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Abstract 
This research aims to plan a “good-enough” schedule with leveling of resource con-
tentions. We use the existing critical chain project management-max-plus linear 
framework. Critical chain project management is known as a technique used to both 
shorten the makespan and observe the due date under limited resources; the max- 
plus linear representation is an approach for modeling discrete event systems as 
production systems and project scheduling. If a contention arises within a single re-
source, we must resolve it by appending precedence relations. Thus, the resolution 
framework is reduced to a combinatorial optimization. If we aim to obtain the exact 
optimal solution, the maximum computation time is longer than 10 hours for 20 
jobs. We thus experiment with Simulated Annealing (SA) and Genetic Algorithm 
(GA) to obtain an approximate solution within a practical time. Comparing the two 
methods, the former was beneficial in computation time, whereas the latter was bet-
ter in terms of the performance of the solution. If the number of tasks is 50, the solu-
tion using SA is better than that using GA. 
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1. Introduction 

This research aims to plan a “good-enough” schedule with leveling of resource conten-
tions. References [1] and [2] modified and extended a scheduling methodology referred 
to as critical chain project management-max-plus linear (CCPM-MPL), in which 
CCPM [3] [4] was applied to the max-plus algebra [5]. CCPM is a technique for project 
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management invented by E. M. Goldratt and developed by L. P. Leach. The objective of 
this method is to both shorten the makespan and observe the due date under a limited 
number of resources. The max-plus algebra is an algebraic system wherein the max and 
plus operations are defined as addition and multiplication, respectively. MPL [1] repre-
sentation is an approach for modeling and analyzing a class of discrete-event systems 
such as production and project scheduling, in which the behavior of the target system is 
represented by linear equations in the max-plus algebra. MPL representation can for-
mulate systems with structures of non-concurrency, synchronization, parallel pro- 
cessing of multiple tasks, and so on [1]. We assume that a single resource cannot 
process multiple tasks simultaneously. If a contention arises within a single resource, 
we must resolve it by appending precedence relations. Thus, the resolution framework 
is reduced to a combinatorial problem. To level resource contentions, we developed a 
complete enumeration method by which an exact solution is obtained. In a numerical 
simulation, the maximum computation time was longer than 10 hours for 20 jobs. Ref-
erence [6] obtained a “good-enough” schedule by using Genetic Algorithm (GA) within 
a short computation time. On the other hand, we uncovered a preliminary design to 
obtain a “good-enough” schedule by using Simulated Annealing (SA) [7]. However, it is 
not currently clear which of the two methods is better. Hence, this research compares 
the two methods in terms of the performances of their solutions, computation times, 
and values. 

2. CCPM-MPL Framework 

After defining the max-plus algebra, we define the CCPM-MPL framework with the 
help of [1] and [2]. 

2.1. Max-Plus Algebra 

We define a set { }max = −∞  , where   is the whole real line. Then, for  

max,x y∈ , we define the operators: 

( )max , ,x y x y⊕ =                          (1) 

.x y x y⊗ = +                             (2) 

The priority of operator ⊗  is higher than that of ⊕ . If max, m n×∈X Y   and 

max
n q×∈Z  , 

[ ] [ ] [ ] ,ij ij ij⊕ = ⊕X Y X Y                        (3) 

[ ] [ ] [ ]1max .n
kij ik kj=⊗ = ⊗X Z X Y                     (4) 

The zero and unit elements for operators ⊕  and ⊗  are denoted by ( )ε = −∞  
and ( )0e = , respectively. ε  is a matrix whose elements are all ε , and e  is a matrix 
whose diagonal elements are e  and whose off-diagonal elements are ε . If max

n n×∈X  , 
the following operator *X  is the Kleene star: 

( )1* 2 ,s⊗ −⊗= ⊕ ⊕ ⊕ ⊕X e X X X                    (5) 
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where ( )1s s n≤ ≤  is an instance that satisfies ( )1s⊗ − ≠X ε  and s⊗ =X ε . In addi-
tion, we define 

\ .x y x y= − +                             (6) 

2.2. Formulation of the CCPM-MPL Framework 

We define the following relevant matrices and vectors: 
• n: number of tasks; 
• p : number of external outputs; 
• q : number of external inputs; 
• 0 max

n q×∈B  : input matrix, [ ]0 ij
B  = {e: if task i has an input transition j, ε: other-

wise}; 
• 0 max

p n×∈C  : output matrix, [ ]0 ij
C  = {e: if task j has an output transition i, 𝜀𝜀: other-

wise}; 
• 0 max

n n×∈F  : adjacency matrix, [ ]0 ij
F  = {e: if task i has a preceding task j, ε: other-

wise}; 
• max

n∈d  : system parameter, [ ]id : duration time in task i; 
• max

q∈u  : input vector, [ ]iu : input time to external input i; 

• max
p∈y  : output vector, [ ]iy : output time from external output i; 

• max
n∈x  : state vector, [ ]ix : start or completion time of task i. 

The earliest task-completion times of all tasks, Ex , are calculated using 

E 0 0 ,= ⊗ ⊗x A B u                           (7) 

where 

( )*0 0 0 0 ,= ⊗ ⊗A P F P                         (8) 

( )0 diag .=P d                             (9) 

Matrixes 0A  and 0P  are the transition and weight matrices, respectively. The ear-
liest output times to all output transitions, Ey , are then calculated by 

E 0 E .= ⊗y C x                           (10) 

Then, the latest task-starting times, Lx , are calculated using Equation (10): 

( )L 0 0 E\ .= ⊗x C A y                         (11) 

The latest input times, Lu , are calculated in terms of Lx : 

L 0 L\ .=u B x                            (12) 

As a consequence, the total floats of all tasks can be calculated using Equations ((5) 
and (8)): 

( )0 L E .= + −m x d x                         (13) 

All tasks can be classified into two types: [ ]0 0
i
=m  and [ ]0 0

i
>m  are a critical and 

a non-critical task, respectively. We define two vectors, 0 0 max, n∈a b  , to classify each 
task as either critical or non-critical: 
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[ ] [ ] [ ]{ }0 0 0: if 0, : if 0 ,
i i i

e ε= = >a m m                 (14) 

[ ] [ ] [ ]{ }0 0 0: if 0, : if 0 .
i i i

e m ε= > =b m                  (15) 

We then calculate two matrices, a b max, n n×∈P P  , as follows: 

( )a 0 0diag ,P= ⊗P a                         (16) 

( )b 0 0diag .P= ⊗P b                         (17) 

In the CCPM framework, there are two types of buffers, referred to as feeding and 
project buffers. The size of each buffer is calculated by 

( )*feed b 0 b 0 2, = ⊗ ⊗ ⊗ r P F P g                    (18) 

( )*proj a 0 a 0 2, = ⊗ ⊗ ⊗ r P F P g                    (19) 

where 

[ ]T0 max .ne e e= ∈g                         (20) 

Feeding buffers are inserted wherever a non-critical task joins into a critical one. A 
project buffer is inserted on the eve of an output to avoid tardiness of the project. To 
reflect the insertion of the two types of buffers, we incur weights to the adjacency ma-
trix 0F  and the output matrix 0C : 

( ) ( )bufs 0 0 0 feeddiag diag ,= ⊕ ⊗ ⊗F F a F r                 (21) 

( ) ( )bufs 0 proj feeddiag diag . = ⊗ ⊕ C C r r                  (22) 

Now we can calculate the earliest task-completion, E′x , and the output time, E′y , 
after inserting the time buffers. The earliest task-completion times of all nodes, E′x , are 
calculated using 

E 0 0 ,′ ′= ⊗ ⊗x A B u                          (23) 

( )*0 0 bufs 0 .′ = ⊗ ⊗A P F P                        (24) 

Matrix 0′A  is the transition matrix, in which the insertion of the two types of buffers 
is reflected. The earliest output times to all output transitions, E′y , are then calculated 
by 

E bufs E .′ ′= ⊗y C x                           (25) 

We treat E′y  as the objective function and consider minimizing [ ]E i
′y . 

3. Resolution of Resource Contentions 

We explain the resolution of resource contentions with the help of [8]. We add relevant 
matrices and vectors as follows: 
• l : number of resources, 
• s : maximum number of tasks that a single resource processes, 
• l s×∈S  : processing order of tasks, 

[ ] { }: resource processes task in the th processing, 0 : otherwiseij k i k j=S . 
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We consider Figure 1 as an example project with five tasks before the leveling of re-
source contentions. The duration time of each task is [ ]T3 4 5 2 1=d . The adja-
cency matrix, 0F , is  

0 .
e

e
e e

ε ε ε ε ε
ε ε ε ε

ε ε ε ε ε
ε ε ε ε
ε ε ε

 
 
 
 =
 
 
  

F                       (26) 

Tasks 1, 4, and 5 are processed by resource 1, whereas tasks 2 and 3 are processed by 
resource 2. If resource 2 processes tasks 2 and 3 simultaneously, a resource contention 
occurs. We avoid contentions between tasks 2 and 3 by appending two precedence rela-
tions, which are expressed by broken arrows in Figure 2, which shows the project after 
the resource contention is leveled. We then reflect the leveling of the resource conten-
tions using the following adjacency matrix, 0′F : 

0 .
e e

e e
e e

ε ε ε ε ε
ε ε ε

ε ε ε ε ε
ε ε ε

ε ε ε

 
 
 

′  =
 
 
  

F                        (27) 

In addition, the processing order of tasks, S , is 

1 4 5
.

3 2 0
 

=  
 

S                           (28) 

Our numerical simulation to level resource contentions shows that the maximum  
 

 
Figure 1. Example of a fifth-task project before a resource contention is leveled. 

 

 
Figure 2. Example of the fifth-task project after the resource contention is leveled. 
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computation time was longer than 10 hours for 20 jobs. We thus consider the develop-
ment of approximate methods within a short computation time. 

4. Two Metaheuristics 

We experiment with an optimization based on Genetic Algorithm (GA) and Simulated 
Annealing (SA), both of which are common metaheuristics. 

4.1. Genetic Algorithm 

We experiment with an optimization based on the GA developed in [6], which is used 
to obtain an approximate solution. 

Algorithm 1: Genetic Algorithm 
STEP 1. Set mutation parameter and termination condition, utm  and i , respectively. 
STEP 2. Generate a random solution, S , and create the earliest output times, [ ]E1 i

′y . 
STEP 3. Focusing on a row vector of S  that gives the list of tasks for a single re-
source, split the vector into two. We then swap the two vectors, followed by generating 
a new solution, ′S . 
STEP 4. If a mutation occurs having probability utm , then proceed to STEP 5. Other-
wise, i.e., if a mutation does not occur, then follow STEP 6. 
STEP 5. Swap two tasks of ′S  at the same resource randomly. 
STEP 6. Create the new earliest output times, [ ]E2 i

′y  using ′S . 
STEP 7. If [ ] [ ]E2 E1i i

′ ′<y y  follows, then set : ′=S S  and [ ] [ ]E1 E2:i i
′ ′=y y . 

STEP 8. Terminate if the termination condition is satisfied. If otherwise, return to 
STEP4. 

4.2. Simulated Annealing 

SA [9] is known as an approach to efficiently obtain an approximate solution. We use 
the 2-opt neighborhood method [10] based on a local search to generate a neighboring 
solution. 

Algorithm 2: Simulated Annealing 
STEP 1. Initialize the temperature and cooling parameters, 0T  and γ , respectively. 
STEP 2. Generate a random solution, S , and create the earliest output times, [ ]E1 i

′y . 
STEP 3. Generate a neighboring solution, ′S , and create the new earliest output 

times, [ ]E2 i
′y . 

STEP 4. Calculate [ ] [ ]E2 E1i iE ′ ′∆ = −y y . 
STEP 5. If 0E∆ <  holds, then set : ′=S S  and [ ] [ ]E1 E2:i i

′ ′=y y  with probably 1. 
Otherwise, i.e., if 0E∆ ≥  holds, then set : ′=S S  and [ ] [ ]E1 E2:i i

′ ′=y y  with 
probably ( )exp E T−∆ . 

STEP 6. Update the temperature parameter, ( )0 0.8 0.99k
kT Tγ γ= ≤ ≤ .The value of 

γ  is a cooling parameter which decreases the temperature parameter, 0T . 
STEP 7. Repeat STEPS3-6. 
STEP 8. Terminate if the temperatures are sufficiently low. If otherwise, return to 

STEP3. 
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5. Approximate Ratio and Computation Time 

We obtain solutions using the SA- and GA-based algorithms. We use a personal com-
puter with the following execution environment: 
• machine: Dell Optiplex 9020; 
• CPU: Intel® Core™ i7-4790 3.60 GHz; 
• OS: Microsoft Windows 7 Professional; 
• memory: 4.0 GB; 
• programming language: MATLAB R2015b. 

The test cases for the numerical experiment are generated under the following condi-
tions: 
• number of cases: 100; 
• number of resources, l : for 10, 15, and 20 tasks, we set the number of resources to 

3, 5, and 7, respectively; 
• number of resources for task, i : uniformly random integer numbers; 
• duration time, [ ]id : uniformly random integer numbers. 

We obtain approximate solutions using two metaheuristics. The temperature and 
cooling parameter are set to 1T =  and 0.85γ = , respectively, for the SA-based algo-
rithm. The mutation parameter and the end condition are set to 0.2utm =  and 

200i = , respectively, for the GA-based algorithm. We compare the exact and approx-
imate solutions. The performance of the solution is shown in Table 1 for the two me-
taheuristics. We can confirm that the performance of the solution using the GA-based 
algorithm is smaller than that using the SA-based algorithm. The average computation 
times are shown in Figure 3. We can confirm that the computation using the SA-based 
algorithm is faster than that using the GA-based algorithm. The computation time of 
the GA-based algorithm is more than16-fold longer than that of the SA-based algo-
rithm. The average values of the solutions are shown in Table 2. If the number of tasks 
is 10 or 20, the values of the solutions using the two methods are not remarkably dif-
ferent; if the number of tasks is 30 or 40, the value of the solution using the GA-based 
algorithm is smaller than that of the SA-based algorithm. However, we should note  

 
Table 1. Performance of the solutions. 

Method 
Number of tasks 

10 15 20 

Simulated Annealing 1.001 1.002 1.006 

Genetic Algorithm 1.000 1.001 1.000 

 
Table 2. Average values of the solutions. 

Method 
Number of tasks 

10 20 30 40 50 

Simulated Annealing 155.335 260.48 365.485 467.925 563.795 

Genetic Algorithm 155.215 259.055 361.755 465.45 568.955 
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Figure 3. Average computation times in seconds. 

 
here that the solution using the SA-based algorithm is better than that using the GA if 
the number of tasks is 50. 

6. Conclusions 

This research has studied the planning of a “good-enough” schedule with leveling of 
resource contentions. We utilized an existing framework called the CCPM-MPL. The 
resolution framework was reduced to a combinatorial problem. We used SA- and 
GA-based algorithms to obtain approximate solutions within short time. Moreover, we 
used the 2-opt neighborhood to generate a neighboring solution in the SA-based algo-
rithm. Comparing the two methods, the SA-based algorithm was beneficial in terms of 
computation time, whereas the latter was better in terms of the performance of the so-
lution. In addition, when the number of tasks was 50, the value of the solution using the 
SA-based algorithm was better than that using the GA-based algorithm. 

Developing an original heuristic to level resource contentions within a short compu-
tation time is our future work. 
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