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Abstract 
In this paper, we establish the dual Orlicz-Minkowski inequality and the dual Orlicz- 
Brunn-Minkowski inequality for dual Orlicz mixed quermassintegrals. 
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1. Introduction 

Recently, Convex Geometry Analysis has made great achievement in Orlicz space (see 
[1]-[14]). Zhu, Zhou and Xu [12] defined the Orlicz radial sum and dual Orlicz mixed 
volumes. Let +  be the set of convex and strictly decreasing functions  

( ) ( ): 0, 0,φ +∞ → +∞  such that ( )lim 0t tφ→∞ = , ( )0limt tφ→ = ∞  and ( )0φ = ∞ . 
Let K and L be two star bodies about the origin in n  and , 0a b ≥ ; the Orlicz 

radial sum a K b Lφ⋅ + ⋅  was defined by [13] 

( ) ( ) ( ) ( ) 1sup 0 : 1 , .K L n
a K b L

u u
u t a b u S

t tφ

ρ ρ
ρ φ φ φ −

⋅ + ⋅

     = > + ≤ ∀ ∈    
     



   (1.1) 

The case ( ) ( )1pt t pφ −= ≥  of the Orlicz radial sum is the pL  harmonic radial sum, 
which was defined by Lutwak (see [15]). 

Let rf ′  denote the right derivative of a real-valued function f . For φ +∈ , there 
is ( )1 0rφ′ <  because φ  is convex and strictly decreasing. The dual Orlicz mixed 
volume ( ),V K Lφ

  is defined by 

( ) ( ) ( ) ( )
0

, lim .
1r

V K L V Kn V K L φ
φ

ε

ε
φ ε+→

+ ⋅ −
=

′



              (1.2) 

In this paper, we will define the dual Orlicz mixed quermassintegral  
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( )( ), , 0, , 1iW K L i nφ = −

  by 

( ) ( )
( ) ( )

,
0

, lim .
1

i i
i

r

W K L W Kn i W K L φ
φ

ε

ε

φ ε+→

+ ⋅ −−
=

′

 



               (1.3) 

The main purpose of this paper is to establish the dual Orlicz-Minkowski inequality 
and the dual Orlicz-Brunn-Minkowski inequality for dual Orlicz mixed quermassinte-
grals. 

Theorem 1.1 Let K and L be two star bodies about the origin in n  and φ +∈ . If 
0 1i n≤ < − , then 

( ) ( ) ( )
( )

1

, , ,
n i

i
i i

i

W L
W K L W K

W Kφ φ
−

 
  ≥    
  
 



 



                  (1.4) 

with equality if and only if K and L are dilates of each other. 
Theorem 1.2 Let K and L be two star bodies about the origin in n  and φ +∈ . If 

0 1i n≤ < − , then 

( ) ( )
( )

( )
( )

1 1

1 ,
n i n i

i i

i i

W K W L
W K L W K Lφ φ

φ φ φ
− −

   
      
   ≥ +      + +      
   

 

 

 

           (1.5) 

with equality if and only if K and L are dilates of each other. 
This paper is organized as follows: In Section 2 we introduce above interrelated nota-

tions and their background materials. Section 3 contains the proofs of our main results. 

2. Notation and Background Material 

The radial function ( ) [ )1: 0,n
K u Sρ − → ∞  of a compact star-shaped about the origin 

nK ∈  is defined, for 1nu S −∈ , by 

( ) { }max 0 :  .K u u Kρ λ λ= ≥ ∈                   (2.1) 

If ( )Kρ ⋅  is positive and continuous, then K is called a star body about the origin. 
The set of star bodies about the origin in n  is denoted by 0

n . Obviously, for 

0, nK L∈ , 

( ) ( ) 1,   .n
K LK L u u u Sρ ρ −⊆ ⇔ ≤ ∀ ∈                (2.2) 

If 
( )
( )

K

L

u
u

ρ
ρ

 is independent of 1nu S −∈ , then we say star bodies K and L are dilates of  

each other. 
If ( )0 1, 2, ,n

iK i m∈ =   and ( )1, 2, ,i i mλ =   are nonnegative real numbers, then 
the volume of 1 1 m mK Kλ λ+ + 

  is a homogeneous polynomial of degree n in iλ  given 
by 

( ) ( )1 1
1

1 1
, ,

, , ,
n n

n
m m i i i i

i i
V K K V K Kλ λ λ λ+ + = ∑





 

    

where the sum is taken over all n-tuples ( )1, , ni i  of positive integers not exceeding m. 



L. J. Liu 
 

896 

The coefficient ( )1
, ,

ni iV K K

  depends only on the bodies 
1
, ,

ni iK K , and is uni-
quely determined by the above identity, it is called the dual mixed volume of 

1
, ,

ni iK K . 
More explicitly, the dual mixed volume ( )1

, ,
ni iV K K

  has the following integral re-
presentation [16]: 

( ) ( ) ( ) ( )11 1

1, , d ,nn i ini i K KS
V K K u u S u

n
ρ ρ−= ∫

             (2.3) 

where S is the Lebesgue measure on 1.nS −  
The coefficients ( )1

, ,
ni iV K K

  are nonnegative, symmetric and monotone (with 
respect to set inclusion). They are also multilinear with respect to the radial sum and 
( ) ( ), ,V K K V K=

 . Let 1 n iK K K−= = =  and 1n i nK K L− + = = = , then the dual 
mixed volume ( )1, , nV K K

  is usually written as ( ),iV K L . If L = B, then ( ),iV K B  
is the dual quermassintegral ( )iW K . For 0 1i n≤ ≤ − , the dual mixed quermassinte-  

gral ( ),iW K L  denotes the dual mixed volume 
1

, , , , , ,
n i i

V K K B B L
− −

 
 
 
 



  . For L K= ,  

then ( ) ( ),i iW K L W K=  . 
The dual mixed quermassintegral ( ),iW K L  has the following integral representa-

tion: 

( ) ( ) ( ) ( )1
11, d ,n

n i
i K LS

W K L u u S u
n

ρ ρ−
− −= ∫              (2.4) 

where S is the Lebesgue measure on 1nS − . 
By using the Minkowski’s integral inequality, we can obtain the dual Minkowski in-

equality for dual mixed quermassintegrals: If 0, nK L∈ , and 0 1i n≤ < − , then 

( ) ( ) ( )1, ,n i n i
i i iW K L W K W L− − −≤                    (2.5) 

equality holds if and only if K and L are dilates of each other. 
Suppose that µ is a probability measure on a space X and :g X I→ ⊂   is a µ- 

intergrable function, where I is a possibly infinite interval. Jessen’s inequality states that 
if : X Iφ → ⊂   is a convex function, then 

( )( ) ( ) ( ) ( )( )d d .
X X

g x x g x xφ µ φ µ≥∫ ∫               (2.6) 

If φ  is strictly convex, equality holds if and only if ( )g x  is a constant for µ-almost 
all x X∈  (see [17]). 

3. Main Results 

Let 0, nK L∈  and φ +∈ . For 0, , 1i n= −
, the dual Orlicz mixed quermassinte-

gral ( ), ,iW K Lφ
  is defined by 

( ) ( )
( ) ( ) ( )1,

1, d .n
L n i

i KS
K

u
W K L u S u

n uφ

ρ
φ ρ

ρ−
− 

=   
 

∫            (3.1) 

For =L K , then ( ) ( ) ( ), , 1i iW K K W Kφ φ=  . The case 0i =  of the dual Orlicz 
mixed quermassintegral ( ), ,iW K Lφ

  is the dual Orlicz mixed volume ( ),V K Lφ
 , which 

was defined by Zhu, Zhou and Xu [12]. 
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Corollary 3.1 The dual Orlicz mixed quermassintegral ( ), ,iW Kφ ⋅  is monotone with 
respect to set inclusion. 

Proof. Let 1 2 0, nL L ∈  and 1 2L L⊆ . By (3.1), (2.2) and the fact that φ  is strictly 
decreasing on ( )0,∞ , we have 

( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )

1
1

2
1

, 1

, 2

1, d

1 d

, .

n

n

L n i
i KS

K

L n i
KS

K

i

u
W K L u S u

n u

u
u S u

n u

W K L

φ

φ

ρ
φ ρ

ρ

ρ
φ ρ

ρ

−

−

−

−

 
=   

 
 

≥   
 

=

∫

∫





 

Lemma 3.1 [12] Let 0, nK L∈  and 1nu S −∈ . If φ +∈ , then 

( ) ( ) ( )1K Lu u
a b

t t
ρ ρ

φ φ φ
   

+ =   
   

 

if and only if 

( ) .a K b L u t
φ

ρ ⋅ + ⋅ =


 

Lemma 3.2 [12] Let 0, nK L∈  and φ +∈ . Then 

( ) ( ) ( )
( )

( )
( )0

lim = ,
1

K L K K L

r K

u u u u
u

φ ε

ε

ρ ρ ρ ρ
φ

ε φ ρ+

+ ⋅

→

−  
  ′  

              (3.2) 

uniformly for all 1nu S −∈ . 
Theorem 3.1 Let 0, nK L∈  and φ +∈ . For 0, , 1i n= −

, then 

( ) ( )
( )

( )
( ) ( ) ( )1

0
lim d .

1 n
i i L n i

KS
r K

W K L W K un i u S u
n u

φ

ε

ε ρ
φ ρ

ε φ ρ−+

−

→

+ ⋅ −  −
=   ′  

∫
 



 

Proof. Suppose 00, , nK Lε > ∈ , and 1nu S −∈ . Note that K L Kφ ε+ ⋅ →  as 
0ε +→  (see [12]). By Lemma 3.2, it follows that 

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( )

( )
( )

1

00 0
lim lim

,
1

n i n i
K L K K L Kn i

K L

n i
K L

r K

u u u u
n i u

n i u u
u

φ φ

φ

ε ε
ε εε ε

ρ ρ ρ ρ
ρ

ε ε
ρ ρ

φ
φ ρ

+ +

− −
+ ⋅ + ⋅− −

+ ⋅
=→ →

−

− −
= − ⋅

 −
=   ′  

 



 

uniformly on 1nS − . 
Hence 

( ) ( ) ( ) ( )
( )

( ) ( )
( )

( )
( )
( ) ( ) ( )

1

1

1

0 0

0

1lim lim d

1 lim d

d .
1

n

n

n

n i n i
K L Ki i

S

n i n i
K L K

S

L n i
KS

r K

u uW K L W K
S u

n

u u
S u

n
un i u S u

n u

φ

φ

εφ

ε ε

ε

ε

ρ ρε

ε ε

ρ ρ

ε
ρ

φ ρ
φ ρ

−+ +

− +

−

− −
+ ⋅

→ →

− −
+ ⋅

→

−

 −+ ⋅ −
 =
 
 

−
=

 −
=   ′  

∫

∫

∫
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We complete the proof of Theorem 3.1.  
From (3.1) and Theorem 3.1, we have 

( ) ( ) ( ) ( )
,

0
, lim .

1
i i

i
r

W K L W Kn i W K L φ
φ

ε

ε
φ ε+→

+ ⋅ −−
=

′

 



              (3.3) 

For 0
nK ∈ , since ( ) ( ) ( )1

1 dn
n i
K iS

u S u W K
n

ρ−
− =∫  , then ( ) ( )

( )
dn i

K

i

S
nW K

ρ − ⋅ ⋅


 is a probabil-  

ity measure on 1nS − . 
Proof of Theorem 1.1 
By (3.1), (2.6), (2.5) and the fact that φ  is decreasing on ( )0,∞ , we obtain 

( )
( ) ( )

( )
( ) ( ) ( )

( )
( )
( ) ( ) ( )

( )
( )

( ) ( )
( )

( )
( )

1

1

,

1 1

1

, 1 d

1 d

,

n

n

i L n i
KS

Ki i

L n i
KS

Ki

i

i

n i
n i n ii i

i

n i
i

i

W K L u
u S u

uW K nW K

u
u S u

unW K

W K L
W K

W K W L
W K

W L
W K

φ ρ
φ ρ

ρ

ρ
φ ρ

ρ

φ

φ

φ

−

−

−

−

− −
− −

−

 
=   

 
 

≥   
 
 

=   
 
 
 ≥   
 
 
  =    
  
 

∫

∫



 







 







 

This gives the desired inequality. Since φ  is strictly decreasing, from the equality 
condition of the dual Minkowski inequality (2.5), we have that K and L are dilates of 
each other. 

Conversely, when L Kλ= , by (3.1), we have 

( ) ( ) ( ) ( ) ( )
( )

1

, , .
n i

i
i i i

i

W L
W K L W K W K

W Kφ φ λ φ
−

 
  = =    
  
 



  



  

The following uniqueness is a direct consequence of the dual Orlicz-Minkowski in-
equality (1.4). 

Corollary 3.2 Suppose φ +∈ , and 0
n⊂   such that ,K L∈ . For 0 1i n≤ < − , 

if 

( ) ( ), ,, , ,  for all ,i iW M K W M L Mφ φ= ∈                  (3.4) 

or 

( )
( )

( )
( )

, ,, ,
,  for all ,i i

i i

W K M W L M
M

W K W L
φ φ= ∈
 

 

                (3.5) 

then K L= . 
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Proof. Suppose (3.4) holds. If we take K for M, then from (3.1), we obtain 

( ) ( ) ( ) ( ), ,1 , , .i i iW K W K K W K Lφ φφ = =    

Hence, from the dual Orlicz-Minkowski inequality (1.4), we have 

( ) ( )
( )

1

1 ,
n i

i

i

W L
W K

φ φ
−

 
  ≥    
  
 





 

with equality if and only if K and L are dilates of each other. Since φ  is strictly de-
creasing on ( )0,∞ , we have 

( ) ( ) ,i iW L W K≥   

with equality if and only if K and L are dilates of each other. If we take L for M, we si-
milarly have ( ) ( )i iW L W K≤  . Hence, ( ) ( )i iW K W L=   and from the equality condi-
tion we can conclude that K and L are dilates of each other. However, since they have 
the same volume they must be equal. 

Next, suppose (3.5) holds. If we take K for M, then from (3.1), we obtain 

( ) ( )
( )

( )
( )

, ,, ,
1 .i i

i i

W K K W L K
W K W L
φ φφ = =
 



 

Then, from the dual Orlicz-Minkowski inequality (1.4), we have 

( ) ( )
( )

1

1 ,
n i

i

i

W K
W L

φ φ
−

 
  ≥    
  
 





 

with equality if and only if K and L are dilates of each other. Since φ  is strictly de-
creasing on ( )0,∞ , we have 

( ) ( ) ,i iW K W L≥   

with equality if and only if K and L are dilates of each other. If we take L for M, we 
similarly have ( ) ( )i iW K W L≤  . Hence, ( ) ( )i iW K W L=   and from the equality condi-
tion we can conclude that K and L are dilates of each other. However, since they have 
the same volume they must be equal. 

From the dual Orlicz-Minkowski inequality, we will prove the following dual Or-
licz-Brunn-Minkowski inequality which is more general than Theorem 1.2. 

Theorem 3.2 Let 0, nK L∈ , , 0a b >  and φ +∈ . If 0 1i n≤ < − , then 

( ) ( )
( )

( )
( )

1 1

1 ,
n i n i

i i

i i

W K W L
a b

W a K b L W a K b Lφ φ

φ φ φ
− −

   
      
   ≥ +      ⋅ + ⋅ ⋅ + ⋅      
   

 

 

 

 

with equality if and only if K and L are dilates of each other. 
Proof. Let K a K b Lφ φ= ⋅ + ⋅ . From (2.3), Lemma 3.1 and (1.4), it follows that 
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( ) ( ) ( ) ( ) ( )

( )
( )
( )

( )
( ) ( ) ( )

( )
( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( )

1

1

1 1

, ,

11 1 d

1 d

d d

, ,

n

n

n n

n i
KS

i

K L n i
KS

K Ki

K Ln n i
K KS S

K Ki i

i i
i i

u S u
nW K

u u
a b u S u

u unW K

u ua bu S u u S u
u unW K nW K

a bW K K W K
W K W K

φ

ϕ
φ φ

φ φ
φ φ

φ

φ

φ φ

φ φ φ φ
φ φ

φ φ ρ

ρ ρ
φ φ ρ

ρ ρ

ρ ρ
φ ρ φ ρ

ρ ρ

−

−

− −

−

−

−

=

    
    = +

        
   
   = +
   
   

= +

∫

∫

∫ ∫





 

 

 

( )

( )
( )

( )
( )

1 1

.
n i n i

i i

i i

L

W K W L
a b

W K W Kφ φ

φ φ
− −

   
      
   ≥ +            
   

 

 

 

By the equality condition of the dual Orlicz-Minkowski inequality (1.4), equality in 
(3.6) holds if and only if K and L are dilates of each other. 

Indeed, we also can prove the dual Orilcz-Minkowski inequality by the dual Orilcz- 
Brunn-Minkowski inequality. 

Proof. For 0ε ≥ , let =K K Lε φ ε+ ⋅ . Note that K Kε →  as 0ε +→ . By the dual 
Orlicz-Brunn-Minkowski inequality, the following function 

( ) ( )
( )

( )
( ) ( )

1 1

1
n i n i

i i

i i

W K W L
G

W K W Kε ε

ε φ εφ φ
− −

   
      = + −         
      
   

 

 

 

is non-positive. Obviously, ( )0 0G = . Thus 

( ) ( )
0

0
lim 0.

G G
ε

ε
ε+→

−
≤                        (3.7) 

On the other hand, we have 

( ) ( )

( )
( )

( )
( ) ( )

( )
( ) ( )

( )
( )

( )
( )

1 1

0 0

1

1

0

1

0

1
0

lim lim

1

lim

lim

n i n i
i i

i i

n i
i

i n i
i

i

n i
i

i

W K W L
W K W K

G G

W K
W K

W L
W K

W K
W K

ε ε

ε ε

ε

ε

ε

ε

φ εφ φ
ε
ε ε

φ φ

φ
ε

φ

+ +

+

+

− −

→ →

−

−

→

−

→

   
      + −         
      −    =

 
   −           = +    

  
 


 
  
 
=

 

 













( )

( )
( )

( )
( ) ( )

( )

1

1

1 0

1
1

lim .

1

n i
i

n i
i i

in i
i

i

W K
W K W L

W K
W K
W K

ε

ε

ε

φ

φ
ε+

−

−

→
−


  −  −           ⋅ +    

     −  
 













  (3.8) 
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Let ( )
( )

1
n i

i

i

W K
s

W Kε

− 
=   
 





 and note that 1s +→  as 0ε +→ . Consequently, 

( )
( ) ( )

( )
( )

( ) ( ) ( )

1

10 1

1
1

lim lim 1 .
1

1

n i
i

i

r
s

n i
i

i

W K
W K

s
s

W K
W K

ε

ε

ε

φ φ
φ φ

φ
+ +

−

→ →
−

 
   −   
   −  ′= =

−
 

−  
 









         (3.9) 

By (3.3), we have 

( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( )
( )

1

0

1 1
1

0 0

1 11

0

,

1

lim

lim lim

1 lim

,1 .
1

n i
i

i

n i n ii i n ii

i in i n ii i

i

r i

W K
W K

W K W K
W K

W K W K
W K W K

n i
W K L

W K

ε

ε

ε
ε

ε ε

ε

ε

φ

ε

ε

ε

φ

+

+ +

+

−

→

− − −
−

→ →

− −
− −

→

 
  −   
  
 

−
= − ⋅

−
= − ⋅ ⋅

−

= −
′





 



 

 





         (3.10) 

From (3.8), (3.9), and (3,10), it follows that 

( ) ( ) ( )
( )

( )
( )

1

,

0

,0
lim .

n i
i i

i i

W K LG G W L
W K W K
φ

ε

ε
φ

ε+

−

→

 
 −  = − +    
  
 




 

          (3.11) 

Combing (3.7) and (3.11), we have 

( )
( )

( )
( )

1

, ,
0.

n i
i i

i i

W K L W L
W K W K
φ φ

−
 
  − + ≤   
  
 




 

                 (3.12) 

Therefore, the equality in (3.12) holds if and only if ( ) ( )0 0G Gε = = , this implies 
that K and L are dilates of each other. 

Remark 3.1 The case 0i =  of Theorem 1.1 and Theorem 1.2 were established by 
Zhu, Zhou and Xu [12]. The dual forms of Theorem 1.1 and Theorem 1.2 were estab-
lished by Xiong and Zou [11]. 
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