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Abstract 

Let ( ) ( )( ),G V G E G=  be an undirected graph. The maximum cycle packing 

problem in G then is to find a collection { }1 2, , , sC C C
 of edge-disjoint cycles iC  

in G such that s is maximum. In general, the maximum cycle packing problem is 
NP-hard. In this paper, it is shown for even graphs that if such a collection satisfies 

the condition that it minimizes the quantity ( ) ( ) ( )( )22

=1
s

ii E C E G E+ −∑   on 

the set of all edge-disjoint cycle collections, then it is a maximum cycle packing. The 
paper shows that the determination of such a packing can be solved by a dynamic 
programming approach. For its solution, an *A -shortest path procedure on an 
appropriate acyclic network N



 is presented. It uses a particular monotonous node 
potential. 
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1. Introduction 

We consider a finite and undirected graph G with vertex set ( )V V G=  and edge-set 
( )E E G=  that contain no loops.  

For a finite sequence ( )1 21 2 1, , , , , ,
ri i r iv e v e e v−  of vertices 

jiv  and pairwise distinct 
edges ( )1

,
j jj i ie v v

+
=  the subgraph W of G with vertices ( ) { }1 2

, , ,
ri i iV W v v v=   and 

edges ( ) { }1 2 1, , , rE W e e e −= 
 is called a walk with start vertex 

1i
v  and end vertex 

ri
v . 

If W is closed, i.e. 
1 ri iv v= , we call it a circuit in G. A path is a walk in which all 

vertices v have degree ( ) 2Wd v ≤ . A cycle is a closed path. The length ( )E C  of a 
cycle C G⊂  is denoted by ( )l C . An even graph is a graph G in which all vertices v 
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have even degree ( ) 2Gd v ≥ . An Eulerian graph is a connected even graph. 
For 1 i k≤ ≤ , let iG G⊂  be subgraphs of G. We say G is induced by 

{ }1 2, , , kG G G
 if ( ) ( ) ( ) ( )1 2 kV G V G V G V G= ∪ ∪ ∪

 and  
( ) ( ) ( ) ( )1 2 kE G E G E G E G= ∪ ∪ ∪

. Two subgraphs ( ),G V E′ ′ ′= ,  
( ),G V E G′′ ′′ ′′= ⊂  are called edge-disjoint if E E′ ′′∩ = ∅ . For E E′ ⊆ , we define 

( )\ , \G E V E E′ ′= . For V V′ ⊂ , we define \\ |V VG V G ′′ = , where ( )\| \V VV G V V′ ′=  
and ( ) ( ){ }\| | both end vertices of belong to \V VE G e E G e V V′ ′= ∈ . 

A packing ( ) { }1, , qG G G=   of G is a collection of subgraphs iG  of G ( 1, ,i q= 
) 

such that all iG  are mutually edge-disjoint and G is induced by { }1, , qG G . If 
exactly s of the iG  is cycles, ( )G  is called a cycle packing of cardinality s . The 
family of cycle-packings of cardinality s is denoted by ( )s G . If the cardinality of a 
cycle packing ( )G  is maximum, it is called a maximum cycle packing. Its card- 
inality is denoted by ( )Gν . If no confusion is possible, we will write   instead of 

( )G  and s  instead of ( )s G , respectively. 
Packing edge-disjoint cycles in graphs is a classical graph-theoretical problem. There 

is a large amount of literature concerning conditions that are sufficient for the existence 
of certain numbers of disjoint cycles which may satisfy some further restrictions. An 
overview of related references is given in [1]. Practical applications of cycle packings are 
mentioned in the papers [2] [3] [4] [5]. The algorithmic problems concerning the 
construction of maximum edge-disjoint cycle packings are typically hard (e.g. see [6] 
[7] [8]). A simple greedy-type heuristic for the problem is presented in [7], which 
iteratively looks for cycles of small length and removes the corresponding edges from 
the current graph until there is no cycle left. A different approach to tackle the problem 
is to relate maximum cycle packings of G to maximum cycle packings of subgraphs of 
G. In [1] it is described how ( )Gν  can be obtained if G has a vertex cut-set S of 
cardinality k. In this case, ( )Gν  can be determined by the values ( )Hν  for at most 

1
22
k 
+ 

   graphs of order smaller than G. Let ( )Gµ  denote the cyclomatic number of G, 

i.e. ( ) ( ) ( )G E G V G cµ = − + , where c denotes the number of connected components 

of G. If ( ) ( )G Gµ ν−  is known, then [9] shows how to construct G from one of a 
finite number of graphs by a series of simple graph operations. The paper [10] 
investigates a relation between a maximum cycle packing and maximum local traces for 
the case that G is Eulerian. For v V∈ , an Eulerian subgraph ( )T v  of G is called a 
local trace (at v) if every walk ( )W T v⊂  with start vertex v can be extended to an 
Eulerian tour in ( )T v . Traces were first considered in [11] and [12].  

In [13] bounds on ( )Gν  are presented if G is a polyhedral graph. These bounds 
depend on the size, the order or the number of faces of G, respectively. Polyhedral 
graphs are constructed that attain these bounds. 

In the present paper, we will consider even graphs and tackle the cycle packing 
problem by a dynamic programming approach. The main idea is, instead of regarding 
the length ( )l C  of a cycle C G⊂ , to consider its square ( )2l C . Doing so, a cycle 
packing   of cardinality s with cycles { }1 2, , , , sC C C C

 can be scored by  
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( ) ( ) ( ) ( )
2

2

1 1
.

s s

i i
i i

L l C E G l C
= =

 = + − 
 

∑ ∑  

In Section 2, we prove a max-min theorem that relates a minimizer *  of L to a 
maximum cycle packing of G. This theorem gives reason to consider maximum cycle 
packing problems of G within the framework of dynamic programming. In section 3, 
therefore, the problem is transformed into a shortest path problem on some ap- 
propriate acyclic networks N



. In order to avoid unnecessary excessive calculations in 
N


, suitable bounds on the length of an optimal paths are used. These bounds can be 
incorporated into an *A -algorithm. The algorithmic scheme of the procedure is 
presented in Section 3.2. 

2. A Max-Min Theorem  

Let ( ) 1Gν ≥ . A cycle packing ( )s G∈   then can be represented by  

( ){ }1 2, , , ,s sC C C G=    

(if 0s > ) where the iC  are the s cycles and ( )sG   is the uniquely determined 
remainder graph induced by ( ) ( )1

\ s
ii

E G E C
=

. If no confusion is possible, we will 
write sG  instead of ( )sG  . For 0s = , { } { }0 0G G= = . For ( )s Gν< , sG  might 
still contain cycles of G. For an even graph G, it may occur that ( )sE G = ∅  also in 
cases that ( )s Gν< . In these cases, we will write { }1 2, , , sC C C=  . If G is non-even, 
( )sE G ≠ ∅  for all ( )0 s Gν≤ ≤ . 
For ( )s s G∈  , define  

( ) ( ) ( ) 22

1
.

s

s i s
i

L l C E G
=

= +∑  

For 0s = , set ( ) ( ) 2
0L E G= .  

For the purpose of proving the crucial Lemma 1, consider particular subsets s  of 

s , defined by  
1) ( ) ( )G Gν ν=    
2) For ( )0 1s Gν≤ ≤ − , a packing s s∈   if and only if its reminder graph ( )sG   

contains a cycle.  
We then get  
Lemma 1. Let G be even, ( ) 2Gν ≥ , and let 2G G K′ = ∪  be the graph induced by 

G and a single edge as an additional component. For ( ){ }0,1, 2, ,s Gν∈  , define  

( ) ( ) ( ){ }min | .s s s sm G L G′= ∈    

Then  

( ) ( ) ( ) ( ) ( )0 1 2 1 .G Gm G m G m G m mν ν−> > > > >  

Proof. It can easily be seen that 1 1=   and ( ) ( ) ( )2
0 1E G m G m G′ = > . 

We will use induction on ( )r Gν= .  
( ) 2Gν = . Let { } ( )1 1 1 1,C G G′ ′= ∈   such that ( ) ( )1 1m G L=  . Since 1G′  is the 

graph induced by 1\G C′  and ( ) ( ) 2G Gν ν ′= = , 1G′  must contain a cycle 2C  of 
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length ( ) ( ) ( )2 1 2l C E G l C= − ≥ . Obviously, { } ( )2 1 2 2 2, ,C C K G′= ∈  . Then  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2

1 1 1 2 2 2 2 2 2 22 1 2 2m G L l C l C l C L l C m G l C m G= = + + + = + ≥ + >  . 
Now, let 2≥r  and let us assume that for all even graphs G such that 

( )2 G rν≤ ≤  the strict inequalities ( ) ( ) ( ) ( ) ( )0 1 2 1r rm G m G m G m G m G−> > > > >
 

hold.  
Let G be an even graph such that ( ) 1G rν = + . We will show ( ) ( )1s sm G m G+>  for 

all 1 s r≤ ≤ .  
Let ( ) { } ( )1 2, , , ,s s s sG C C C G G′ ′ ′= ∈   such that ( )( ) ( )s sL G m G′ = . Consider 

the graphs 1\G G C=  and 2G G K′ = ∪  . G  is even and ( )s G rν≤ ≤ . Obviously, 
( ) ( )1 1\s sG C G−′ ′= ∈     and ( ) ( ) ( )2

1sL m G l C= − . But also  
( ) ( ) ( ){ }1 1 1min |s s sL L G− − − ′= ∈      must hold, otherwise ( )s G′  would not be a 

minimizer of L on ( )s G′ . 
Hence, ( ) ( ) ( )2

1 1s sm G m G l C− = − . Applying the induction assumption to G , we 
then get: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )2 2 * 2 *
1 1 1 1 1 1 .s s s s s sm G m G l C m G l C L G l C L G C m G− +′ ′= + > + = + = ∪ ≥      

Here ( )*
s G′  is a minimizer of L on ( )1s G− ′ . From this we finally conclude 

( ) ( ) ( ) ( ) ( )0 1 1 1 .r r rm G m G m G m G m G− +> > > > >
  

                                                                     

By ( ) ( ) ( )0

G
ss

G Gν

=
=


  , we denote the family of all cycle packings of G. We get  

Theorem 1. Let G be even, ( ) 1Gν ≥ . Every cycle packing *  that minimizes L on 
( )G  is maximum, i.e. ( )

*
Gν∈  .  

Proof. Let { } ( )* * * *
1 , , ,s s sC C G G= ∈   be a minimizer of L on ( )G . We can 

assume that ( )* .sE G = ∅  We will show that ( )s Gν= . 
For this, consider the non-even graph 3 2G G K K′ = ∪ ∪  obtained by adding a 

component 3K  and an additional edge to G. Obviously, 3G K∪  is even and 
( ) ( )3 1 2G K Gν ν∪ = + ≥ . For the packing { }* * *

1 , , ,s sC C G′ ′=   with *
2 3sG K K′ = ∪  

it holds ( )s G′ ′∈   and ( ) ( ) ( )*
3 16sm G K L L′∪ ≤ = +  . We will show  

( ) ( )3sL m G K′ = ∪ .  
For an arbitrary packing { } ( )1, , ,s s sC C G G′ ′= ∈  , the remainder sG′  is the dis- 

joint union of 2K  and some even graph H that contains at least one cycle C G′⊂  of 
length ( ) 3l C ≥ . Let ( ) ( ) 0k E H l C= − ≥ .  

If the component 3K  is not contained in H, then 3K  is one of the cycles 

1 2, , , sC C C , i.e. { }3 2, , , ,s sK C C G′=  . In this case C is a cycle in G.  
Consider the packing { } ( )2 3, , , , , \ .s s s s sC C C G G G G C K′ ′ ′ ′= ∈ = ∪  

   Then  

( ) 4sE G k′ = + . We get  

( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( )

2 22 23 1 4

= 2 1 2 1 8 7

2 4 2 3 8 6
0

L L k l C l C k

k l C l C k

k k

− = + + + − + +

⋅ + + + − −

≥ ⋅ ⋅ + ⋅ − −
≥

 

 

i.e. ( ) ( )L L≤    
We conclude, that there must be a minimizer { }* * * * *

1 2, , , ,s sC C C G′=    

  of L on 
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( )s G′ , such that *
3 2 sK K G′∪ ⊂  . Obviously, ( )* *

3 2 1
\ \ s

s ii
G K K G C

=
′ ∪ = 



, i.e.  

{ } ( )* * *
1 2, , , ,s s sC C C G G′ = ∈   

   with *
1

\ s
s ii

G G C
=

= 



.  
We get  

( ) ( ) ( ) ( ) ( )* *
3 8 16 16.s sm G K L L E G L′∪ = = + + ≥ +     

Applying Lemma 1 to the even graph 3G K∪ , we get for ( )s Gν ′< :  

( ) ( ) ( ) ( ) ( )3 3 3 ,sG Gm G K m G K m G Kν ν′ ∪ < ∪ ≤ ∪  

where the last inequality is strict if ( )s Gν< .  
Now, let ( ){ }* * * *

3 1 2 2
ˆ ˆ ˆ ˆ, , , , ,GK C C C Kν=   be a maximum cycle packing that mini-  

mizes L on ( ) ( )G Gν ′ ′ , i.e. ( ) ( )*ˆ
Gm Lν ′ =  .  

Then ( ) ( ){ }* * * *
1 2

ˆ ˆ ˆ ˆ, , , ,G GC C C Gν ν′=   with ( ) 3 2GG K Kν′ = ∪  minimizes L on  

( ) ( )G Gν ′ . Obviously, ( ){ } ( )* * *
1 2

ˆ ˆ ˆ ˆ, , , GC C C Gν= ∈  . We get  

( ) ( ) ( ) ( ) ( )*
3 3

ˆ 16 = 16,sGL m G K m G K Lν+ ∪ ≤ ∪ = +   

where the inequality is strict, if ( )s Gν< .  
It follows ( ) ( )*ˆL L≤  . But *  was a minimizer on ( )G , i.e. ( ) ( )*ˆL L≥  . 

Therefore, ( ) ( )*ˆL L=   and ( )s Gν= .                                   
A maximum cycle packing ( ){ }* * * *

1 2, , , GC C Cν=   of G is said to be max-min if it 
minimizes L on ( )G . The quantity ( ) ( )* *:L G L=   is the max-min cycle value of G. 
The determination of a max-min cycle packing *  will be called the max-min cycles 
packing problem (mmcp-problem) of G. Clearly, max-min cycle packings, in general, 
are not unique.  

The following theorem relates the determination of ( )*L G  to the determination of 
the max-min cycle values for even subgraphs H G⊂ . 

Theorem 2. Let G be even. Then 

( )
( ) ( )

( ) ( )( ){ }* *

even, \ \
min \ .

H G H G H
L G L H L G H

∈
= +

 
  

Proof. Let H G⊂  be an even subgraph of G and ( ) { } ( )1 2, , , rH C C C H= ∈   
be max-min.  

A packing ( ) ( )( ){ } ( )1 2\ , , , , \ \r r s s rG H C C C G H G H+ + −
= ∈   then induces a  

packing ( ){ } ( )1 2 1, , , , , , , \ s rr r sC C C C C G H G−+= ∈   . We then get  

( ) ( ) ( ) ( )( ) ( ) ( )( )* *\ \ .L G L L H G H L H L G H≤ = ∪ = +     

and conclude  

( )
( ) ( )

( ) ( )( ){ }* *

even, \ \
min \ .

H G H G H
L G L H L G H

∈
≤ +

 
  

Now, let ( ) ( ){ }* * * *
1 2, , , GG C C Cν=   be max-min and let *H  and *\G H  be 

induced by ( ) { }* * * *
1 2, , , rH C C C=   and ( ) ( ){ }* * *

1\ , ,r GG H C Cν+=  , respectively.  

The packings ( )*H  and ( )*\G H  must also be max-min. We get  
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( ) ( ) ( ) ( )
( ) ( )( )

( ) ( )
( ) ( )( ){ }

* * * * * *

* * *

*

even, \ \

\

\

min \ .
H G H G H

L G L L H L G H

L H L G H

L H L G H
∈

= = +

= +

≥ +
 







 

                                                                     
The proof of Theorem 2 immediately induces 
Corollary 1.  
1) ( ) ( ) ( )* * * \L G L H L G H≤ + , for every even subgraph H of G.  
2) ( ) ( ) ( ){ }* 2 *

, cyclemin \C G CL G l C L G C⊂= + .  

3. A Shortest Path Approach for the MMCP-Problem  

Theorem 2 gives reason to treat the mmcp-problem as a shortest path problem within a 
suitable weighted acyclic network ( ), , .N X U γ=



 

3.1. The MMCP-Network 


N   

Let the edges in E be labelled, i.e. ( ) { }1 2, , , mE G e e e= 
. In a canonical way, a 

subgraph ( ) ( )( ),H V H E H G= ⊂  is determined by its { }0,1  incidence vector  

( ) ( )1 2, , , ,ms H s s s= 
 

i.e.,  

( )
( )

1, if
0, if

i
i

i

e E H
s

e E H
 ∈=  ∉

 

Let ( ) ( ){ }*
1 min | 1ki H k s H= =  and ( ) ( ){ }*

0 min | 0ki H k s H= = .  
We will identify the set X of nodes1 in N



 with the set of even subgraphs of G. Each 
node x X∈  corresponds to some specific even subgraph H of G (we will write 
H X∈ ). Nodes in N



 are also assigned to stages 0,1, 2, , i.e.  

0 1 2X X X X= ∪ ∪ ∪ .  
For the construction of N



, the nodes and edges are defined inductively:  
• The unique node in 0X  corresponds to the subgraph 0G  of G with empty edge 

set. Assume that the set of nodes 1jX −  is given. Then a node belongs to jX  if 
there is 1 1j jG X− −∈  such that  

( ) ( )* *
1 1 0 1\ is a cycle with .j j j j jC G G i C i G− −= =  

We call 1j j jG G C−= ∪  to be a successor of 1jG − . The set of all successors of 1jG −  
is called an expansion of 1jG − , and a specific successor jG  is generated by expanding 

1jG − .  
• An edge in U corresponds to some specific cycle in G. Edges exist only between 

nodes at consecutive stages. An edge ( )1,j jx x U− ∈  if and only if for the cor- 
responding subgraphs jG  is a successor of 1jG − .  

• As edge weights we set ( ) ( )2
1, :j j jx x l Cγ − = .   

 

 

1For N


 we will use “nodes”, in G we use “vertices”. 
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Clearly, ( ), ,N X U γ=


 is acyclic and the number of stages in N


 cannot exceed 
( ) 1Gν + . An even subgraph H G⊂  is reachable in N



 if there is a path ( )P H N⊂


 
with starting node 0G  and end node H. In a canonical way, any path ( )P H  induces 
a cycle packing { } ( )1 2, , , , \s sC C C G H G= ∈  . The set { }1 2, , , sC C C

 describes 
the cycles used in the successive expansions of the corresponding nodes.  

Obviously, G is reachable in N


, but not all even subgraphs of G have this property. 
Hence, not every cycle packing ( )G∈   is induced by some paths ( )P H N∈



. We 
get 

Lemma 2. Let H G⊂  be reachable in N


 and ( ) { }1 2, , , sH C C C=   be a 
cycle-packing of H of cardinality s. Then there is a path ( )P H  in N



 that induces 
( )H .  
Proof. Let ( ) { }1 2, , , sH C C C=   be a cycle packing of H of cardinality ( )s Hν≤ . 

Without loss of generality, we can assume that the cycles in ( )H  are ordered such 
that ( ) ( ) ( )* * *

1 1 1 2 1 si C i C i C< < < . Let 1 j s≤ ≤  and 1jG −  be the even subgraph of H 
induced by { }1 2 1, , , jC C C − . Since the cycles are mutually edge-disjoint, the number 
( )*

1 ji C  coincides with ( )*
0 1ji G − . Therefore, jG  is generated by an expansion of 1jG − , 

i.e. there is a path ( )P H N∈


 that induces ( )H . Moreover, if  
( ) { }1 2, , , sH C C C=   and ( ) { }1 2, , , rH C C C=   are two different 

cycle-packings of H, then the corresponding paths in N


 must be different.         
Together with Theorem 1, we conclude for the special case H G= :  
Proposition 3. *  is a max-min cycle packing of G if and only if *  corresponds 

to a shortest path ( )*P G  in N


.   
In order to reduce the number of graphs that have to be expanded within the 

algorithmic procedure, those subgraphs H in N


 have to be identified that cannot be 
contained in ( )*P G . Such an identification, preferably, should be done as early as 
possible in the calculations. The following proposition gives conditions for such a 
situation. They can be checked during the shortest path procedure. If such a condition 
is satisfied, H must never be expanded. 

Proposition 4. Let ( )*P G  be a shortest path in N


 and let 
1 2
,j jH X H X∈ ∈  be 

reachable. If  
1) ( ) ( ) 1 2andE H E H j j⊂ <  or  
2) ( ) ( ) 1 2andE H E H j j=   

holds, then ( )* .H P G∉   
Proof. Since ( ) ( )E H E H⊂ , ( ) ( )H Hν ν≤  holds. Assume that ( )*H P G∈ . 

Then there is a cycle packing ( ) ( )*H G⊂   induced by ( ) ( )*P H P G⊂ . The 
packing ( )H , therefore, must be max-min. Hence, ( ) 1H jν = . This leads to the 
contradiction.                                                            

3.2. An A*-Shortest Path Algorithm  

For an even subgraph H G⊂ , let ( )*l H  denote the length of the shortest cycle in H, 
then,  

( ) ( ) ( )* * \ \ ,h H l G H E G H= ⋅  
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is a lower bound for the max-min cycle value ( )* \L G H . Moreover, the function 
( )*h ⋅  is a monotonous node potential on N



 in the following sense  
Lemma 3. For 1j ≥ , let 1,j jG G−  be two even subgraphs of G adjacent in N



 such 
that 1j j jG G C−= ∪ . Then  

( ) ( ) ( )* 2 *
1 .j j jh G l C h G− ≤ +  

Proof. Let *
1jl −  and *

jl  be the lengths of the shortest cycles in 1\ jG G −  and \ jG G , 
respectively. Then  

( ) ( )( ) ( )( )
( )( ) ( ) ( )

( ) ( ) ( )
( ) ( )( )( )
( ) ( )
( ) ( ) ( ) ( )

* * *
1 1 1 1 1

2* *
1 1 1 1 1

2 *
1 1 1 1

2 *
1 1 1

2 *
1

2 * 2 *

\

\ \

\ \

\

\

\ .

j j j j j

j j j j j j j

j j j j j j

j j j j j

j j j

j j j j j

h G l E G G l E E G

l E E G E G G l E G G

E G G l E E G E G G

l C l E E G G G

l C l E G G

l C l E G G l C h G

− − − − −

− − − − −

− − − −

− − −

−

= ⋅ = ⋅ −

≤ ⋅ − + − ⋅

 = + − − 
 = + ⋅ − ∪  

= + ⋅

≤ + ⋅ = +

 

The last inequality is true, since 1\ \j jG G G G −⊂ . Hence, * *
1 .j jl l− ≤              

In [14], it is described how information of a monotonous node potential could be 
incorporated into a searching strategy for the shortest path procedure. Such an *A - 
search algorithm constructs N



 successively and expands only such nodes that are 
candidates for a shortest path ( )*P G .  

The *A  procedure essentially manages two sets of nodes in N


 and updates several 
quantities:  
• X: even subgraphs of G that are candidates to determine ( )*P G .2  
• L: subgraphs that are already expanded. For H L∈ , a shortest path ( )*P H  is 

already constructed.  
• ( ) ( )H Hν =  : index of the stage in N



 at which H is considered H Xν∈ . If *A  
terminates, ( )Gν  is the cardinality of a maximum cycle packing. 

• ( ) ( )( )* :g H L H=  : (currently) the shortest length of a path ( )P H . If H L∈ , 
then ( ) ( )* *g H L H= . If *A  stops, ( ) ( )* *g G L G= .  

• ( )*h H : monotonous node potential.  
The scheme of such an *A -search is outlined as follows. 

 

 

 

2We will write “H ∈ X”, indicating that the node that corresponds to H belongs to X. 
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The determination of H  in step 1 requires the determination of the girth of \G H . 
This can efficiently be done by the shortest paths procedures. For the expansion of H in 
step 2, the value ( )*

0i H  and the set C of all cycles in \G H  that contain ( )*
0

,
i

e u v=  
must be generated. This makes it necessary to identify all simple paths between u and v 
in the graph \G H . Typically, this subproblem is attacked by using DFS procedures. 
In general, it is NP-hard ([15]). 

Step 3 incorporates the stopping rule ( jH C G∪ = ) and the elimination of super- 
fluous nodes (and sub-paths) according to Prop. 4. 

Coming from step 2, *A  terminates in step 3 if G is expanded from some H for the 
first time. Since it is possible that the graph G may appear in N



 at different stages, it 
must be guaranteed that *A  doesn’t stop at a “wrong” node that corresponds to G.   

Proposition 5. If *A  stops, then ( )* G  is a max-min cycle packing of G.  
Proof. Assume, *A  terminates and ( ) ( )* G Gν< . In this case sG G=  cor- 

responds to a node at stage ( )<s Gν . Since the corresponding cycle packing 
( ) { }*

1 2, , ,s sG C C C=   is not maximum, ( )( ) ( )* *
sL G L G> . Let ( )sP G  be the 

path in N


 induced by ( )*
sG  and let : \s sG G C′ =  be the predecessor of sG  on 

that path.  
The only node in N



 at stage ( )Gν  corresponds to G ( :G Gν = ). For the shortest 
path ( )*P Gν , Theorem 1 gives ( ) ( )( ) ( )( )* * * *

sL G g P G g P Gν= < .  
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Let *H  be the last common node of the paths ( )sP G  and ( )*P Gν . Since *H  is 
expanded at some iteration of *A , there must be a subgraph H  on the subpath 

( )*,P H Gν  of ( )*P Gν  that belongs to X when *A  terminates. Since this node is 
never selected in step 1 until *A  stops (otherwise it would have been deleted from X in 
step 2), the inequality ( ) ( ) ( ) ( )* * * *g H h H g G h G′ ′+ ≥ +  must hold. But then  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )

* * * *

* * * *

* * * 2 *

\

s

L G L G L H L G H

L H h H g H h H

g G h G g G l C L G

ν ν= = +

≥ + = +

′ ′ ′≥ + = + = 

 

is a contradiction. Hence, *A  terminates at stage ( )Gν , i.e. *  is maximum.     
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