighter in colour, with a low composite score from 5 to 
15, are areas that have a very low ability of producing clean water corresponding to low 
riparian cover, low forest cover, high soil erodibility, high agricultural land, high road 
density and high housing density. This indicates a direct geographic connection be-
tween forests, water and people [30]. Forest Cover (Figure 5) on the southern part of 
the watershed is almost negligible as most of the agricultural fields lie there. This region 
shows a very low IAPCW. The entire watershed has a very low riparian buffer (Figure 4) 
to protect the streams from the adjacent landuse. Soil erosion ability within the wa-
tershed is shown in Figure 8 where the darker areas depict very high soil erosion 
probability whereas the lighter areas show very low soil erosion probability. Figure 6 
shows the percentage of agricultural land. Darker areas signify higher percentage of 
fallow land whereas lighter areas signify less agricultural practice. Figure 7 and Figure 
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9 show housing density and road density information consecutively. These variables do 
not depict vivid information due to the fact that the study area is predominantly an 
agricultural watershed with very few residential land and proper metalled roads. 

The tables display the data from the water samples collected. The presence of Total 
Dissolved Solids (TDS) in large amounts ranging from 852 mg/l to 1020 mg/l can be 
seen (Table 2). Higher levels of Sulphate (SO4) were seen ranging from 96 mg/l to 533 
mg/l (Table 3). Recommended limits of Sulphate in water for water used as a domestic 
water supply are below 250 mg. Although such high levels are not toxic to humans di-
rectly, they are an indicator of non-point source pollution within a watershed [31]. Bi-
carbonates were present in the water ranging from 87 mg/l to 250 mg/l in most sites 
(Table 3). Thus, the total hardness of water was very high ranging from 150 to 500 
mg/l, in turn raising the alkalinity of water. Nitrate, Phosphate and Chloride levels were 
not significant enough to be reported. The soil samples contained soluble salts such as 
sodium (Na+), potassium (K+), calcium (Ca2+) and magnesium (Mg2+) along with 
anions chloride (Cl−), sulphate ( 2

4SO − ), nitrate ( 3NO− ), bicarbonate ( 3HCO− ) and car-
bonate ( 2

3CO − ). Out of these, Calcium was found in very high levels ranging from 2000 
ppm to 2900 ppm followed by magnesium and sodium. Since the watershed is enclosed 
within agricultural lands, fertilizer residues washed out from the adjoining fields could 
attribute to these higher levels of nutrients. Agricultural landuses within watersheds 
have been linked to increased nutrient concentrations in river waters via wastewater, 
fertilizer use, cultivation of N fixing crops, and atmospheric deposition [31]. The cation 
content (Table 4) in water showed presence of calcium ranging from 37 to 87 mg/l, So-
dium ranging from 53 to 122 mg/l and Magnesium ranging from 20 to 68 mg/l which is 
not significantly high but they can accumulate leading to a high Sodium Absorption 
Ratio in the water. 

A comparison of the water quality data was done within this study to verify and 
quantify the water quality data (Table 5(a) and Table 5(b)). Excessive nutrient loading 
causes eutrophication of lakes and streams [32]. Increased nutrient and algae concen-
tration can lead to water quality problems when these concentrations reduce water 

 
Table 2. In situ water sample data from 8 sampling locations within the study area showing the 
sediment load. 

Site Number 
Total Dissolved Solids 

(TDS) mg/l 
Total Hardness (TH) 

mg/l 
Total Alkalinity (TA) 

mg/l 

1 852 474 245 

2 628 336 163 

3 1020 493 292 

4 408 186 176 

5 383 206 104 

6 345 264 62 

7 637 381 46 

8 532 310 87 
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Table 3. In situ water sample data from 8 sampling locations within the study area in 2011 
showing anion content. 

Site  
Number 

Nitrate-Nitrite 
as N (mg/l) 

Phosphate 
(mg/l) 

Chloride 
(mg/l) 

Sulphate 
(mg/l) 

Bicarbonate 
(mg/l) 

1 0.2 1.14 15.9 411 245 

2 0.2 0.9 5.63 317 163 

3 0.2 2.15 12.8 503 292 

4 0.1 2.2 8.39 533 176 

5 0.2 0.41 13.5 169 104 

6 0.1 1.8 3.55 96 62 

7 0.2 0.91 11.2 284 46 

8 0.2 0.98 10.9 208 87 

 
Table 4. In situ water sample data from 8 sampling locations within the study area in 2011 
showing cation content. 

Site  
number 

Calcium 
(mg/l) 

Iron 
(mg/l) 

Magnesium 
(mg/l) 

Manganese 
(mg/l) 

Potassium 
(mg/l) 

Sodium 
(mg/l) 

1 77.6 0.02 67.9 0.042 17.7 73.8 

2 61.1 0.228 44.5 0.03 10.4 59.8 

3 86.9 0.055 67 0.087 12.4 121 

4 41.1 0.316 20.3 0.135 8.13 50.8 

5 37.8 0.02 27.2 0.351 8.07 33.8 

6 52.9 0.02 31.9 0.09 15 12.5 

7 73 0.035 48.3 0.095 11.8 60.4 

8 62.1 0.02 37.7 0.425 12.2 53.4 

 
Table 5. (a) Comparison of year-wise water quality data for the Pipestem Creek outlet at Pingree 
in North Dakota, USA. (b) Comparison of year-wise water quality data for the Pipestem Creek 
outlet at Pingree in North Dakota, USA. 

(a) 

Year N (mg/l) Phosphate (mg/l) Sulphate (mg/l) 

2013 0.03 0.121 573 

2014 0.016 0.172 802 

2015 0.33 0.07 408 

2016 0.12 0.09 612 

(b) 

Year 
Bicarbonate 

(mg/l) 
Calcium 
(mg/l) 

Sodium 
(mg/l) 

Potassium 
(mg/l) 

Manganese 
(mg/l) 

Magnesium 
(mg/l) 

TDS 
(mg/l) 

TH 
(mg/l) 

2013 337 125 115 13.9 138 71.4 1130 689 

2014 826 232 206 16.8 270 97.1 1870 1130 

2015 619 146 122 9.61 575 69.9 1110 678 

2016 543 167 143 11.4 256 121 1340 817 
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clarity, harm wildlife and reduce recreational uses [33]. Decaying algae decreases dis-
solved oxygen concentration making the streams and lakes unable to support fish and 
other aquatic life [33]. A higher concentration of Total Dissolved solids (TDS) is noted 
along with Total Hardness (TH) and Total Alkalinity (TA) (Table 1). Field data from 
2011 and USGS field data from 2013 to 2016 from Pingree in North Dakota were com-
pared which produced extremely high levels of TDS ranging from 1130 mg/L to 1340 
mg/L along with Total Hardness ranging from 618 mg/L to 1130 mg/L. The EPA Sec-
ondary Regulations advise a maximum contamination level (MCL) of 500 mg/L for 
TDS [34]. Generally, high levels of TDS are caused by the presence of potassium, chlo-
rides and sodium which is evident from the data collected within the Pipestem Creek. 
Sulphate salts are a major contaminant in natural waters. Results from the field data 
have shown that sulphate content in the watershed is very high. Problems caused by 
sulphates are most often related to their ability to form strong acids which changes the 
pH [35]. Sulphate ions also are involved in complexing precipitation reactions which 
affect solubility of metals and other substances [35]. High sodium concentrations found 
in water samples indicate a high pH, lack of oxygen inadequate nutrients in the water. 
This region has noticeable excessive algal bloom. High levels of bicarbonate were found 
which may have increased the Sodium Adsorption Ratio (SAR) Index of the water. The 
SAR is a ratio that measures the relative concentration of sodium to calcium and Mag-
nesium. This index is indicative of the alkalizing effect within the watershed [36]. The 
FAO Document Repository states that excessive sodium in water promotes soil disper-
sion and structural breakdown which can result in water infiltration problems due to 
soil dispersion and plugging and sealing of the surface pores similar to water with low 
alkalinity [37]. Intensive agricultural activities impact ecological and environmental 
quality and affect water quality [38]. One of the most significant impacts is from in-
creased Non-Point Source pollution loading, which has caused serious water pollution 
problems in recent decades [39]. Soil samples analyzed generated similar results show-
ing that the soil was excessively alkaline with presence of large amounts of soluble salts. 
These may be the effects of landuse which include irrigation patterns such as using 
excess salts on agricultural fields or use of excessive fertilizers. This watershed can be 
termed as impaired owing to the fact that it is a source of non-point source pollution 
resulting from the extensive agricultural fields [39]. The surface geology of this region 
is basically composed of glacial till which is mostly clay, naturally occurring aluminium 
silicate [40]. Clay imparts plasticity and is relatively impermeable to water making this 
region aptly facilitate surface runoff, letting nutrients to flow into the stream.  

4.1. Comparison to a Distributed Model 

The Annualized Agricultural Non-Point Source Model (AnnAGNPS) is used to eva-
luate non-point source pollution in impaired watersheds. It is currently used by many 
USA agencies to investigate non-point source pollution problems. The distributed pa-
rameter feature of the model allows spatial simulation [41]. Pease et al. (2010) used the 
AnnAGNPS model to determine the nutrient status of the Pipestem Creek in North 
Dakota, USA [41]. It was also used to predict the total runoff. The effectiveness of the 

http://www.epa.gov/safewater/mcl.html%23sec
http://www.epa.gov/safewater/mcl.html%23sec
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model relies on the fact that it could only be effectively applied for a large agricultural 
watershed. Runoff predicted by the AnnAGNPS model for the Pipestem creek wa-
tershed between 2004 and 2006 showed a coefficient value of 3.17. This relatively low 
coefficient value indicated that the AnnAGNPS model predicted runoff from the wa-
tershed satisfactorily [41]. To further validate the present study, the AnnAGNPS model 
which is a distributed model was compared to our spatial model in predicting impaired 
areas within the watershed. A Boolean “And” operation was executed using 3D Analyst 
in ArcMap 10.4.1. The mathematical operation generated an output value of 1, if both 
the input values were found true. The average annual sediment load data from the 
AnnAGNPS model was combined with the IAPCW score data to generate a new raster 
dataset. The new dataset was clipped in ArcMap so that the image showed the same 
areal extent used in the AnnAGNPS model. Figure 11 shows the resultant image where 
areas of high sediment load overlap with a low IAPCW. The data was sorted into a fre-
quency distribution table where the class interval was kept 3 for the first two classes. 
This was done to create a comparison scale between IAPCW and sediment load within the 
area that categorises the sediment load into high, moderate and low regions. Within the 
Pipestem Creek, areas yielding less cropland correspond to areas with increased sedi-
ment load. Sediment predicted by the AnnAGNPS model showed limited values, but 
comparing average annual sediment loads to the landuse data layer, it appeared that 
non-cropland areas did not significantly contribute to any sediment loads. The spatial 
distribution generated by the AnnAGNPS study showed fallow areas produce signifi-
cant amounts of sediment loads from the watershed. These same locations in this study 
 

 
Figure 11. Comparative study: Pipestem Creek watershed showing highlighted areas of in-
creased average annual sediment load. 
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generated a low IAPCW. Nitrogen and Phosphorus levels were not compared since the 
model predicted low nutrient levels due to surface runoff. AnnAGNPS is a distributed 
model which uses explicit data thus it is not compatible with small watersheds [42]. 

5. Conclusions 

The levels of TDS are much higher in the data of years 2014 to 2016 compared to the 
year 2011 which points out to the fact that the alkalizing effect within the watershed 
had increased. 

The goal of the study was used to identify NPS Pollution areas under limited data 
conditions which may be practical and credible. 

Considering the costs incurred and time constraints in monitoring a watershed, this 
method provides a cost effective preliminary way to identify impairment within a small 
agricultural watershed such as the Pipestem Creek. 

This paper combined geographic and anthropogenic variables to locate impaired 
areas within a watershed. We can adduce that the method employed in this study can 
be applied to a small watershed albeit the model is limited to data type and does not 
take into account a temporal component. 

The fusion of real time data within ArcGIS environment has improved the reliability 
of the index of the ability to produce clean water output, and extended existing GIS 
functionalities. The implementation of the tool enables decision makers to follow a 
comprehensive yet easy-to-use procedure to examine weight sensitivity in both criteria 
and geographic space. The Pipestem reservoir is listed as a Total Maximum Daily Load 
(TMDL) for nutrients and eutrophication. Conservation practices that can be used to 
address these water quality issues include grazing management, erosion control, nu-
trient and pest management, as well as, agricultural waste management, and riparian 
buffers.  
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