/
oo Resmurch
0.00 Publishing

Open Journal of Discrete Mathematics, 2016, 6, 297-313
http://www.scirp.org/journal/ojdm

ISSN Online: 2161-7643

ISSN Print: 2161-7635

Signed Tilings by Ribbon L n-Ominoes, n 0dd, via

Grobner Bases

Viorel Nitica

Department of Mathematics, West Chester University, West Chester, PA, USA

Email: vnitica@wcupa.edu

How to cite this paper: Nitica, V. (2016)
Signed Tilings by Ribbon L 1n-Ominoes, n
Odd, via Grébner Bases. Open Journal of Dis-
crete Mathematics, 6, 297-313.
http://dx.doi.org/10.4236/0jdm.2016.64025

Received: July 9, 2016
Accepted: October 11, 2016
Published: October 14, 2016

Copyright © 2016 by author and

Scientific Research Publishing Inc.

This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

OO ore e

Abstract

We show that a rectangle can be signed tiled by ribbon L n-ominoes, 1 odd, if and
only if it has a side divisible by n. A consequence of our technique, based on the ex-
hibition of an explicit Grobner basis, is that any 4-inflated copy of the skewed Z
n-omino has a signed tiling by skewed L n-ominoes. We also discuss regular tilings
by ribbon L n-ominoes, 1 odd, for rectangles and more general regions. We show
that in this case obstructions appear that are not detected by signed tilings.
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1. Introduction

In this article, we study tiling problems for regions in a square lattice by certain sym-
metries of an Z-shaped polyomino. Polyominoes were introduced by Golomb in [1] and
the standard reference about this subject is the book Polyominoes [2]. The L-shaped
polyomino we study is placed in a square lattice and is made out of n,n>3, unit
squares, or cells. See Figure 1(a). Ina axb rectangle, ais the height and b is the base.
We consider translations (only!) of the tiles shown in Figure 1(b). They are ribbon
L-shaped n-ominoes. A ribbon polyomino [3] is a simply connected polyomino with no
two unit squares lying along a line parallel to the first bisector y = x. We denote the set
of tilesby T, .

Tilings by T,,n even are studied in [4] and [5], with [4] covering the case n=4. We
recall that a replicating tile is one that can make larger copies of itself. The order of rep-
lication is the number of initial tiles that fit in the larger copy. Replicating tiles were in-

troduced by Golomb in [6]. In [7], we study replication of higher orders for several
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(a) An L n-omino — T3 Ty
with n cells. | ]

Ty Ty

(b) The set of tiles Tp.

Figure 1. An L n-omino and the tile set 7,

replicating tiles introduced in [6]. In particular, it is suggested there that the skewed
L-tetromino shown in Figure 2(a) is not replicating of order k* for any odd & The
question is equivalent to that of tiling a 4inflated copy of the straight L-tetromino us-
ing only four, out of eight possible, orientations of an L-tetromino, namely those that
are ribbon. The question is solved in [4], where it is shown that the Z-tetromino is not
replicating of any odd order. This is a consequence of a stronger result: a tiling of the
first quadrant by T, always follows the rectangular pattern, that is, the tiling reduces
toatilingby 4x2 and 2x4 rectangles, each tiled in turn by two tiles from T,.

The results in [4] are generalized in [5] to T ,n even. The main result shows that
any tiling of the first quadrant by T, reduces to a tiling by nx2 and 2xn rectan-
gles, with each rectangle covered by two ribbon Z-shaped n-ominoes. An application is
the characterization of all rectangles that can be tiled by T,,n even: a rectangle can be
tiled if and only if both sides are even and at least one side is divisible by n. Another
application is the existence of the local move property for an infinite family of sets of
tiles: T,,n even, has the local move property for the class of rectangular regions with
respect to the local moves that interchange a tiling of an Nxn square by n/2 vertical
rectangles, with a tiling by n/2 horizontal rectangles, each vertical/horizontal rectan-
gle being covered by two ribbon Z-shaped n-ominoes. One shows that neither of these
results is valid for any odd n. The rectangular pattern of a tiling of the first quadrant
persists if one adds an extra 2x2 tileto T,,n even. A rectangle can be tiled by the
larger set of tiles if and only if it has both sides even. It is also shown in the paper that
the main result implies that a skewed L-shaped n-omino, n even, (see Figure 2(b)) is
not a replicating tile of order k? for any odd 4.

We investigate in this paper tiling properties of T,,n odd. Parallel results with [8]
are not possible due to the fact, already observed in [5], that there are rectangles that
have tilings by T, ,n odd, which do not follow the rectangular pattern. See Figure 3.
Instead of regular tilings, one can study signed tilings. These are finite placements of
tiles on a plane, with weights +1 or —1 assigned to each of the tiles. We say that they tile
a region R if the sum of the weights of the tiles is 1 for every cell inside R and 0 for
every cell elsewhere.

A useful tool in the study of signed tilings is a Grobner basis associated to the poly-
nomial ideal generated by the tiling set. If the coordinates of the lower left corner of a

cell are (a, ), one associates to the cell the monomial Xx“y”. This correspondence
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(a) Skewed L-tetromino.

(b) Skewed L n-omino.

Figure 2. Skewed polyominoes.

(n,n+1)
(n+1,n)

(2n,n)

(2n,n)
(2n —2,n)

(n,n+1)

Figure 3. A tiling of a (3n,3n+1) rectangle
by T,.

associates to any bounded tile placed in the square lattice a Laurent polynomial with all
coefficients 1. The polynomial associated to a tile Pis denoted by f,. The polynomial
associated to a tile translated by an integer vector (7,8) is the initial polynomial mul-
tiplied by the monomial X"y’ . If the region we want to tile is bounded and if the tile
set consists of bounded tiles, then the whole problem can be translated in the first qua-
drant via a translation by an integer vector, and one can work only with regular poly-
nomials in Z[X ,Y] . See Theorem 13 below.

Our main result is the following:

Theorem 1. A rectangle can be signed tiled by T,,n>5 odd, if and only if it has a
side divisible by n.

Theorem 1 is proved in Section 4 using a Grobner basis for the tiling set computed
in Section 3.

For completeness, we briefly discuss regular tilingsby T ,n>5 odd.

Theorem 1 gives for regular tilings by T,,n>5 odd, a corollary already known (see
Lemma 2 in [5]):

Theorem 2. If n>5 odd, a rectangle with neither side divisible by n cannot be tiled
by T,.

If one of the sides of the rectangle is divisible by n, we recall first the following result

of Herman Chau, mentioned in [5], which is based on a deep result of Pak [3].
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Theorem 3. A rectangle with both sides odd cannot be tiled by T,,n>5 odd.

If one of the sides of the rectangle is even, one has the following result.

Theorem 4. Let n>5 odd and assume that a rectangle has a side divisible by n and
a side of even length.

1) If one side is divisible by n and the other side is of even length, then the rectangle
can be tiled by T, .

2) If the side divisible by n is of length at least 3n+1 and even, and the other side is
of length at least 3n and odd, then the rectangle can be tiled by T, .

Proof 1) The rectangle can be tiled by 2xn or nx2 rectangles, which can be tiled
by two tiles from T, .

2) We use the tiling shown in Figure 4. The (3n,3n+1) rectangle is tiled as in Fig-
ure 3, and the other two rectangles can be tiled by 2xn or nx2 rectangles, which in
turn can be tiled by two tiles from T, .

A consequence of the technique used in the proof of Theorem 1 is:

Proposition 5. If n>5 oddand k >1, then a k-inflated copy of the L n-omino has
a signed tiling by ribbon L n-ominoes.

Proposition 5 is proved in Section 5.

Asany 2nx2n square can be tiled by T, it follows that if kis divisible by 21 then
the skewed Zn-omnino is replicating of order k. Information about other orders of
replication can be found by using Pak’s invariant [3].

Proposition 6. Let n>5 odd.

1) If k=1 isodd and divisible by n, then the skewed L n-omino is not replicating of
order k*.

2) If k21 iseven and not divisible by n, then the skewed L n-omino is not repli-
cating of order kK’ .

Proposition 6 is proved in Section 6. Proposition 6 leaves open the question of rep-
lication of the skewed L n-omino if & is odd and not divisible by n. Some cases can be

solved by using Pak’s higher invariants f,,---, f. [3], which are all zero for tilesin T, .

For example, if n=5, a 3-inflated copy of the L pentomino has f, = -1, showing the
impossibility of tiling. A general result for regular tilings is out of reach due to the fact
that for & odd and congruent to 1 modulo n, the leftover region that appears (see the
proof of Proposition 6) is just an L n-omino that has all higher invariants f,,---, f_

equal to zero. This is in contrast to the case of regular tilings by T ,n even, discussed

in [5], which is very well understood.

(even, M (2n))

(3n,3n + 1) (3n, even)

Figure 4. A tiling of an (odd, even) rectangle by T, .
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For completeness, we also consider the tile set T, consisting of T,,n odd, and an
extra 2x2 square. For neven, the tile set T, is studied in [5]. It is shown there that
there is a similarity between the regular tiling properties of T,” and T,.

Theorem 7. If n>5 odd, any region in a square lattice can be signed tiled by T,

Theorem 7 is proved in Section 7.

Barnes developed in [9] [10] a general method for solving signed tiling problems
with complex weights. In Section 8, we review the method of Barnes and offer an alter-
native proof of Theorem 1 based on this method. Having available a Grobner basis for
the tiling set helps even if Barnes method is used.

Theorem 8. If complex or rational weights are allowed fto replace the integral
weights, a rectangle can be signed tiled by T,,n>5 odd, if and only if it has a side di-
visible by n.

Signed tilings by T,,n even, are more complicated than in the odd case. They are
discussed in [11].

We make a final comment about the paper. While the methods that we use are well
known, and algorithmic when applied to a particular tiling problem, here we apply

them to solve simultaneously an infinite collection of tiling problems.

2. Summary of Grobner Basis Theory

An introduction to signed tilings can be found in the paper of Conway and Lagarias
[12]. One investigates there signed tilings by the 3-bone, a tile consisting of three adja-
cent regular hexagons. The Grdbner basis approach to signed polyomino tilings was
proposed by Bodini and Nouvel [13]. In [8] one uses this approach to study signed til-
ings by the n-bone, a tile consisting of n collinear adjacent regular hexagons.

Let F?[X = R[Xl, -y Xk] be the ring of polynomials with coefficients in a principal
ideal domain (PID) R. The only (PID) of interest in this paper is Z, the ring of integers.
A termin the variables x;,---,X, isa power product X*X;2---X/" with o e N,1<i</;
in particular 1=X’---X] is a term. A term with an associated coefficient from R is
called monomial. We endow the set of terms with the fotal degree-lexicographical order,
in which we first compare the degrees of the monomials and then break the ties by
means of lexicographic order for the order x, > x, >--->X, on the variables. If the va-

riables are only x,y and x>y, this gives the total order:
I<y<x<y?<xy<x<y?<xy’ <x’y<x’<y<-.. 1)

For PeR[X] we denote by HT(P) the leading term in P with respect to the
above order and by HM (P) the monomial of HT (P). We denote by HC(P) the
coefficient of the leading monomial in 2 We denote by T(P) the set of terms ap-
pearing in 2, which we assume to be in simplest form. We denote by M (P) the set of
monomials in 2. For a given ideal | c §[X] an associated Grobner basis may be in-
troduced for example as in Chapters 5, 10 [14]. Our summary follows the approach
there. If G < R[X] is a finite set, we denote by |(G) the ideal generated by G in
R[X].
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Definition 1. Let f,g,pe ﬁ[x ] We say that £ D-reduces to g modulo p and write
f >, g if there exists meM (f) with HM(p)|m, say m=m'HM(p), and
g=f-m'p. For a finite set G F_Q[X], we denote by —; the reflexive-transitive
closure of — , peG. We say that g is a normal form for f with respect to G if
f -5 g and no further D-reduction is possible. We say that fis D-reducible modulo
Gif f —;0.

It is clear that if f —; 0, then fbelongs to the ideal generated by Gin ﬁ[x ] The
converse is also true if Gis a Grobner basis.

Definition 2. A D-Grobner basis is a finite set Gin ﬁ[X] with the property that all
D-normal forms modulo G of elements of | (G) equal zero. If | ¢ ﬁ[X] is an ideal,
then a D-Grobner basis of 7is a D-Grobner basis that generates the ideal /.

Proposition 9. Let G be a finite set of ﬁ[X |. Then the following statements are
equivalent:

1) G is a Grobner basis.

2) Every f #0,f €1(G), is D-reducible modulo G.

Note that if Ris only a (PID), the normal form of the division of fby G is not unique.
We introduce now the notions of S-polynomial and G-polynomial.

Definition 3. Let 0% ¢, e R[X],i=12, with HC(g,)=a, HT(g;)=t. Let
a=ha =lcm(a,a,) with b eR,and t=st =lem(t,t,) with s T .Let
¢,c, €R suchthat gcd(a,a,)=0ca, +C,a,. Then:

S (91: 9, ) = b13191 - bzszgz’

G (gl' gz) =05,0; + 65,0,
Remark. If HC(g,)=HC(g,),then G(g,,9,) canbe chosentobe g,.
Theorem 10. Let G be a finite set of §[X] . Assume that for all g9,,9,€G,

$(9,.9,) ¢ 0 and G(9,,9,) is top-D-reducible modulo G. Then G is a Grobner
basis.

()

Assume now that R is a Euclidean domain with unique remainders (see page 463
[14]). This is the case for the ring of integers Z if we specify remainders upon division
by 0%m tobein theinterval [0,m).

Definition 4. Let f,g,pe ﬁ[x ] We say that £ E-reduces to g modulo p and write

f —,e g if there exists m=ateM (f) with HM(p)|t, say t=sHT(p), and
g="f —qsp where 0=qgeR is the quotient of a upon division with unique re-
mainder by HC(p).

Proposition 11. E-reduction extends D-reduction, i.e., every D-reduction step in an
E-reduction step.

Theorem 12. Let R be an Euclidean domain with unique remainders, and assume G
is a finite set of R [ X ] and a D-Grébner basis. Then the following hold:

1) f—g.0 forall fel(G),where -, denotes the E-reduction modulo G.

2) E-reduction modulo G has unique normal forms.

The following result connects signed tilings and Grébner bases. See [13] and [8] for a
proof.
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Theorem 13. A polyomino P admits a signed tiling by translates of prototiles
R,P,,---,R, ifand only if for some (test) monomial X"y’ the polynomial x*y” f,
is in the ideal generated in Z[X,Y| by the polynomials fa. s fq . Moreover, the set
of test monomials {X” y’ } can be indexed by any set of multi-indices which is cofinal
in (N',<).

3. Grobner Basis for T,,n Odd

We write n=2k+1,k>2. The polynomials (in condensed form) associated to the

tilesin T, are:

v 1
G, (k)= ,
1( ) y_l +X
2k
6, () =y 4 xLL,
2k y_l (3)
X -1
G, (k)= 1 +Y,
2k
-1
G, (k) =x*1+yX—=.
4 (k) Ty 1

We show in the rest of this section that a Grobner basis for the ideal generated in
Z[X,Y] by G,(k),G,(k),G;(k),G,(k), is given by the polynomials (written in

condensed from):

y-1 x-1

yk+1_1 Xk -1
B, (k)="———+Xx——, 4
B, (k)=xy-1.

It is convenient to look at the elements of the basis geometrically, as signed tiles, see
Figure 5. The presence of B, (k) in the basis allows reducing the algebraic proofs to
combinatorial considerations. Indeed, using addition by a multiple of B, (k) , one can

translate, along a vector parallel to the first bisector y = x, cells labeled by +1 from one

\II AN A
k+ 149 _
B EoH
s ]
T ¥ E
£ N £ N 5 e 5 2 I = el
0 EL—1 O k 0 f
(a) Bi(k) (b) Ba(k) (c) Bs(k)

Figure 5. The Grobner basis {Bl(k), B, (k), Bs(k)} .
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position in the square lattice to another. See Figure 6. We will use this property re-
peatedly to check certain algebraic identities.

Proposition 14. G, (k),G,(k),G,(k),G, (k) are in the ideal generated by
B, (). (k). By (k).

Proof. The geometric proofs appear in Figure 7. First we translate one of the tiles
B, (k) ,1=12, multiplying by a power of x or a power of y; and then rearrange the cells
from B;(k) using diagonal translations given by multiples of B, (k). The initial tiles
B,(k),i=12, have the cells marked by a +, and the final tiles G, (k),i=12,3,4, are
colored in light gray.

Proposition 15. B, (k),B,(k),B,(k) arein the ideal generated by
G, (K)., (k). (k). (k).

Proof. We first show that B, (k) belongs to the ideal generated by
G, (k).G,(k),G;(k),G, (k). One has:

2(k-1)

y o1yt y
B;(k)=-G,(k)+G,(k - G, (k
5 (k) L (K)+G, ( )+[ Xy 1 +y v J 5 (k) +xy ;

+ L = | I
.

\
(4
Figure 6. Tiles arithmetic.
1 1_- N
2k — Le 2% — I
__Illl...H_H_I - | IIH_H_Ik Z
k — 242 k— 1442 -
' A
. B / -
Gl L I I 2 22 e 2 23 22
0 PSR k_l'o k—1 2%k — 1
(a) Ga (k) (b) Ga(k) (c) Galk)
T hphl Lk
| M Y I
0 k 2% —1
(d) Ga(k)

Figure 7. Generating {Gl(k),Gz(k),G3(k),G4(k)} from {Bl(k),Bz(k),Bs(k)}.
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Using (3), the RHS of Equation (5) becomes:

(v 1)y + D (-1 =x(y ~L =Dy (v -1)(x-1)

+X(y2k _1)(y+1)(x—1)+[_xy(y+1)(y2(k71) _1)+ y(yZ(H) _1)}

x[y(x—1)+ x% —1]+xy(y2(k’l) —1)[y(xZk —1)+x2k’1(x—1)ﬂ

=- 1 |:(_y2k +1)(xy—y+x_1)_x(yzx_y2_X+1>+y2k71(yzx_yz_x+l)

(v*-1)(x-1)
+(xy2" - x)(xy —y+ x—1)+(—xy2k +xy? —xy* T xy+ y* - y)
x(xy— y+x* —1)+(xy2k’1 —~ xy)(yx2k —y+x% - XZH)]

1
_ [_y2k+lx+y2k+1_y2kx+y2k +xy—y+x—1—xzy2 +xy2 X% —x

(y2 —1)(x -1)

oy Ao kel 2L g2 2ked kel a2y 2k g2k w2y sy g2
Fx— X2YRL g xy Rt ey k2l 2y8 s kely2 2 ik g 2k
LRIy RRL 2kl | 2y2 g2 2ty Pk Rk gk kel 2kl g2
2k+1y2k _ X2k+1y2 _ Xy2k + Xy2 + X2k+ly2kfl _y2k+l 2k | ,2k-1

+y? = x*y+y+x X2ty —x*y +x2kyJ

=;[xy—1—x2y+xzy3 —xy® —xy? +y° +x]= xy —1= B, (k).

(v*-1)(x-1)

After we obtain B, (k), polynomials B, (k),B,(k) can be obtained geometrically
by reversing the processes in Figure 7. Reversing the process in Figure 7(a), we first
obtain a copy of y*B, (k). This copy can be translated to the right using multiplica-
tion by x*?, and then can be pulled back with the corner in the origin using a transla-
tion by a vector parallel to y = x. Reversing the process in Figure 7(c), we first obtain
a copy of x'B, (k). This copy can be translated up using multiplication by y**, and
then can be pulled back with the corner in the origin using a translation by a vector pa-
rallel to y=x.

A step by step geometric proof of formula (5) for n=7 is shown in Figure 8. All
cells in the square lattice without any label have weight zero. The proof can be easily
generalized for any odd n.

Proposition 16. B, (k),B,(k),B,(k) and G,(k),G,(k),G,(k).G,(k) generate
the same ideal in Z[X ,Y] .

Proof. This follows from Propositions 14, 15.

Proposition 17. One has the following D-reductions

S(Bl(k), Bz(k))=—kal(k)+ Xlez(k)+[Xk1 yk -1 ¥ Xkl_lJ B3(k)

y-1 x-1
k-1
5 (B,(K),By (K)) = By (k)+2 =B ()
S(Bz(k),BS(k))=Bl(k)+%83(k).

Consequently, B,(k),B,(k),B, (k) isa Grobner basis.
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] O[T 00 0[0
= —10]-{-]-{-]] —| ||
= St St
= e e
(a) Step 1 (-) (b) Step 2 (+) (c) Step 3 (-) (d) Step 4 (-)
0fo 0]o 0f0 0]0
o ol o ol e ol —— -1 0= 0J010]01010]0
o i e o o e o e 01010101010} 0 0 0

_0_____ ) —]—1— =] —1—]—]— ] —]—
—[+ —10]-]-|-]-|- =01 -|— —10]—]-1-]-1=
—{0 N —10 >—0 >—O ,
(e) Step 5 (-) (f) Step 6 (-) (g) Step 7 (+) (h) Step 8 (+)

0]o 0fo

0]oJ]ojolofolo 0folofolofolo

0loJojolofolo 01010 0]0

IR 0fjolofolofolo

01410101010}~ 0[+0folofojo

—|0 , —{0 N

(i) Step 9 (+) (j) Step 10 (+)

Figure 8. The polynomial B,(7) is generated by {Gl(k),G2 (k),Gs(k),G4(k)} .

Proof. The leading monomial of B, (k) is y**, the leading monomial of B, (k) is
x* and the leading monomial of B, (k) is xy . We reduce the S-polynomials related

to the set B, (k),B,(k),B,(k):
S(B,(k),B,(k))=x"B, (k)-y“"'B, (k)
k+2 k-1 k+1 k
:xk(y —1+Xx —1J_yh4(y —1+Xx —1}
y—1 x—1 y-1 x-1

_Xy2k+2 _ Xk yk+2 + Xk + y2k+2 _ yk+1 + X2ky _ Xk+1y+ ka X + yk+lxk+l

(x=1)(y-1)
=_kal(k)+x“Bz(k)+[x“ i X“‘lj B, (K).

y-1 x-1

S(By (k). By (k) =B, (k) —y*By (k)

k+2 k-1
:x(y —1xX _1]—¢%xy—ﬁ

y-1 x-1
_ X+Xk+1y_xzy_x +X2yk+1 ka+1+xyk+l_xyk _yk+l+ yk
(x=1)(y-1)
k
-1
=B:()+ T B(K)
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S(@(k)Bﬂk)):yBAk)—xk1&(k)=y(zii:1+x§i:}]—xk%xy—n

y-1 x-1
~ ka+2 _yk+2 Zxk e xk yz —kafl—Xyz +y+Xk71
(x=2)(y-1)
Xt -1
B, (k)+ x_1 2 (K)

We show now that all above reductions are D-reductions by looking at the elimina-
tion of the terms of highest degree in the S-polynomials.
The terms of highest degrees in S (B, (k), B, (k)), after the initial reduction

XkBl(k)_yk+le(k):Xk(yk+l+yk +yk—1+_“+xk—1+xk—2+Xk—3+_”)
_yk+l(yk+yk—l+yk—2+“.+xk+Xk—1+xk—2+_”)'

are (in this order)

2k+1 k=1\,k+1 _ \ 2k

—yHH Xy Xy

2K+l _ 2k

The terms -V Yy are contained in

_kal(k)z_yk(yk+1+yk +yk—1+___+xk—1+xk—2+Xk—3+”')’

which does not contains terms of higher degree then x*y* — x**y*"*,
The remaining terms X“y* —x*'y*! are contained in
k_ k-1 _
(Xkl y l_yk X 1JBa(k)
y-1 x—-1
_ |:Xk—1(yk—l byR gy +) K (kaz 4 X3 +---)J(xy—1),

which also does not contain terms of higher degree then x*y* — x**y**,

The term of highest degreesin S (B, (k), B, (k)), after the initial reduction
xB, (k) - y*B, (k) = x(yk+l T N S D S D S )— y* (xy-1)
is xy . This term is contained in
y -1
y-1
which does not contain terms of higher degree then xy*
The term of highest degreesin S (B, (k), B, (k)), after the initial reduction
YB, (K) = XBy (k) = y (Y + Y+ Y P e X XX ) =X (xy 1)

B3(k) :(yk—l + yk—2 +...)(xy_1)'

is y“'. This term is contained in B,, which does not contain terms of higher degree
k+1
then y".
As all higher coefficients are equal to 1, we do not need to consider the G-polyno-

mials.

4. Proof of Theorem 1

Consider a gx p,q= p=>1, rectangle. Using the presence of B3(k) in the Grobner

basis, and Theorem 13, the existence of a signed tiling becomes equivalent to deciding
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when the polynomial:
P o (X) =14+2x+3%" +---+ px*H + px” 4o+ px 4 (p-1)x°
+(P—2)XTE e 2xPHIT 4 x P2
is divisible by the polynomial:
Q(X)=1+X+xX* 4+ X",
If p+g-1<n,then degQ >degP,,, so divisibility does not hold. If p+q-1>n
we lookat P, (X) as a sum of p polynomials with all coefficients equal to 1:
Poq (X) =14 X+ X2 40 4o XP T XP e X X X PO P73 Pra2
XX XP T X e X X8 X x PR P
A X X e XTI X e PR P e T

Assume that p+q-1=nm+r,0<r<n, and p=ns+t,0<t<n. The remainder

R,q(X) of the division of P, (X) by Q(X) is the sum of the remainders of the di-
vision of the p polynomials above by Q (X) .

If ris odd, one has the following sequence of remainders, each remainder written in a

separate pair of parentheses:

vaq(x):(1+x+x2+---+x”1)+(x+x2+---+xr’2)+(x2+---+xr’3)+~--
1 1
+[ X2 4+x2 |[+(0)—| x2 +x2 —---—(x+x2+---+x"2)

—(1+x+x2+-~+xr’1)+(x”1+x”3+~~+x“’3+x”’2)

ren ren
+(x”2+---+x”’3)+---+ X2 |—|x?2 +---—(x”2+---+x”’3)

_(Xr+1+xr+3+___+Xn—3+xn—2)__.

If p=n, the sequence of remainders above is periodic with period n, given by the
part of the sequence shown above, and the sum of any subsequence of n consecutive
remainders is 0. So if p is divisible by n, P, , (X) is divisible by Q(X) If pis not di-
visible by 1, then doing first the cancellation as above and then using the symmetry of
the sequence of remainders about the remainder equal to 0, the sum of the sequence of
remainders equals 0 only if r +1=t, thatis, only if gis divisible by n.

If ris even, one has the following sequence of remainders, each remainder written in
a separate pair of parentheses:

Rp'q(x):(1+x+x2+---+x”1)+(x+x2+---+x”2)+(x2+---+x”3)

+...+(X£J_(X£J_...

—(1+x+x2+--~+x”1)+ X x4 -~+x”’3+x”’2)

K2
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If p=n, the sequence of remainders above is periodic with period n, given by the
part of the sequence shown above, and the sum of any subsequence of n consecutive
remainders is 0. So if p is divisible by , P, (X) is divisible by Q(X).If pis not di-
visible by n, then doing first the cancellation as above and then using the symmetry of
the sequence of remainders about the remainder equal to 0, the sum of the sequence of

remainders equals 0 only if r+1=t, thatis, only if ¢ is divisible by n.

5. Proof of Proposition 5

Consider a k-inflated copy of the L n-omino. Using the presence of B3(k) in the
Grobner basis, and Theorem 13, the existence of a signed tiling of the copy becomes
equivalent to deciding when a k xnk rectangle has a signed tiling by T, . Theorem 1

implies that this is always the case.

6. Proof of Proposition 6

1) We employ a ribbon tiling invariant introduced by Pak [3]. Each ribbon tile of
length n can be encoded uniquely as a binary string of length n-1, denoted
(81,"',6‘n71), where a 1 represents a down movement and a 0 represents a right
movement. The encoding of a 1xn baris (0,0,---,0), fora nx1 baris (11,--,1),
and for the tilesin T, the encodings are shown in Figure 9. Pak showed that the func-
tion f; (81,"',{;‘”71) =g —€,, is an invariant of the set of ribbon tiles made of n-cells,

which contains as a subset the tile set T, . In particular, one has that

fi(en - 60q) =%1

for any tile in T, . The area of a A&-inflated copy of the L n-omino is an odd multiple of
n and can be easily covered by nx1 and 1xn bars, each one having the invariant
equal to zero. If we try to tile by T, then the invariant is zero only if we use an even
number of tiles. But this is impossible because the area is odd.

2) Let k=nl+r,0<r <n. After cutting from a 4-inflated copy a region that can be
covered by nx1 and 1xn bars, and which has the f, invariant equal to zero, we
are left with one of the regions shown in Figure 10. Case a) appearsif 2r <n and case
b) appears if 2r > n. Both of these regions can be tiled by rribbon tiles of area n as in
Figure 11. In the first case the sequence of rencodings of the ribbon tiles is:

111---,1,410,0,---,0,0,0
111,---,110,0,0,---,0,0,1
111---,1,0,0,0,0,---,0,1,1

1110 1000 0111 0001

Figure 9. The four L-shaped ribbon pentominoes
and their encodings.
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Figure 10. Leftover regions.

Figure 11. Tiling the leftover region by ribbon n tiles, cases n=5/k=4,and n=17;k=20.

where we start with n—r —1 ones and rzeros, and then shift the zeroes to the left by 1
at each step, completing the sequence at the end with ones. As r <n-r -1, the subse-
quence of zeroes does not reach the left side, so the f, invariant of the region is equal
to 1.

In the second case, the sequence of rencodings of the ribbon tiles starts as above, but
now the subsequence of zeroes reaches the left side. Then we have a jump of n—r
units of the sequence of zeroes to the left, the appearance of an extra one at the right,
and a completion of the sequence by zeroes to the right. Then the subsequence of ones
that appears start shifting to the right till it reaches the right edge. The f, invariant of
the region is equal to —1.

So in both cases the f, invariant is an odd number. Nevertheless, if the &-copy is
tiled by T, , one has to use an even number of tiles and the invariant is an even number.

Therefore we have a contradiction.

7. Proof of Theorem 7

It is enough to generate the tile consisting of a single cell. We show the proof for n=7
in Figure 12. The proof can be easily generalized to any n>5 odd. First we construct
a domino with both cells having the same sign (as in Figure 12(c)), and then we use it

to reduce the Z n-omino until a single cell is left.

8. The Method of Barnes

In this section we give a proof of Theorem 8 following a method developed by Barnes.
The reader of this section should be familiar with [9] [10]. We apply the method to the
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M |

ALJ;JI;J;J;

[ (=) =) (=) = [

)] ()] [a] (aw] [aw] [
I
) () () [aw] (e} (e

(N
4

(N
4

(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4
(+) 0 () (+) R

Figure 12. Generating a single cellby T'.

1
0

OIOTOToT0] |

infinite collection of tiling sets T,,n>5 odd.
Let n>5 odd. Consider the polynomials (3) associated to the tiles in T, and de-
note by 7 the ideal generated by G, (k),G,(k),G;(k),G, (k). We show that the alge-

braic variety V defined by /is zero dimensional and consists only of the pairs of points

1-&"
[g’ l-¢ ]’ (©)

where & is an n-th root of identity different from 1.
Separate xfrom G,(k)=0 andreplacein G,(k)=0 to have:

Y2 y*-1y* -1 -0
y-1 y-1
Eliminating the denominators gives:

2k-1

y* = (y* ry

H2 gyl y+1)2 =0,
which can be factored as:

2k-2

(y2k +y2k’1+y2k’2+---+y2+y+l)(y +y* Py y2+y+l)=0.

It is clear that all roots of the polynomial above, and of the corresponding polynomi-
al in the variable x; are roots of unity of order 2k +1 and 2k —1. Using the system of
equations that defines V; the roots of order 2k —1 can be eliminated. Moreover, the
only solutions of the system are given by (6).

We show now that /is a radical ideal. For this we use an algorithm of Seidenberg
which can be applied to find the radical ideal of a zero dimensional algebraic variety
over an algebraically closed field. See Lemma 92 in [15]. Compare also with Theorem
7.1 in [9]. As V'is zero dimensional, one can find fl(X) and f, (y) that belong to
the radical ideal. We consider the square free polynomials:

2k-2

f(X)=x* + X+ x4 X+

fz(y)=y2k+y2k’1+y2"’2+~--+y2+y+l.

If f,(x),f,(y) are square free, then the ideal generated by 7and f (), f,(y) is

radical. So, in order to show that [ itself is radical, it is enough to show that

f,(x), f,(y) belong to I It is easier to generate f,(X) using the Grobner basis, so we
will use this approach.
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Proposition 18. The polynomials f;(X), f,(y) belong to the ideal 1.
Proof. 1t is enough to generate f; (X) . One has:

f,(X) = XxG; (x)— By (k).
We can apply now the main result in Lemma 3.8, [9]: a region Ris signed tiled by T,

if and only if the polynomial f;(X,y) associated to R evaluates to zero in any point of

the variety V. If Ris a rectangle of dimensions pxq in the square lattice, then

x'-1yP-1
fr(xy) = x—1 y-1'

which clearly evaluates to zero in all points of V'if and only if one of p,q is divisible
by n.

The fact that Theorem 8 implies Theorem 1 follows the idea of Theorem 4.2 in [9].
Indeed, a set of generators for the regions that are signed tiled with rational numbers by
T, is given by the polynomials f; (X), f, (y) above. Both of them can be generated by

the Grobner basis using only integer coefficients.

9. Conclusion

We show that a rectangle can be signed tiled by ribbon L n-ominoes, 1 odd, if and only
if it has a side divisible by n. A consequence of our technique, based on the exhibition
of an explicit Grobner basis, is that any k-inflated copy of the skewed L n-omino has a

signed tiling by skewed L n-ominoes.
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