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Abstract 
This work proposes an improved inertia weight update method and position update 
method in Particle Swarm Optimization (PSO) to enhance the convergence and 
mean square error of channel equalizer. The search abilities of PSO are managed by 
the key parameter Inertia Weight (IW). A higher value leads to global search whereas 
a smaller value shifts the search to local which makes convergence faster. Different 
approaches are reported in literature to improve PSO by modifying inertia weight. 
This work investigates the performance of the existing PSO variants related to time 
varying inertia weight methods and proposes new strategies to improve the conver-
gence and mean square error of channel equalizer. Also the position update method 
in PSO is modified to achieve better convergence in channel equalization. The simu-
lation presents the enhanced performance of the proposed techniques in transversal 
and decision feedback models. The simulation results also analyze the superiority in 
linear and nonlinear channel conditions. 
 

Keywords 
Adaptive Channel Equalization, Decision Feedback Equalizer, Inertia Weight, Mean 
Square Error, Particle Swarm Optimization 

 

1. Introduction 

Channel equalization [1] [2] plays a pivotal role in high speed digital transmissions to 
recover the effect of inter symbol interference (ISI). An adaptive equalizer is positioned 
at the front end of the receiver to automatically adapt the time-varying nature of the 
communication channel. Adaptive algorithms are utilized in equalization to find the op-
timum coefficients. The normal gradient based adaptive algorithms such as Least Mean 
Square (LMS), Recursive least squares (RLS), Affine Projection algorithm (APA) and 
their variants [1] [2] [3] [4] applied in channel equalization converge to local minima [5] 
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[6] [7] while optimizing the filter tap weights. The derivative free algorithms find the 
global minima by passing through local and global search processes. PSO is one of the 
derivative free optimization algorithms which search the minima locally and globally. 

PSO is proven as an efficient method to update the weights of equalizer in adaptive 
Equalization [6]. PSO becomes one of the best algorithms for channel equalization in 
the recent years [6] [7]. While comparing to genetic algorithm, PSO needs minimum 
iterations to converge to minimum mean square error (MSE) in channel equalization 
[1]. To find the best optimum weights of equalizer, PSO updates the weights in each 
iteration using global best value and local best value [1]. The general equation [8] [9] 
used to update the weights in each iteration is, 

( ) ( ) ( ) ( )1 1 2 21i i best i best ic t iw c t ac rand P c ac rand G c∂ + = ×∂ + × × − + × × −      (1) 

( ) ( ) ( )1 1i i ic t c t c t+ = + ∂ +                          (2) 

The positive constants 1ac  and 2ac  are called as cognitive and social acceleration 
coefficients. 1rand  and 2rand  are two random functions in the interval [0,1]. ( )ic t∂  
and ( )ic t  are velocity and position of particle i respectively in tth iteration.  

At each iteration, the change in weights are calculated by Equation (1) and the 
weights are modified to new one using Equation (2). Initially, the weights are randomly 
selected from the search space for P number of particles. Using the randomly selected 
weights, the fitness function is calculated and based on it, ( )1ic t∂ +  is updated and 
forwarded for next iterations.  

The PSO algorithm can be improved by modifying its inertia weight parameter and 
other parameters. Inertia weight parameter was initially introduced by Shi and Eberhart 
in [10]. Some of the time varying inertia weight modified methods are listed in Table 1.  

2. Model and Methodology 

Figure 1 depicts a basic block diagram used in adaptive equalization [1]. The input is 
the random bipolar sequence {x(n)} = ±1 and channel impulse response is raised cosine  

 
Table 1. Time varying inertia weight modifications. 

PSO variants Inertia weight equation Initial parameters 

Shi et al. [10] [11] ( )( ) ( )1n i f fw w w m n m w = − − − +   wi = 0.3, wf = 0.9 

Chatterjee et al. [12] ( )( ) ( )1np np

n i f fw w w m n m w = − − − +   wi = 0.3,  
wf = 0.9 & np = 0.7 

Feng et al. [13] [14] ( )( ) *n i f fw w w m n m w z = − − +   
wi = 0.3, wf = 0.9, z = 0.1 

( )4 1z z z= −  

Lei et al. [15] 
1
1nw

s
β
β

−
=

−
 s = 0.8, β = n/m 

Zheng et al. [16] 
0 32 .

nw
n

 =  
 

 n = current iteration 

Jiao et al. [17] initial
n

nw w u= ×  winitial = 1.1, u = 1.0002 
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Figure 1. Block diagram of digital communication system. 

 
pulse. The channel output is added with the random additive white Gaussian noise 
(AWGN). The noise sequence has zero-mean and variance 0.001. 

The raised cosine channel response is represented as 

( )1 2π1 cos 2 1, 2,3
2
0 otherwise

n

n n
h W

    + − =    =     



               (3) 

The factor W controls the amount of distortion. The effect of nonlinearities generated 
by the transmitter is modeled as three different nonlinear equations in (4), (5) and (6).  

( ) ( )( )1 : tanhch y n s n=                           (4) 

( ) ( ) ( ) ( )2 3
2 : 0.2 0.1ch y n s n s n s n= + −                    (5) 

( ) ( ) ( ) ( ) ( )( )2 3
3 : 0.2 0.1 0.5cos πch y n s n s n s n s n= + − +           (6) 

where ( )s n  is the convolution of input ( )x n  and channel impulse response nh  
(i.e.) ( ) ( )( )ns n x n h= ∗ . The input to the receiver is 

( ) ( ) nr n y n v= +                             (7) 

where ( )y n  is the distorted version of the input signal. nv  is the noise component 
modeled as white Gaussian noise with variance 2

nσ . The noise added signal ( )r n  is 
given as input to equalizer.  

The error e(n) can be calculated as 

( ) ( ) ( )e n d n r n= −  

where d(n) is the desired or training data. The adaptive algorithm updates the equalizer 
weights iteratively to minimize e2(n). Since e2(n) is always positive and gives the in-
stantaneous power, it is selected as cost (fitness) function. 

System Model 

The system models [1] used for equalizer are simple linear transversal (tapped-delay- 
line) equalizer and decision feedback equalizer as shown in Figure 2 and Figure 3. In 
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LTE structure the present and old values ( )r t kT−  of the received signal are weighted 
by equalizer coefficients (tap weights) cq and summed to produce the output. The 
weights are trained to optimum value using adaptive algorithm. The output Zk becomes 

( )1

0

N
k qq

Z c r t kT−

=
= −∑                           (8) 

DFE is a nonlinear equalizer usually adopted for channels with severe amplitude dis-
tortion. The sum of the outputs of the forward and feedback part is the output of the 
equalizer. Decisions made on the forward part are sent back via the second transversal 
filter. The ISI is cancelled by deducting past symbol values from the equalizer output. 
The output of DFE is calculated as  

 

 
Figure 2. Linear transversal equalizer structure. 

 

 
Figure 3. Decision feedback equalizer structure. 
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( )1

0 1

N m
k q i k mq i

Z c r t kT b X−
−= =

= − +∑ ∑                   (9) 

3. Training by PSO 
3.1. Basic PSO 

The PSO based equalizer [6] optimizes the tap weights based on the following steps: 
For LTE: 

• T numbers of tap weights are assigned for equalizer. 
• “ws” samples of data are passed from channel output (distorted signal) to equalizer 

which generates ws numbers of estimated samples.  
• Error is estimated by comparing delayed version of each input sample with equaliz-

er output  
• The mean square error function of each particle P is  

( )
2

1
ws

ii e
MSE P

ws
== ∑  

• Fitness value MSE(P) is minimized using PSO based optimization. 
• If the MSE of a particle is less than its previous value, term it as current local best 

value and its corresponding weight values as Pbest. 
• The minimum of MSE of all particles in every iteration is taken as global best value.  
• If the current global best value is better than the previous one, assign the corres-

ponding tap weights to Gbest. 
• Calculated the change in position (Tap weights) of each particle using Equation (1). 
• Moved each particle (Tap weights) cq in Equation (8) to new position by Equation 

(2). 
• Repeated the above steps for the number of iterations specified or stopped when the 

algorithm converges to an optimum value with least MSE value. 
For DFE: 

• The coefficients are initialized randomly for forward and feedback filter. 
• In the first iteration, only forward filter is active and after calculating the error the 

output of the forward filter is feedback through feedback filter. 
• The output of equalizer is calculated by subtracting the output of forward and feed-

back filters.  
• The forward and feedback filter coefficients cq and bi in Equation (9) are updated 

based on Equations (1) and (2). 

3.2. Proposed Strategies 

In most of the PSO variants the inertia value usually varies from high (1) to low (0). In-
itial search or global search requires high inertia value for particles to move freely in the 
search space. When inertia value gradually shifts to low, the search shifts from global to 
local to minimize MSE. The sudden shift of inertia weight from high to low after some 
initial steps minimizes the MSE better than gradual change of inertia value. The pro-
posed algorithm uses a control function which suddenly shifts the inertia weight from 
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high to low after a particular iteration as in Equations (10)-(12) and also shown in Fig-
ure 4.  

1iw η=                                   (10) 

2

if

if
2

n N
iw

n N

η
η

≤
= 

>

                             (11) 

2

if

2 if

n N
iw

n N

η

η

 ≤= 
>

                           (12) 

The common factor used in all time varying inertia weight algorithms is
( )m n mη = − , where m denotes maximum iteration and n denotes current iteration. 

This factor η changes linearly from 1 to 0. If Equation (10) is modified with a decreas-
ing control function, it gives an effective time varying inertia weight strategy as shown 
in Equations (11) and (12). The term N in Equations (11) and (12) is the intermediate 
iteration value used to reduce the value of inertia weight suddenly after Nth iteration. 
This reduction produces optimum performance compared to existing inertia weight 
modified methods in terms of convergence speed and MSE.  

In second modification, the position update ( )1ic t +  in Equation (2) is updated by 
adding the change in position with its local best weight value. In all PSO variants the 
position is updated by adding change in position with previous iteration weights. If the 
previous iteration weights are replaced with its particle personal best value, it improves  

 

 
Figure 4. Proposed inertia weight strategies. 
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the convergence speed more than 20 iterations and is proved in simulation results.  

( ) ( ) ( )1 1i i ic t Pbest t c t+ = + ∂ +                      (13) 

where Pbest is the local best value of particle i till tth iteration. Since the local best 
weight is the best of all weights till that iteration for the corresponding particle, it au-
tomatically speeds up the convergence. The global best in Equation (1) includes the 
global search in each iteration to avoid local minima.  

4. Simulation Results 
4.1. Convergence Analysis 

The general parameters assigned for simulations are specified in Table 2. The simula-
tions are performed in MATLAB R2008b version. The simulations are observed for av-
erage of 10 independent runs. The proposed techniques, PSO with time varying inertia 
weights PSO-TVW1, PSO-TVW2 and PSO-TVW3 based on Equations (10) (11) and 
(12), are compared with the time varying inertia weight modified PSO variants listed in 
Table 1. Similarly the modification given in Equation (13) is added with PSO-TVW1, 
PSO-TVW2 and PSO-TVW3, is named as MP-PSO-TVW1 (Modified position PSO- 
TVW1), MP-PSO-TVW2 (Modified position PSO-TVW2) and MP-PSO-TVW3 (Mod-
ified position PSO-TVW3) respectively. The initial PSO parameters selected for simula-
tion is given in Table 2. 

The PSO variants are analyzed for linear and nonlinear channel conditions. Figure 1 
exhibits the performance of different variants in linear channel and Table 3 presents it 
for linear and nonlinear channel conditions as stated in Equations (3), (4), (5), and (6). 
While comparing all PSO variants in Table 3, the proposed MP-PSO-TVW3 performs 
much better than other variants with minimum MSE. It shows convergence within 47 
iterations and the convergence is achieved without compromising the MSE. The other 
proposed variants PSO-TVW1, PSO-TVW2, PSO-TVW3, MP-PSO-TVW1 and MP- 
PSO-TVW2 are also exhibit improved convergence rate and MSE. But the computa-
tional complexity is different. Table 3 gives the comparison and the effect of different 
channels with least mean square (LMS) algorithm, PSO algorithm by Shi et al. [8], the 
proposed PSO-TVW2 and PSO-TVW3 for LTE and DFE structures. From Table 3 and 
Figure 5 to Figure 6 it is seen that the proposed modifications outperforms the other 
existing modifications based on convergence and MSE. The PSO-TVW3 algorithm 
shows best performance in all channel conditions. The LTE and DFE structures give 
approximately same MSE value but differ in convergence rate which is shown in Table 
3. 
 
Table 2. Initial PSO parameters. 

Amplitude dis-
tortion 

W 

Population 
size P 

Window 
size 
ws 

Acceleration 
coefficient 

ac1 

Acceleration coeffi-
cient 
ac2 

Tap 
size T 

2.9 40 200 1 1 7 
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Table 3. Comparison of convergence rate and MSE with different channel models. 

Channel 
used 

LMS Shi et al. PSO-TVW2 PSO-TVW3 MPPSO-TVW3 

MSE 
in 
dB 

Convergence 
Rate 

MSE 
in 
dB 

Convergence 
rate 

MSE 
in 
dB 

Convergence 
rate 

MSE 
in 
dB 

Convergence 
rate 

MSE 
in 
dB 

Convergence 
rate 

Linear channel LTE −53 200 −50 80 −58 50 −67 50 −66 30 

Linear channel 
DFE 

−50 250 −48 90 −57 90 −67 100 −65 90 

Nonlinear channel 
1-LTE 

−15 200 −40 45 −37 50 −46 50 −45 30 

Nonlinear channel 
1-DFE 

−14 250 −40 60 −35 80 −46 80 −45 60 

Nonlinear channel 
2-LTE 

−40 200 −57 70 −55 50 −78 50 −75 30 

Nonlinear channel 
2-DFE 

−37 250 −55 80 −55 90 −62 100 −61 90 

Nonlinear channel 
3-LTE 

−15 600 −15 30 −18 50 −28 50 −28 30 

Nonlinear channel 
3-DFE 

−14 700 −15 50 −18 70 −23 50 −22 30 

 

 
Figure 5. Performance of proposed and other time varying strategies in linear channel for LTE. 
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Figure 6. Proposed position based PSO enhancements in linear channel for LTE. 
 

The minimum MSE achieved by the proposed techniques are also nearly achieved by 
the PSO variants suggested by shi et al. [10] [11], Chatterjee et al. [12], and Lei et al. [15] 
and is given in Table 4. But these variants are lagging in convergence compared with 
the proposed methods. 

To clearly examine the superiority of the proposed MP-PSO over all PSO variants, 
MP-PSO based position modification as in Equation (13) is applied to all time varying 
PSO variants listed in Table 1. If MP-PSO based position modification is added, it 
guarantees the convergence better than all PSO variants as in Table 5. Based on the si-
mulations performed, it is observed that the MP-PSO based PSO algorithm shows 
guaranteed convergence within 50 iterations in all independent runs. 

The proposed MP-PSO based PSO-TVW2 converges in 27th iteration to its minimum 
MSE −59 dB. The MP-PSO based PSO-TVW1 converges in the 45th iteration with 
minimum MSE of −60 dB as in Table 5. MP-PSO based PSO-TVW2 is good in con-
vergence speed while MP-PSO based PSO-TVW1 is less in complexity. Because PSO- 
TVW2 needs one more division at each iteration after the intermediate iteration N, the 
complexity of the proposed and the other time varying variants are compared in Table 
6. If position is modified based on MP-PSO, convergence is improved very fast without 
adding complexity. From Table 3, Figure 5 and Figure 6, it can be seen that the pro-
posed modifications outperforms the other existing modifications in linear and nonli-
near channel conditions.  

To find the optimum value intermediate iteration “N”, simulations are performed for 
different N values and are shown in Figure 7. It is seen that if N is selected between 40  
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Table 4. Comparison of convergence rate and MSE OF PSO variants in LTE. 

PSO variants 

Linear channel Nonlinear channel 

MSE in dB 
Convergence 

rate 
MSE in dB 

Convergence 
rate 

Shi et al. [10] [11] −57 80 −59 90 

Chatterjee et al. [12] −56 110 −59 120 

Feng et al. [13] [14] −38 50 −28 50 

Lei et al. [15] −54 250 −59 250 

Zheng et al. [16] −25 25 −25 25 

Jia et al. [17] −20 10 −18 10 

PSO-TVW1 −60 120 −59 120 

MP-PSO-TVW1 −60 50 −59 50 

PSO-TVW2 −59 45 −59 50 

PSO-TVW3 −67 50 −65 50 

MP-PSO-TVW2 −60 27 −60 30 

MP-PSO-TVW3 −70 45 −65 45 

 
Table 5. Comparison of convergence rate and MSE of PSO variants with MP-PSO in linear 
channel. 

PSO variants 

Without MP-PSO With MP-PSO 

MSE in dB Convergence rate 
MSE in 

dB 
convergence rate 

Shi et al. [10] [11] −57 90 −57 50 

Chatterjee et al. [12] −56 110 −56 50 

Feng et al. [13] [14] −38 50 −40 30 

Lei et al. [15] −54 250 −58 50 

Zheng et al. [16] −25 25 −25 20 

Jia et al. [17] −20 10 −20 10 

PSO-TVW1 −60 120 −60 50 

PSO-TVW2 −59 45 −60 27 

PSO-TVW3 −67 50 −70 45 

 
and 50, it leads to optimal performance. If N is selected less than 40, MSE value is de-
graded and for greater values it delays the convergence. 

To notify the computational complexity, all time varying inertia weight modification 
methods in Table 1 are compared with proposed modifications PSO-TVW1, PSO- 
TVW2 and PSO-TVW3. Since MP-PSO replaces the weight by the corresponding per-
sonal best weight; there is no point in addition of complexity in the algorithm. So it is 
not included in Table 6 for comparison. All other variants are compared and found 
that PSO-TVW1 has less complexity followed by PSO-TVW2. PSO-TVW1 needs m 
number of additions and m number of multiplications for m iterations. The variant  
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Table 6. Comparison of complexity of PSO variants for m number of iterations. 

PSO variants Inertia weight equation Initial parameters Complexity 

Shi et al. [10] [11] ( )( ) ( )1n i f fw w w m n m w = − − − +   wi = 0.3, wf = 0.9 mxMUL + 4xmxADD + mxDIV 

Chatterjee et al. [12] ( )( ) ( )1np np

n i f fw w w m n m w = − − − +   wi = 0.3, wf = 0.9 &  
np = 0.7 

mxMUL + 4xmxADD + mxDIV + mxPOW(np) 

Feng et al. [13] [14] ( )( ) *n i f fw w w m n m w z = − − +   
wi = 0.3, wf = 0.9, z = 0.1 

( )4 1z z z= −  2xmxMUL + 4xmxADD + mxDIV 

Lei et al. [15] 
1
1nw

s
β
β

−
=

−
 s = 0.8, β = n/m mxMUL + 2xmxADD + 2xmxDIV 

Zheng et al. [16] 
0.32

nw
n

 =  
 

 n = current iteration mxDIV + POW(0.3) 

Jia et al. [15] initial
n

nw w u= ×  winitial = 1.1, u = 1.0002 (n(n + 1)m)/2xMUL 

PSO-TVW1 1iw η=  ( )m n mη = −  mxMUL + mxADD 

PSO-TVW2 2

      if 
2    if 

n N
iw

n N
η
η

≤
=  >

 N = 40 mxADD + mxDIV + (m − n)xDIV 

PSO-TVW3 2

      if

2    if

n N
iw

n N

η

η

 ≤= 
>

 

N = 40 mxADD + mxDIV + (m − n)xDIV + mxPOW(0.5) 

 

 
Figure 7. Effect of different Intermediate iteration value N on PSO-TVW2. 

 
suggested by Zheng et al. has complexity nearer to PSO-TVW2 but its performance is 
poor. The proposed modifications have less complexity compared to all existing va-
riants. 
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4.2. Sensitivity Analysis 

The parameter values and choices of the PSO algorithm have high impact on the effi-
ciency of the method, and few others have less or no effect. The analysis is done with 
respect to six key parameters namely, the intermediate iteration value N, the data win-
dow size ws, the acceleration constants ac1 and ac2, the population size P, number of tap 
weights T and distortion factor W. The effect of the basic PSO parameters swarm size 
or number of particles, window size, number of tap weights and acceleration coeffi-
cients are analyzed in [6]. The same is analyzed for PSO-TVW3 and is given in Table 7.  

On average, an increase in the number of particles will always provide a better search 
and faster convergence. In contrast, the computational complexity of the algorithm in-
creases linearly with population size, which is more time consuming. In Table 7, popu-
lation size of 40 gives better convergence. So a problem dependent minimum popula-
tion size is enough for better performance. The acceleration coefficients ac1 and ac2 
control the rate at which the respective local and global optima are reached. Setting the 
acceleration coefficients to a minimum value slows down the convergence speed. The 
local search and global search are best when the summation of acceleration coefficients 
become ac1 + ac2 < 4 in adaptive equalization. The acceleration coefficients greater than 
1 also seem to give the best performance. For equal value of acceleration constants, the 
algorithm converges fastest to its lowest MSE value. The MSE calculated on iterations is 
the average of the MSE over the window; a large window size increases the complexity 
per iteration and time consumption. From Table 7, window size does not make any 
greater changes in the MSE value. If the window size is small the complexity can be re-
duced. 

The tap weights are problem dependent. As given in Table 7, the increase in tap 
weights above a certain limit does not make much difference in MSE value, but it may 
increase the complexity. Figure 7 shows the analysis for different intermediate iteration 
N for PSO-TVW2. Table 8 compares the convergence rate and MSE for PSO-TVW2 
and PSO-TVW3 with reference to N. An increase in the value of N increases the num-
ber of iterations required for convergence. Decreasing N value degrades the MSE per-
formance. The N value between 30 and 40 exhibits minimum MSE with faster conver-
gence. 

Table 9 explains the effect of amplitude distortion parameter W in linear channel.  
 

Table 7. Effect of PSO parameters on Pso-Tvw3. 

Population P Tap weights T Window size WS 
Acceleration coefficients c1 

and c2 

P MSE in dB T MSE in dB WS MSE in dB c1 c2 MSE in dB 

10 −52 5 −53 32 −65 1 1 −68 

20 −64 7 −65 256 −68 1 2 −58 

40 −68 9 −70 512 −69 2 1 −56 

60 −72 13 −74 1024 −70 2 2 −67 
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Table 8. Comparison of convergence rate with different intermediate iteration value N. 

Intermediate  
iteration N 

Convergence rate (ite-
rations) 

MSE in dB for 
PSO-TVW2 

MSE in dB for PSO-TVW3 

10 30 −24 −31 

20 40 −45 −49 

30 45 −52 −58 

40 50 −58 −68 

50 60 −52 −59 

60 70 −56 −57 

 
Table 9. Effect of amplitude distortion W on PSO-TVW2 for LTE and DFE. 

Eb/No. 
in dB 

LTE DFE 

For W = 3.7 
MSE in dB 

For W = 3.1 
MSE in dB 

For W = 2.9 
MSE in dB 

For W = 3.7 
MSE in dB 

For W = 3.1 
MSE in dB 

For W = 2.9 
MSE in dB 

5 −17 −18 −20 −17 −18 −25 

10 −24 −26 −27 −24 −27 −35 

15 −25 −27 −33 −28 −30 −47 

20 −27 −35 −40 −35 −37 −60 

25 −33 −44 −53 −38 −45 −75 

30 −37 −54 −58 −46 −62 −88 

 
The MSE is computed with different amplitude distortion that leads to different eigen 
value spread. An increase in amplitude distortion degrades the MSE performance. The 
performance degradation is not severe in proposed PSO based algorithms compared to 
existing algorithms. The MSE performance of DFE is better than the LTE structure. But 
the number of iterations required for convergence is less in LTE compared to DFE ex-
cept for PSO-TVW2. 

5. Conclusion 

In this work, an enhanced PSO based channel equalization is proposed to improve 
convergence and mean square error of equalizer for adaptive equalization. The pro-
posed time varying PSO algorithms, PSO-TVW2, PSO-TVW3 and MP-PSO improve 
the convergence speed much better than other existing variants in linear and nonlinear 
channels. All the existing PSO variants have improved convergence speed when en-
hanced with position based modification MP-PSO. MP-PSO based PSO-TVW1 is less 
in complexity and MP-PSO based PSO-TVW2 is fast in convergence. The proposed 
modifications reduce the computational complexity and also increase the convergence 
speed without compromising the MSE. Also the convergence is guaranteed within 50 
iterations for all independent runs. 
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