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Abstract 
The stable operation of first and second order Zero Crossing Digital Phase Locked 
Loop (ZCDPLL) is extended by using a Fixed Point Iteration (FPI) method with re-
laxation. The non-linear components of ZCDPLL such as sampler phase detector and 
Digital Controlled Oscillator (DCO) lead to unstable and chaotic operation when the 
filter gains are high. FPI will be used to stabilize the chaotic operation and conse-
quently extend the lock range of the loop. The proposed stabilized loop can work in 
higher filter gains which are needed for faster signal acquisition. 
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1. Introduction 

Digital Phase Locked Loop (PLL) has been widely used and for many years in wireless 
and wired communications subsystems. It is an essential component in clock and car-
rier recovery, and frequency synthesizer. Digital Phase locked Loops (DPLLs) have bet-
ter reliability and higher stability compared to analogue counterpart at lower cost and 
can easily be part of a digital processing equipment [1]. The researchers show strong 
interest in the design of digital PLLs (DPLLs) to solve problems associated with analog 
DPLLS, such as, sensitivity to DC drift and component inaccuracies and saturation, and 
their need for initial calibration [1] [2]. The sampler type classifies DPLL into two ma-
jor categories: uniform sampling DPLLs (US-DPLLs) and non-uniform sampling 
DPLLs (NUS-DPLLs). Different types of NUS-DPLLs have been introduced according 
to the way to detect the phase difference between locally generated carrier and the input 
signal to the loop from the sampled signal such as zero crossing DPLL (ZCDPLL) [3] 
[4] and digital tan-lock loop (DTLL) [5] [6] [7]. ZCDPLL is a closed loop system used 
to follow the zero crossing of the input carrier signal. It consists of a sampler (acting as 
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a phase detector), a digital loop filter and a digital controlled oscillator [8] [9] [10] [11]. 
The most commonly used DPLL is the Zero Crossing Digital Phase Locked Loop 
(ZCDPLL). The operation is based on tracking the signal input phase by using non 
uniform sampling techniques. The sample value is a function of the signal input phase. 
These values are filtered before they are used back to control the next sampling time by 
the help of Digital Controlled Oscillator (DCO). The non-linear behaviour of ZCDPLL 
leads bifurcation instabilities to its path to chaos [12].  

A number of methods were proposed for chaos control [13] such as using Pyragas 
method to broaden the tracking range by extending the stable operation behaviour of 
ZCDPLL to a larger digital filter gain, which leads to larger input frequency [11]. Fixed 
Point Iteration (FPI) with relaxation will be presented to extend the stable operation 
range of both first and second order ZCDPLL. The stabilized loops are analyzed and the 
results are verified using bifurcation theory and a numerical simulation. It is the first 
time that FPI used to stabilize the chaotic operation of the DPLL. 

In Section 2, the conventional first order ZCDPLL operation is described. Section 3 
discusses the Fixed Point stabilization algorithm, and in section 4 the second order 
ZCDPLL is presented, while Section 5 details the operation of the second order 
ZCDPLL when FPI chaos control is included in the loop. Simulation results are pre-
sented in Section 6 and finally conclusions are given in Section 7. 

2. First Order ZCDPLL 

Conventional first order ZCDPLL is shown in Figure 1. Let us assume that the input 
signal ( )x t  is defined as 

( ) ( ) ( )sin , 0nx t A t n t tω= + <  
( ) ( ) ( )0sin , 0x t A t n t tω φ= + + >                     (1) 

where ( )n t  is Additive White Gaussian Noise (AWGN), 0φ  is initial phase (can be 
assume zero without loosing generality), ω  is the input signal frequency, and nω  is 
the nominal frequency or DCO free running frequency when no input signal is applied. 
The input signal is assumed to be noise free [ ( ) 0n t = ]. This input signal kx  is sam-
pled at kt  instants determined by DCO. 

( )sink k kx A tω=                            (2) 

the sampling instants kt  can be represented by  
 

 
Figure 1. Block diagram of conventional first ZCDPLL. 



Q. Nasir 
 

537 

1k k kt t T−= +                             (3) 

kT  is the Digital Controlled Oscillator (DCO) period, which is given by [15]:  

1k n kT T y −= −                             (4) 

where ( )2πn nT ω=  is the nominal period, 1ky −  is the output of digital filter. The 
input signal phase can be represented as kθ . The sampled signal input ( )x t  will be  

1

0
sin

k

k n n i k
i

x A kT yω θ
−

=

  = − +  
  

∑ .                    (5) 

The phase error kφ  is determined by:  

1

0

k

k k n n i
i

kT yφ θ ω
−

=

 = − − 
 

∑ .                       (6) 

Then  

1 1 1k k k k n kyφ φ θ θ ω− − −− = − − .                      (7) 

The sampled values kx  is passed through a digital filter D(z) to produce the output 

ky . The digital loop filter can be of zero order (just gain block) or first order (gain and 
summation blocks). The loop filter output ky  can be written as:  

k ky Kx=  
where K is the zero order filter gain (First Order ZCDPLL), while for first order filter or 
second order ZCDPLL, the outputs will be:  

1

1 2
0

k

k k i
i

y K x K x
−

=

= + ∑                          (8) 

where 1K  and 2K  are the loop filter gains. If a frequency step of a value sw  is ap-
plied to the ZCDPLL ( s nw w w= − ), then the signal input phase can be expressed as: 

( )k n ktθ ω ω= −  
( )1 1k n ktθ ω ω− −= −  

( ) ( )1 1k k s k kt tθ θ ω ω− −− = − −  
( ) ( )1 1k k n n kT yθ θ ω ω− −− = − −  

( )1 1k k sn n kyθ θ ω ω ω− −− = − −                       (9) 

where ( )sn n nTω ω ω= −  is normalized frequency step size. Consequently the phase 
error can be written as  

( )1 1 1k k sn n k n ky yφ φ ω ω ω ω− − −= − − − −  

1 1k k k snyφ φ ω ω− −= − − + .                       (10) 

Therefore first order ZCDPLL phase error operation function will be:  

( )1 1sink k k snKAφ φ φ ω− −= − + .                     (11) 

The phase error mapping function ( ( )1k kfφ φ −= ) will be:  
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( ) ( )1 1 1sink k k snf KAφ φ φ ω− − −= − + .                   (12) 

3. Extending the Stable Operation of First Order ZCDPLL 

Various methods and techniques were used to control the instability of chaotic opera-
tion of control loop such as Ott-Grebogi-Yorke (OGY) or Pyragas [14]. In this paper 
the Fixed Point Iteration (FPI) with relaxation is used to extend the stable operation of 
the ZCDPLL. FPI was used the first time by Babylonian (2000 B.C) to estimate the 
square root. The original version was used for finding a  as:  

( )1
1
2k k n

k

az z f z
z+

 
= + = 

 
.                     (13) 

Then Hillam [16] proposed FPI with relaxation for fixed point stability as follow:  

( )
1 1

n n
k

f z pz
z

p+

−
=

−
                         (14) 

p is fractional constant which control the amount of feedback. This algorithm can’t be 
used when ( )* 1f z′ =  (non-hyperbolic fixed points (8, 9). Let us apply the above FPI 
with relaxation to stabilize ZCDPLL operation. Then the operation Equation (12) 
should become as: 

( )1 1

1
k k

k
f p

p
φ φ

φ − −−
=

−  
( )1 1 1sin
1

k k sn k
k

KA p
p

φ φ ω φ
φ − − −− + −

=
−

.                  (15) 

The system will be stable when 1kφ′ < . This condition of the derivative of Equation 
(15) will be: 

( )1 11 cos
1

1
k

k
K p

p
φ

φ −− −
′ = <

−  

where 1K KA= . The stable operation phase error ( *
kφ ) was found to be at 

* 1

1

sin sn
k K

ω
φ −  

=  
 

 [15]. The values of the constant (p) which can stabilize ZCDPLL op-

eration is determined from Equation (16). The values are 

2 2
1

11 .
2 snp K ω< − −  

The stabilized first order ZCDPLL using FPI with relaxation is shown in Figure 2. 

4. Second Order ZCDPLL Operation 

The first order filter transfer function ( )D z  of the second order ZCDPLL can be 
written as:  

( ) ( )
( )

2
1 1 .

1
Y zKD z K
X zz−

= + =
−
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Figure 2. FPI chaos controlled first order ZCDPLL. 

 
Then ( )Y z  is expressed as  

( ) ( ) ( ) ( ) 2
1 11

KY z X z D z X z K
z−

 = = + − 
                (16) 

( )( ) ( )( ) ( )1 1
1 21 1Y z z K z K X z− −− = − + .                (17) 

To express Equation (16) in time domain:  

( )1 1 2 1 1= .k k k ky y K K x K x− −+ + −  

Then the operation Equations (10) is given by [17]  

( )1 2 2 12k k k k ky yφ φ φ ω− − − −− + = −                    (18) 

( ) ( ) ( )( )1 2 1 2 1 1 22 sin sin .k k k k kK K Kφ φ φ ω φ φ− − − −− + = − + −           (19) 

If we assume 2

1

1
Kr
K

= + , 1 1K K ω′ = , then the second order ZCDPLL operation equ-

ation can be written as 

( ) ( )1 1 1 2 1 2sin sin .k k k k krK Kφ φ φ φ φ− − − −′ ′= − − −               (20) 

To guarantee the stable operation of the loop, then inequality should be satisfied [17]  

1
40 , 1.

1
K r

r
′< < >

+
                        (21) 

5. Extending the Stable Operation of Second Order ZCDPLL 

The proposed FPI with relaxation for fixed point stability is applied for second order as 
well and the new operation equation can be written as:  

( ) ( )( )1 1 1 2 1 2 1
1= sin sin .

1k k k k k krK K p
p

φ φ φ φ φ φ− − − − −′ ′− − − −
−

        (22) 

The system state vector is defined as 1
2k kz φ −= , 2

1k kz φ −= , ( )T1 2,z z=z . Then 

( ) ( )( )
( )
( ) ( )

2
1

11
2 2 1 1 22

21 11
1 sin sin

1

k
k

k
k k k k kk

z gz
gz rK z z K z pzz

p

+

+

 
    =    ′ ′− − − −    − 

 

z
G z

z
 (23) 
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around the stable operating point ( )1 1sin k kz z≈ , ( )2 2sin k kz z≈ . The Jacobian 
( ) j

ig z′ = ∂ ∂G z  is given by  

( ) ( ) ( )1 1

0 1
.1 11 1

1 1
K rK p

p p

 
 ′ =  ′ ′− − − − − − 

G x               (24) 

In order to have eigen values of ( )′G z  less than 1, or 1, 1,2i iλ < = , where iλ  
satisfies the characteristic equation ( ) ( )* 0F λ λ ′= − =I G z  in [17]  

( ) ( ) ( )2
1 1

1 11 1 .
1 1

F rK p K
p p

λ λ λ′ ′= − − − + −
− −

             (25) 

Using Jury stability test [18], the roots of the polynomial ( )F λ  defined in (25) are 
within a unit circle, or the eigen values are less than 1, if ( ) ( )21 1F− −  greater than 0. 
Then p should satisfies the following:  

( ) ( )1 1
1 1 1 0

1
rK p K

p
′ ′− − + − >

−  

12 1rK p p′− − > − +  
( )13 1

.
2

K r
p

′− +
<                          (26) 

Since 1
4

1
K

r
′ <

+
 or ( )1 1 4K r′ + <  this leads that 0.5p < − . Jury stability test ap- 

plied on ( )F λ  the absolute value of the constant term of the equation should be less 
than 1. This leads to 

( )1
1 1 1

1
K

p
′− <

−  
( )11 1 1K ′− < − <  

1 2 .p K p′< < −                            (27) 

6. System Performance 
The first and second order conventional and FPI chaos controlled ZCDPLL is simu-
lated by using MATLAB. The input signal is assumed to be ( ) ( )sins t wt=  with peak 

amplitude of 1 volt and angular frequency of 12π ,f f
T

ω = = . The free running fre- 

quency of DCO is 2π rpsnw =  or 1 Hznf = . During simulation, the first 100 samples 
of the DCO period ( DCOT ) values are discarded to allow the loop to stabilize. The next 
100,000 samples are collected and recorded to generate bifurcation plot. The bifurca-
tion plot maps the DCOT  values versus the filter gain(s). It will be used to compare the 
operation ranges of the conventional and FPI chaos controlled ZCDPLL. 

First order ZCDPLL is subjected to a frequency step of 1.3 Hz. Then DCOT  values are 
recorded for three cases. The first case shown in Figure 3(a) is for conventional 
ZCDPLL. The conventional loop bifurcates at 1 0.32K = . DCO period jitter is used to 
show the amount of deviation of the period compared to the input signal period (jitter  
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= DCO,max DCO,minT T
T
−

, where T is input signal period). Figure 3(b) shows that FPI chaos  

controlled first order ZCDPLL bifurcates 1 0.53K = , which is higher than for conven-
tional loop (Chaos control constant 0.8p = −  was used in this test). This agrees with 
the theoretical analysis presented earlier. Figure 3(c) shows how adaptive values of the 
constant (p) (Equation (16)) can be used to continuously stabilize the loop by changing 
its values according to filter gain ( 1K ). 

There are two filter parameters in the second order loop ( 1 2,K K ). In these simula-

tions we fixed the gains ratio ( 2

1

1
Kr
K

= + ) and vary 1K  value. Figure 4 shows clearly  

that the FPI chaos controlled loop has extended stable operation when the filter para-
meter ( 1K ) varied. Gains ratio used here is 1.3r = , and the chaos control constant is 
set to be ( 0.8p = − ). The conventional ZCDPLL bifurcates at 1 0.25K =  while the FPI 
chaos controlled loop bifurcate after 1 0.6K = . Figure 5 shows that even the filter 
gains ration (r) is increased to 1.6, that the loop still has extended operation range as 
well. The conventional loop bifurcates at 1 0.2K = , while the FPI chaos controlled loop 
starts to bifurcate at 1 0.5K = . If the filter gains ratio r is further increased as shown in 
Figure 6, the FPI chaos controlled will be unstable. This means that the chaos control 
constant (p) should be carefully chosen according to the inequality that is derived in 
this paper. 

 

 
Figure 3. First order FPI-ZCDPLL performance for different values of p. 
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Figure 4. Second order FPI-ZCDPLL performance for different values of p and 1.1r = . 

 

 
Figure 5. Second order FPI-ZCDPLL performance for different values of p and 1.6r = . 
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Figure 6. Second order FPI-ZCDPLL performance for different values of p and 2.1r = . 

7. Conclusion 

This paper proposes a Fixed Point Iteration (FPI) with relaxation to control the chaotic 
operation of the ZCDPLL. The analytic expressions for the stable operation for both 
conventional and FPI chaos control first and second order ZCPLL are found and con-
firmed by simulation. It is found that the lock range of the FPI chaos controlled loop is 
larger than that of the conventional loop for both orders. The validity of the results is 
conformed through numerical simulations. It is also found that careful selection of 
chaos control parameters is needed to ensure that the loop is still working in stable op-
eration. This extended operation of the ZCDPLL leads to larger lock range. The larger 
values of filter gains of FPI chaos controlled will automatically decrease the input signal 
acquisition time. 

References 
[1] Lindsay, W. and Chie, C.M. (1981) A Survey of Digital Phase Locked Loops. IEEE Pro-

ceeding, 69, 410-431. http://dx.doi.org/10.1109/PROC.1981.11986 

[2] Al-Araji, S.R., Hussain, Z.M. and Al-Qutayri, M.A. (2006) Digital Phase Lock Loops: Ar-
chitectures and Applications. Kluwer Academic Publishers (Springer), Netherlands. 
http://dx.doi.org/10.1007/978-0-387-32864-5 

[3] Nasir, Q. (2015) FIR Digital Filter Based ZCDPLL for Carrier Recovery. International 
Journal of Electronics, 103, 736-746. http://dx.doi.org/10.1080/00207217.2015.1046501 

[4] Nasir, Q. and Al-Araji, S. (2011) Linearized Phase Detector Zero Crossing DPLL Perfor-

http://dx.doi.org/10.1109/PROC.1981.11986
http://dx.doi.org/10.1007/978-0-387-32864-5
http://dx.doi.org/10.1080/00207217.2015.1046501


Q. Nasir 
 

544 

mance Evaluation in Faded Mobile Channels. Circuits and Systems, 2, 139-144. 
http://dx.doi.org/10.4236/cs.2011.23021 

[5] Lee, J. and Un, C. (1982) Performance Analysis of Digital Tanlock Loop. IEEE Transactions 
on Communications, 30, 2398-2411. http://dx.doi.org/10.1109/TCOM.1982.1095407 

[6] Hussain, Z.M. and Boashash, B. (2002) The Time-Delay Digital Tanlock Loop: Performance 
Analysis in Additive Gaussian Noise. Journal of the Franklin Institute, 339, 4360. 
http://dx.doi.org/10.1016/S0016-0032(01)00059-X 

[7] Sarkar, B.C., De Sarkar, S.S. and Banerjee, T. (2014) Nonlinear Dynamics of a Class of Dig-
ital Tan-Lock Loops with Non-Ideal Phase Detector. Signal Processing, 104, 311-318. 
http://dx.doi.org/10.1016/j.sigpro.2014.04.008 

[8] Nasir, Q. and Al-Araji, S. (2009) Performance Analysis of Zero Crossing DPLL with Linea-
rized Phase Detector. International Journal of Information and Communication Technolo-
gy, 1. 

[9] Al-Araji, S., Mezher, K. and Nasir, Q. (2013) First-Order Digital Phase Lock Loop with 
Continuous Locking. 5th International Conference on Computational Intelligence, Com-
munication Systems and Networks, Madrid, 5-7 June 2013, 414-417.  
http://dx.doi.org/10.1109/cicsyn.2013.30 

[10] Nasir, Q. and Al-Araji, S. (2013) Performance Evaluation of Sigma Delta Zero Crossing 
DPLL. The IEEE International Conference on Electronics, Circuits, and Systems, 11-14 
December 2011, Beirut.  

[11] Nasir, Q. (2005) Extended Lock Range Zero-Crossing Digital Phase-Locked Loop with 
Time Delay. EURASIP Journal on Wireless Communications and Networking EURASIP 
JWCN, 3, 413-418. http://dx.doi.org/10.1155/wcn.2005.413 

[12] Nasir, Q. (2004) Chaotic Behaviour of First Order Zero Crossing Digital Phase Locked 
Loop. IEEE Asia-Pacific Conference on Circuits and Systems, 977-980. 
http://dx.doi.org/10.1109/apccas.2004.1413044 

[13] Fradkov, A.L. and Evans, R.E. (2002) Control of Chaos: Survey 1997-2000. Proceedings of 
15th IFAC World Congress, Barcelona.  
http://dx.doi.org/10.3182/20020721-6-es-1901.01645 

[14] Pyragas, K. (1992) Continuous Control of Chaos by Self-Controlling Feedback. Physical 
Letters A, 170, 412-428. http://dx.doi.org/10.1016/0375-9601(92)90745-8 

[15] Osborne, H.C. (1980) Stability Analysis of an Nth Power Phase-Locked Loop-Part I: First 
Order DPLL. IEEE Transactions on Communications, 28, 1343-1354. 
http://dx.doi.org/10.1109/TCOM.1980.1094771 

[16] Hillam, B. (1975) A Generalization of Kransnoselki’s Theorem on the Real Line. Mathe-
matics Magazine, 48, 167-168. http://dx.doi.org/10.2307/2689700 

[17] Osborne, H.C. (1980) Stability Analysis of an Nth Power Phase-Locked Loop-Part II: 
Second- and Third-Order DPLLs. IEEE Transactions on Communications, 28, 1355-1364. 
http://dx.doi.org/10.1109/TCOM.1980.1094772 

[18] Kuo, B.C. (1963) Analysis and Synthesis of Sampled Data Control Systems. Prentice Hall, 
Englewood Cliffs. 

 
 

http://dx.doi.org/10.4236/cs.2011.23021
http://dx.doi.org/10.1109/TCOM.1982.1095407
http://dx.doi.org/10.1016/S0016-0032(01)00059-X
http://dx.doi.org/10.1016/j.sigpro.2014.04.008
http://dx.doi.org/10.1109/cicsyn.2013.30
http://dx.doi.org/10.1155/wcn.2005.413
http://dx.doi.org/10.1109/apccas.2004.1413044
http://dx.doi.org/10.3182/20020721-6-es-1901.01645
http://dx.doi.org/10.1016/0375-9601(92)90745-8
http://dx.doi.org/10.1109/TCOM.1980.1094771
http://dx.doi.org/10.2307/2689700
http://dx.doi.org/10.1109/TCOM.1980.1094772


 
 

 

 
Submit or recommend next manuscript to SCIRP and we will provide best service 
for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact ijcns@scirp.org 

http://papersubmission.scirp.org/
mailto:ijcns@scirp.org

	Fixed Point Iteration Chaos Controlled ZCDPLL
	Abstract
	Keywords
	1. Introduction
	2. First Order ZCDPLL
	3. Extending the Stable Operation of First Order ZCDPLL
	4. Second Order ZCDPLL Operation
	5. Extending the Stable Operation of Second Order ZCDPLL
	6. System Performance
	7. Conclusion
	References

