
American Journal of Operations Research, 2016, 6, 480-488
http://www.scirp.org/journal/ajor

ISSN Online: 2160-8849
ISSN Print: 2160-8830

DOI: 10.4236/ajor.2016.66044 November 21, 2016

Resolution of Resource Contentions in the
CCPM-MPL Using Simulated Annealing
and Genetic Algorithm

Hajime Yokoyama, Hiroyuki Goto

Department of Industrial & System Engineering, Hosei University, Tokyo, Japan

Abstract
This research aims to plan a “good-enough” schedule with leveling of resource con-
tentions. We use the existing critical chain project management-max-plus linear
framework. Critical chain project management is known as a technique used to both
shorten the makespan and observe the due date under limited resources; the max-
plus linear representation is an approach for modeling discrete event systems as
production systems and project scheduling. If a contention arises within a single re-
source, we must resolve it by appending precedence relations. Thus, the resolution
framework is reduced to a combinatorial optimization. If we aim to obtain the exact
optimal solution, the maximum computation time is longer than 10 hours for 20
jobs. We thus experiment with Simulated Annealing (SA) and Genetic Algorithm
(GA) to obtain an approximate solution within a practical time. Comparing the two
methods, the former was beneficial in computation time, whereas the latter was bet-
ter in terms of the performance of the solution. If the number of tasks is 50, the solu-
tion using SA is better than that using GA.

Keywords
Critical Chain Project Management, Max-Plus Algebra, CCPM-MPL, Simulated
Annealing, Genetic Algorithm

1. Introduction

This research aims to plan a “good-enough” schedule with leveling of resource conten-
tions. References [1] and [2] modified and extended a scheduling methodology referred
to as critical chain project management-max-plus linear (CCPM-MPL), in which
CCPM [3] [4] was applied to the max-plus algebra [5]. CCPM is a technique for project

How to cite this paper: Yokoyama, H. and
Goto, H. (2016) Resolution of Resource
Contentions in the CCPM-MPL Using Si-
mulated Annealing and Genetic Algorithm.
American Journal of Operations Research, 6,
480-488.
http://dx.doi.org/10.4236/ajor.2016.66044

Received: September 20, 2016
Accepted: November 18, 2016
Published: November 21, 2016

Copyright © 2016 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/ajor
http://dx.doi.org/10.4236/ajor.2016.66044
http://www.scirp.org
http://dx.doi.org/10.4236/ajor.2016.66044
http://creativecommons.org/licenses/by/4.0/

H. Yokoyama, H. Goto

481

management invented by E. M. Goldratt and developed by L. P. Leach. The objective of
this method is to both shorten the makespan and observe the due date under a limited
number of resources. The max-plus algebra is an algebraic system wherein the max and
plus operations are defined as addition and multiplication, respectively. MPL [1] repre-
sentation is an approach for modeling and analyzing a class of discrete-event systems
such as production and project scheduling, in which the behavior of the target system is
represented by linear equations in the max-plus algebra. MPL representation can for-
mulate systems with structures of non-concurrency, synchronization, parallel pro-
cessing of multiple tasks, and so on [1]. We assume that a single resource cannot
process multiple tasks simultaneously. If a contention arises within a single resource,
we must resolve it by appending precedence relations. Thus, the resolution framework
is reduced to a combinatorial problem. To level resource contentions, we developed a
complete enumeration method by which an exact solution is obtained. In a numerical
simulation, the maximum computation time was longer than 10 hours for 20 jobs. Ref-
erence [6] obtained a “good-enough” schedule by using Genetic Algorithm (GA) within
a short computation time. On the other hand, we uncovered a preliminary design to
obtain a “good-enough” schedule by using Simulated Annealing (SA) [7]. However, it is
not currently clear which of the two methods is better. Hence, this research compares
the two methods in terms of the performances of their solutions, computation times,
and values.

2. CCPM-MPL Framework

After defining the max-plus algebra, we define the CCPM-MPL framework with the
help of [1] and [2].

2.1. Max-Plus Algebra

We define a set { }max = −∞  , where  is the whole real line. Then, for

max,x y∈ , we define the operators:

()max , ,x y x y⊕ = (1)

.x y x y⊗ = + (2)

The priority of operator ⊗ is higher than that of ⊕ . If max, m n×∈X Y  and

max
n q×∈Z  ,

[] [] [] ,ij ij ij⊕ = ⊕X Y X Y (3)

[] [] []1max .n
kij ik kj=⊗ = ⊗X Z X Y (4)

The zero and unit elements for operators ⊕ and ⊗ are denoted by ()ε = −∞
and ()0e = , respectively. ε is a matrix whose elements are all ε , and e is a matrix
whose diagonal elements are e and whose off-diagonal elements are ε . If max

n n×∈X  ,
the following operator *X is the Kleene star:

()1* 2 ,s⊗ −⊗= ⊕ ⊕ ⊕ ⊕X e X X X (5)

H. Yokoyama, H. Goto

482

where ()1s s n≤ ≤ is an instance that satisfies ()1s⊗ − ≠X ε and s⊗ =X ε . In addi-
tion, we define

\ .x y x y= − + (6)

2.2. Formulation of the CCPM-MPL Framework

We define the following relevant matrices and vectors:
• n: number of tasks;
• p : number of external outputs;
• q : number of external inputs;
• 0 max

n q×∈B  : input matrix, []0 ij
B = {e: if task i has an input transition j, ε: other-

wise};
• 0 max

p n×∈C  : output matrix, []0 ij
C = {e: if task j has an output transition i, 𝜀𝜀: other-

wise};
• 0 max

n n×∈F  : adjacency matrix, []0 ij
F = {e: if task i has a preceding task j, ε: other-

wise};
• max

n∈d  : system parameter, []id : duration time in task i;
• max

q∈u  : input vector, []iu : input time to external input i;

• max
p∈y  : output vector, []iy : output time from external output i;

• max
n∈x  : state vector, []ix : start or completion time of task i.

The earliest task-completion times of all tasks, Ex , are calculated using

E 0 0 ,= ⊗ ⊗x A B u (7)

where

()*0 0 0 0 ,= ⊗ ⊗A P F P (8)

()0 diag .=P d (9)

Matrixes 0A and 0P are the transition and weight matrices, respectively. The ear-
liest output times to all output transitions, Ey , are then calculated by

E 0 E .= ⊗y C x (10)

Then, the latest task-starting times, Lx , are calculated using Equation (10):

()L 0 0 E\ .= ⊗x C A y (11)

The latest input times, Lu , are calculated in terms of Lx :

L 0 L\ .=u B x (12)

As a consequence, the total floats of all tasks can be calculated using Equations ((5)
and (8)):

()0 L E .= + −m x d x (13)

All tasks can be classified into two types: []0 0
i
=m and []0 0

i
>m are a critical and

a non-critical task, respectively. We define two vectors, 0 0 max, n∈a b  , to classify each
task as either critical or non-critical:

H. Yokoyama, H. Goto

483

[] [] []{ }0 0 0: if 0, : if 0 ,
i i i

e ε= = >a m m (14)

[] [] []{ }0 0 0: if 0, : if 0 .
i i i

e m ε= > =b m (15)

We then calculate two matrices, a b max, n n×∈P P  , as follows:

()a 0 0diag ,P= ⊗P a (16)

()b 0 0diag .P= ⊗P b (17)

In the CCPM framework, there are two types of buffers, referred to as feeding and
project buffers. The size of each buffer is calculated by

()*feed b 0 b 0 2, = ⊗ ⊗ ⊗ r P F P g (18)

()*proj a 0 a 0 2, = ⊗ ⊗ ⊗ r P F P g (19)

where

[]T0 max .ne e e= ∈g   (20)

Feeding buffers are inserted wherever a non-critical task joins into a critical one. A
project buffer is inserted on the eve of an output to avoid tardiness of the project. To
reflect the insertion of the two types of buffers, we incur weights to the adjacency ma-
trix 0F and the output matrix 0C :

() ()bufs 0 0 0 feeddiag diag ,= ⊕ ⊗ ⊗F F a F r (21)

() ()bufs 0 proj feeddiag diag . = ⊗ ⊕ C C r r (22)

Now we can calculate the earliest task-completion, E′x , and the output time, E′y ,
after inserting the time buffers. The earliest task-completion times of all nodes, E′x , are
calculated using

E 0 0 ,′ ′= ⊗ ⊗x A B u (23)

()*0 0 bufs 0 .′ = ⊗ ⊗A P F P (24)

Matrix 0′A is the transition matrix, in which the insertion of the two types of buffers
is reflected. The earliest output times to all output transitions, E′y , are then calculated
by

E bufs E .′ ′= ⊗y C x (25)

We treat E′y as the objective function and consider minimizing []E i
′y .

3. Resolution of Resource Contentions

We explain the resolution of resource contentions with the help of [8]. We add relevant
matrices and vectors as follows:
• l : number of resources,
• s : maximum number of tasks that a single resource processes,
• l s×∈S  : processing order of tasks,

[] { }: resource processes task in the th processing, 0 : otherwiseij k i k j=S .

H. Yokoyama, H. Goto

484

We consider Figure 1 as an example project with five tasks before the leveling of re-
source contentions. The duration time of each task is []T3 4 5 2 1=d . The adja-
cency matrix, 0F , is

0 .
e

e
e e

ε ε ε ε ε
ε ε ε ε

ε ε ε ε ε
ε ε ε ε
ε ε ε

 
 
 
 =
 
 
  

F (26)

Tasks 1, 4, and 5 are processed by resource 1, whereas tasks 2 and 3 are processed by
resource 2. If resource 2 processes tasks 2 and 3 simultaneously, a resource contention
occurs. We avoid contentions between tasks 2 and 3 by appending two precedence rela-
tions, which are expressed by broken arrows in Figure 2, which shows the project after
the resource contention is leveled. We then reflect the leveling of the resource conten-
tions using the following adjacency matrix, 0′F :

0 .
e e

e e
e e

ε ε ε ε ε
ε ε ε

ε ε ε ε ε
ε ε ε

ε ε ε

 
 
 

′  =
 
 
  

F (27)

In addition, the processing order of tasks, S , is

1 4 5
.

3 2 0
 

=  
 

S (28)

Our numerical simulation to level resource contentions shows that the maximum

Figure 1. Example of a fifth-task project before a resource contention is leveled.

Figure 2. Example of the fifth-task project after the resource contention is leveled.

H. Yokoyama, H. Goto

485

computation time was longer than 10 hours for 20 jobs. We thus consider the develop-
ment of approximate methods within a short computation time.

4. Two Metaheuristics

We experiment with an optimization based on Genetic Algorithm (GA) and Simulated
Annealing (SA), both of which are common metaheuristics.

4.1. Genetic Algorithm

We experiment with an optimization based on the GA developed in [6], which is used
to obtain an approximate solution.

Algorithm 1: Genetic Algorithm
STEP 1. Set mutation parameter and termination condition, utm and i , respectively.
STEP 2. Generate a random solution, S , and create the earliest output times, []E1 i

′y .
STEP 3. Focusing on a row vector of S that gives the list of tasks for a single re-
source, split the vector into two. We then swap the two vectors, followed by generating
a new solution, ′S .
STEP 4. If a mutation occurs having probability utm , then proceed to STEP 5. Other-
wise, i.e., if a mutation does not occur, then follow STEP 6.
STEP 5. Swap two tasks of ′S at the same resource randomly.
STEP 6. Create the new earliest output times, []E2 i

′y using ′S .
STEP 7. If [] []E2 E1i i

′ ′<y y follows, then set : ′=S S and [] []E1 E2:i i
′ ′=y y .

STEP 8. Terminate if the termination condition is satisfied. If otherwise, return to
STEP4.

4.2. Simulated Annealing

SA [9] is known as an approach to efficiently obtain an approximate solution. We use
the 2-opt neighborhood method [10] based on a local search to generate a neighboring
solution.

Algorithm 2: Simulated Annealing
STEP 1. Initialize the temperature and cooling parameters, 0T and γ , respectively.
STEP 2. Generate a random solution, S , and create the earliest output times, []E1 i

′y .
STEP 3. Generate a neighboring solution, ′S , and create the new earliest output

times, []E2 i
′y .

STEP 4. Calculate [] []E2 E1i iE ′ ′∆ = −y y .
STEP 5. If 0E∆ < holds, then set : ′=S S and [] []E1 E2:i i

′ ′=y y with probably 1.
Otherwise, i.e., if 0E∆ ≥ holds, then set : ′=S S and [] []E1 E2:i i

′ ′=y y with
probably ()exp E T−∆ .

STEP 6. Update the temperature parameter, ()0 0.8 0.99k
kT Tγ γ= ≤ ≤ .The value of

γ is a cooling parameter which decreases the temperature parameter, 0T .
STEP 7. Repeat STEPS3-6.
STEP 8. Terminate if the temperatures are sufficiently low. If otherwise, return to

STEP3.

H. Yokoyama, H. Goto

486

5. Approximate Ratio and Computation Time

We obtain solutions using the SA- and GA-based algorithms. We use a personal com-
puter with the following execution environment:
• machine: Dell Optiplex 9020;
• CPU: Intel® Core™ i7-4790 3.60 GHz;
• OS: Microsoft Windows 7 Professional;
• memory: 4.0 GB;
• programming language: MATLAB R2015b.

The test cases for the numerical experiment are generated under the following condi-
tions:
• number of cases: 100;
• number of resources, l : for 10, 15, and 20 tasks, we set the number of resources to

3, 5, and 7, respectively;
• number of resources for task, i : uniformly random integer numbers;
• duration time, []id : uniformly random integer numbers.

We obtain approximate solutions using two metaheuristics. The temperature and
cooling parameter are set to 1T = and 0.85γ = , respectively, for the SA-based algo-
rithm. The mutation parameter and the end condition are set to 0.2utm = and

200i = , respectively, for the GA-based algorithm. We compare the exact and approx-
imate solutions. The performance of the solution is shown in Table 1 for the two me-
taheuristics. We can confirm that the performance of the solution using the GA-based
algorithm is smaller than that using the SA-based algorithm. The average computation
times are shown in Figure 3. We can confirm that the computation using the SA-based
algorithm is faster than that using the GA-based algorithm. The computation time of
the GA-based algorithm is more than16-fold longer than that of the SA-based algo-
rithm. The average values of the solutions are shown in Table 2. If the number of tasks
is 10 or 20, the values of the solutions using the two methods are not remarkably dif-
ferent; if the number of tasks is 30 or 40, the value of the solution using the GA-based
algorithm is smaller than that of the SA-based algorithm. However, we should note

Table 1. Performance of the solutions.

Method
Number of tasks

10 15 20

Simulated Annealing 1.001 1.002 1.006

Genetic Algorithm 1.000 1.001 1.000

Table 2. Average values of the solutions.

Method
Number of tasks

10 20 30 40 50

Simulated Annealing 155.335 260.48 365.485 467.925 563.795

Genetic Algorithm 155.215 259.055 361.755 465.45 568.955

H. Yokoyama, H. Goto

487

Figure 3. Average computation times in seconds.

here that the solution using the SA-based algorithm is better than that using the GA if
the number of tasks is 50.

6. Conclusions

This research has studied the planning of a “good-enough” schedule with leveling of
resource contentions. We utilized an existing framework called the CCPM-MPL. The
resolution framework was reduced to a combinatorial problem. We used SA- and
GA-based algorithms to obtain approximate solutions within short time. Moreover, we
used the 2-opt neighborhood to generate a neighboring solution in the SA-based algo-
rithm. Comparing the two methods, the SA-based algorithm was beneficial in terms of
computation time, whereas the latter was better in terms of the performance of the so-
lution. In addition, when the number of tasks was 50, the value of the solution using the
SA-based algorithm was better than that using the GA-based algorithm.

Developing an original heuristic to level resource contentions within a short compu-
tation time is our future work.

References
[1] Goto, H. (2017) Forward-Compatible Framework with Critical-Chain Project Management

using a Max-Plus Linear Representation. OPSEARCH, 54, 16 p..
http://dx.doi.org/10.1007/s12597-016-0276-3

[2] Goto, H., Truc, N.T.N. and Takahashi, H. (2013) Simple Representation of the Critical
Chain Project Management Framework in a Max-Plus Linear Form. SICE Journal of Con-
trol, Measurement, and System Integration, 6, 341-344.
http://dx.doi.org/10.9746/jcmsi.6.341

[3] Goldratt, E.M. (1997) Critical Chain. North River Press, Great Barrington.

[4] Leach, L.P. (2005) Critical Chain Project Management. 2nd Edition, Artech House, Boston.

[5] Heidergott, B., Olsder, G.J. and Woude, L. (2006) Max Plus at Work: Modeling and Analy-
sis of Synchronized Systems. Princeton University Press, New Jersey.

[6] Koga, H., Goto, H. and Chiba, E. (2014) Resolution of Resource Conflicts in the CCPM
Framework: Utilization of a Local Search Method or Genetic Algorithm, 50, 7-12. (In Japa-

http://dx.doi.org/10.1007/s12597-016-0276-3
http://dx.doi.org/10.9746/jcmsi.6.341

H. Yokoyama, H. Goto

488

nese)

[7] Yokoyama, H. and Goto, H. (2016) Resolution of Resource Contentions in the Critical
Chain Project Management Based on Simulated Annealing. Proceedings of the 6th Interna-
tional Conference on Industrial Engineering and Operations Management, Kuala Lumpur,
8 March 2016, 29.

[8] Koga, H., Goto, H. and Chiba, E. (2014) Resolution of Resource Conflicts in the CCPM
Framework Using a Local Search Method. Proceedings of the IEEE International Confe-
rence on Industrial Engineering and Engineering Management, Bandar Sunway, 10 De-
cember 2014, 94-98. http://dx.doi.org/10.1109/ieem.2014.7058607

[9] Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983) Optimization by Simulated Annealing.
Science, 220, 671-680. http://dx.doi.org/10.1126/science.220.4598.671

[10] Croes, G.A. (1958) A Method for Solving Traveling-Salesman Problems. Operation Re-
search, 6, 791-812. http://dx.doi.org/10.1287/opre.6.6.791

Submit or recommend next manuscript to SCIRP and we will provide best service
for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact ajor@scirp.org

http://dx.doi.org/10.1109/ieem.2014.7058607
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1287/opre.6.6.791
http://papersubmission.scirp.org/
mailto:ajor@scirp.org

	Resolution of Resource Contentions in the CCPM-MPL Using Simulated Annealing and Genetic Algorithm
	Abstract
	Keywords
	1. Introduction
	2. CCPM-MPL Framework
	2.1. Max-Plus Algebra
	2.2. Formulation of the CCPM-MPL Framework

	3. Resolution of Resource Contentions
	4. Two Metaheuristics
	4.1. Genetic Algorithm
	4.2. Simulated Annealing

	5. Approximate Ratio and Computation Time
	6. Conclusions
	References

