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Abstract 

Windowing applied to a given signal is a technique commonly used in signal pro- 
cessing in order to reduce spectral leakage in a signal with many data. Several win-
dows are well known: hamming, hanning, beartlett, etc. The selection of a window is 
based on its spectral characteristics. Several papers that analyze the amplitude and 
width of the lobes that appear in the spectrum of various types of window have been 
published. This is very important because the lobes can hide information on the fre-
quency components of the original signal, in particular when frequency components 
are very close to each other. In this paper it is shown that the size of the window can 
also have an impact in the spectral information. Until today, the size of a window has 
been chosen in a subjective way. As far as we know, there are no publications that 
show how to determine the minimum size of a window. In this work the frequency 
interval between two consecutive values of a Fourier Transform is considered. This 
interval determines if the sampling frequency and the number of samples are ade-
quate to differentiate between two frequency components that are very close. From 
the analysis of this interval, a mathematical inequality is obtained, that determines in 
an objective way, the minimum size of a window. Two examples of the use of this 
criterion are presented. The results show that the hiding of information of a signal is 
due mainly to the wrong choice of the size of the window, but also to the relative 
amplitude of the frequency components and the type of window. Windowing is the 
main tool used in spectral analysis with nonparametric periodograms. Until now, 
optimization was based on the type of window. In this paper we show that the right 
choice of the size of a window assures on one hand that the number of data is enough 
to resolve the frequencies involved in the signal, and on the other, reduces the num-
ber of required data, and thus the processing time, when very long files are being 
analyzed. 
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1. Introduction 

One of the most important tools in signal processing is the Nyquist theorem. Many of 
the processing tools are meaningless if the theorem is not satisfied. To date, the Nyquist 
theorem is often used in such a way that the acquisition of a signal is made with an ex-
cessive sampling frequency. 

Sometimes, an overly large amount of samples is chosen. One of the most used tools 
to remedy the effect of oversampling is the use of windows that reduce noise and spec-
tral leakage. Windows are used in non-parametric estimators and even in spectrograms. 
In 1978 Fredric J. Harris published his article “On the Use of Windows for Harmonic 
Analysis with the Discrete Fourier Transform” [1]. In this paper a comprehensive study 
of the properties and characteristics of the different types of windows in the time and 
frequency domains is conducted. The spectra of the windows are studied in detail, and 
an exhaustive analysis of the width of lateral and central lobes of a variety of windows is 
conducted. This analysis shows the effects or consequences of the lobes produced by 
the spectra of the windows. An example developed by Harris shows the hiding of in-
formation from a signal due to the lobes, and invites to select the type of window ac-
cording to its spectral behavior. The results presented by Harris have not been ques-
tioned to date, and it is an important reference for many papers, including articles and 
books. 

For over 30 years, research on the characteristics of the windows that appear in the 
article by Harris has not changed significantly. Many authors present new algorithms 
that allow for improvements in the lobes, both lateral and central, in the same direction 
as Harris [2]-[7]. 

As a complement to all previous work, the authors of this paper use the frequency 
resolution  

sf f N∆ =                            (1) 

to determine the minimum number of samples required in a window. 
Due importance has not been given to (1) even though it is fundamental in the anal-

ysis as well as in the acquisition of a signal. Without the adequate resolution, the fre-
quency information, important to a particular phenomenon, might be hidden. The 
evaluation of the frequency resolution, before acquiring a signal or in the process of 
analyzing it, allows the making of decisions about the use of certain tools, such as the 
minimum size of a window. 

The main contribution of this paper is the possibility of making a precise choice on 
the number of data that ensures the resolution between two very close frequencies, and 
diminishes the processing time by reducing the number of data required if the analysis 
is made before acquisition. 

2. The Resolution ∆f 

To date, little is known about what the minimum size of a window should be. Usually, 
the ad-hoc choice depends on the flair and experience of the user. 
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Harris mentions in his article: “The two operations to which we subject the data are 
sampling and windowing. These operations can be performed in either order. Sampling 
is well understood, windowing is less so, and sampled Windows for DFT’s significantly 
less so!” [1]. In the same article he mentions “Windows are weighting functions applied 
to data to reduce the spectral leakage associated with finite observation intervals” [1]. 
Harris makes a detailed analysis of the time and frequency characteristics of the differ-
ent types of windows. Currently the window type is selected according to its spectrum, 
but little is known of the minimum size of the window, so it continues to be evaluated 
subjectively. 

Several processing tools like periodograms, spectrograms [8]-[11], are based on the 
use of windows. However, the main question of the minimum size of a window remains 
unanswered. 

Examples with experimental and simulated signals, that show the importance of con-
sidering f∆ , and for which it is possible to evaluate the minimum size of a window are 
presented. 

A monochromatic signal with a frequency 1.5 MHzf =  is acquired in two different 
ways. First, the sample rate 5 MHzsf =  is kept constant and the number of samples N 
is varied. In the second, sf  varies and 512N =  is constant. With these conditions 
the spectra of Figure 1(a) and Figure 2(a) are obtained. 

In both Figure 1(a) and Figure 2(a), it is possible to notice changes in the amount of 
spectral leakage. However, the variation of the width of the peaks, which is only noti-
ceable in a zoom-in, can be observed in Figure 1(b) and Figure 2(b). It is interesting to 
analyze the widest peaks in both figures. In Figure 1(b) the widest peak belongs to the 
spectral graph with the least number of samples, while the widest peak in Figure 2(b) 
belongs to the spectral graph with the highest sampling frequency. 
 

 
Figure 1. Signal with 1.5 MHzf = , constant 5 MHzsf =  and variable N. (a) The circle shows 
the variation of the peak amplitudes for each case; (b) Shows the variation of the width of these 
peaks when zooming-in. 
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To emphasize the importance of the width of the peaks, a signal was acquired with 
four frequency components: 1 MHz, 1.01 MHz, 1.05 MHz and 1.1 MHz. The following 
parameters were used: sampling frequency 5 MHzsf =  and 512N =  samples. The 
highest frequency of this signal is 1.1 MHz, thus a sampling frequency of 5 MHzsf =  
perfectly fulfills the Nyquist theorem. However, the spectrum of the signal is not the 
one expected, since the original signal had four frequency components, and not only 
three as may be observed in Figure 3. 

The resolution in the frequency domain is given by sf f N∆ = . With 5 MHzsf =   
 

 
Figure 2. Signal with 1.5 MHzf = , constant N = 512 and variable sf . (a) The circle shows the 
variation of the peak amplitudes for each case; (b) Shows the variation of the width of these peaks 
when zooming-in. 
 

 
Figure 3. Spectrum of a four frequency signal. Perpendicular lines are shown in order to view 
how with 9765 Hzf∆ = , it is not possible to distinguish one of the components involved in the 
signal. 
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and 512N = , a frequency resolution of 9765 Hzf∆ =  is obtained. The frequencies 
which are most closely spaced are 1 MHz and 1.01 MHz. In other words, the separation 
between them is 10 kHz, and with a frequency resolution of 9765 Hzf∆ = , it is not 
possible to distinguish the missing component, although the Nyquist theorem require-
ments have been applied correctly. Besides, there is no information on how many sam-
ples are needed; we can see that it is not possible to display the missing component. 
Sometimes ad-hoc or “subjective” techniques—such as increasing the number of sam-
ples or the sampling frequency—are employed until the desired solution is obtained. 

Even though sf f N∆ =  is well known, it is not taken into account when the signal 
is acquired in the time domain, and the Nyquist theorem is applied. It is necessary to 
use the adequate sf  and N in the acquisition process, in order to have the desired res-
olution sf f N∆ =  in the frequency domain. Figure 4 shows the same experimental 
composite signal with four frequency components, acquired at two different sampling 
frequencies with the same number of samples used in Figure 3. 

Figure 4 shows that, for a sampling frequency two and a half times larger than the 
frequency involved in the signal (a frequency near the Nyquist frequency), it is possible 
to solve the four frequency components without increasing the number of samples. 
This result was obtained taking into account f∆  in the acquisition process, which al-
lowed to make a decision in an objective way, by evaluating the convenience of in-
creasing any of the two parameters sf , or N. 

Based on sf f N∆ = , it is clear that by increasing sf , while keeping N constant, the 
outcome would only worsen. It may be inferred that a better frequency resolution is 
obtained by simply increasing the number of samples. For a signal with 8192N = , 

610 Hzf∆ =  is obtained. This value of f∆  is enough to distinguish the frequency 
components involved in the signal, Figure 5. 
 

 
Figure 4. Spectrum of a four frequency signal with different fs∆ . In this figure it is shown that 
the graph corresponding to the lower f∆ , i.e. 2.5 MHzsf = , allows us to see the component 
that was not possible to distinguish in Figure 3. 
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Figure 5. An increase in the number of samples N = 8192, and not in the sampling frequency 5 
MHz, made it possible to distinguish the missing component. 
 

There is a great variety of factors due to which the information in a given signal 
cannot be clearly observed, such as the noise of the devices used in an experiment, the 
experiment itself and even the software used to analyze the acquired signal. The in-
struments with which signals are acquired usually do so at high sampling rates with a 
small number of samples, regardless of the type of signal. In general, instruments only 
allow the manipulation of the sampling frequency in within a set of choices provided by 
the manufacturer. As a result, once the signal is acquired, nothing can be done about 
the resolution attained. Sometimes, processing techniques are used as remedial tools, 
but they cannot extract information that does not exist in the acquired signal. 

This work focuses on clarifying that the hiding of information in a signal depends, 
not only on the lobes of the spectra produced by the windows, but also on the fact that 
the frequency resolution f∆ , is an important factor to consider when choosing the size 
of a window. 

3. Minimum Size of a Window 

To understand the importance of the frequency resolution f∆ , we shall retake Figure 
4, but this time showing the discrete intervals of f∆  in the graphs, Figure 6. 

An important feature to be noted in Figure 6 is the size of f∆  in the different 
graphs. The dotted graph has smaller f∆  than the one with the solid line. It is clear 
that large sampling frequencies do not imply small f∆ . 

In the analysis of different graphs, it was observed that the minimum size of a win-
dow was controlled by the size of f∆ . In order to distinguish between two closely 
spaced components, it was necessary that, there is at least one f∆  between them, i.e.: 

2 1
2 1;

2w
F Ff F F−

∆ < >                          (2) 
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Figure 6. The four frequency signal with different f∆ . The black dotted graph shows a value of 

f∆  between the two very closely spaced components. While the red lines do not show a single 
f∆ , so that the next f∆  is the value of one of the frequency components. 

 
where 1 2F yF  are two closely spaced frequency components. With Equation (1) and 
Equation (2), the minimum number of a window samples, or the minimum size of a 
window can be determined in terms of wf∆  

W s wN f f∴ > ∆                           (3) 

where WN  represents the number of samples of the window. 
In the example we have 1 1 MHzf =  and 2 1.01 MHzf = , which implies that  

5 KHzwf∆ < . Applying (3) we get that the minimum size of a window is: 

w s wN f f> ∆                             (4) 

5 MHz 1000
5 KHzwN > >                         (5) 

By applying this result the graphs shown in Figure 7 are obtained. For wN  less than 
1000 samples, it is impossible to observe all the components of the signal under study. 

Inequality (3) allows the objective evaluation of the minimum size of a window. 
Equation (2) and Equation (3) provide the minimum size of a window very accu-

rately when components we want to differentiate have very similar amplitudes. 

4. Effect of Size vs Type 

In this section the effect of the size of a window versus the use of the type of window is 
analyzed. 

Different windows are used on a signal with two frequency components 1 10 sff
N

=  

and 2 16 sff
N

= , both with the same amplitude of one volt, 160 Hzsf = , and  

8192N = . The spectrum is shown in Figure 8. 
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Figure 7. Different window sizes were applied to a four frequency signal with 16,384 samples. 
For a window of 512 samples, it was not possible to distinguish the four components. 
 

 

Figure 8. Spectrum of a signal with two frequency components 1 10 sff
N

=  and 2 16 sff
N

= , both 

with the same amplitude of 1 volt. 
 

With the above parameters, the minimum size of a window is calculated using Equa-
tion (2) and Equation (3), 

( )2 1 2 3 Hzwf f f∆ < − =                       (6) 

Hence 
160 3 53w s wN f f≥ ∆ = ≥                      (7) 

Figure 9 shows the graphs for a window with 64 samples. 
As can be seen in Figure 10, an increase on the size of the window provides better res-

olution and it is therefore possible to better distinguish the signal components involved. 



J. M. Alvarado R., C. E. Stern F. 
 

183 

 
Figure 9. 64wN =  in all cases. (a) Rectangular window; (b) Hanning window; (c) Hamming 
window; (d) Bartlett window; (e) Blackman window; (f) Chebwin window; (g) Triangular window; 
(h) Henning-Poisson window with α = 0.5. In almost every window it is possible to distinguish 
the two components, except for the (f) Chebwin and (e) Blackman windows. 
 

 
Figure 10. (a) Rectangular window; (b) Hanning window; (c) Hamming window; (d) Bartlett win-
dow; (e) Blackman window; (f) Chebwin window; (g) Triangular window; (h) Henning-Poisson 
window with α = 0.5. In all windows, 128wN = ; it is possible to distinguish the two components. 

 
In the following example a signal with two components, but with a difference in am-

plitude of 40 dBs is considered. Three types of windows are used in particular because 
they tend to hide information [1]. It will be shown that these windows hide information 
not only because of the lobes provided by their spectrum, but also because of the size of 
the window. 

Figure 11 shows a signal with two frequency components 1 10 sff
N

=  and 2 16 sff
N

= ,  

with amplitudes of 1 and 0.01 volts respectively, 8192N =  and 160 Hzsf = . 



J. M. Alvarado R., C. E. Stern F. 
 

184 

Figure 12 shows the graphs obtained by applying rectangular, Hanning-Poisson and 
Poisson windows with 128wN = . It is possible to notice the slightly smaller amplitude 
component in the different graphs. Previous knowledge of the signal is important in 
order to determine that the deformation in the figures corresponds to the expected 
frequencies. 

With the same sampling parameters, but slightly changing one of the frequencies (as  

in [1]); 1 10.5 sff
N

= , Figure 13, is obtained. 

 

 

Figure 11. Spectrum of a signal with two components 1 10 sff
N

=  and 2 16 sff
N

= , 8192N = , 

160 Hzsf =  and an amplitude difference of 40 dB. 

 

 
Figure 12. Windows with 128wN =  applied to the signal of Figure 11. The arrows indicate the 

location of 2 16 sff
N

= , which is scarcely visible. 
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However, an increase in the size of the window allows us to see the component with 
the smaller amplitude; Figure 14. 

So far it has been observed that with a frequency resolution of  
160 Hz 8192 0.02 Hzsf f N∆ = = ≈ , two adjacent components can be resolved—re- 

gardless of the type of window—by increasing the number of samples in the window 

wN , Figure 14. 
The importance of relative amplitudes of the components can be further analyzed. 

Analogous to Harris, three windows, rectangular, Poisson and Hanning-Poisson will be  
 

 

Figure 13. 128wN = . The arrows indicate where the smallest amplitude component 2 16 sff
N

=  

should appear. For this type of windows it is not possible to distinguish the component of smaller 
amplitude [1]. 
 

 
Figure 14. 256wN = , with this size window, it is possible to resolve between two nearby com-
ponents with a difference in amplitudes of 40 dBs. 
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applied to a signal with two frequency components, 100wN N= =  and 160 Hzsf = ;  

1 10.5 sff
N

=  and 2 16 sff
N

= . Three cases will be considered: 1) with a difference in  

amplitudes of 0 dBs, 2) with a difference in amplitudes of 20 dBs, and 3) with a differ-
ence in amplitudes of 40 dBs. The results are shown in Figures 15-17. 

Figures 15-17 show that the spectral behavior of the windows has little influence on 
the observation of the frequency components, whether closely spaced components or 
with a large difference of amplitude. 
 

 
Figure 15. Rectangular window applied to a signal with two frequency components. The ampli-
tude difference between the components determines whether the lobes, central or lateral, of a 
window affects the observation of the component of smaller amplitude. 
 

 
Figure 16. Poisson window applied to a signal with two frequency components. The amplitude 
difference between components determines whether the lobes, central or lateral of a window, af-
fect the observation of the component of smaller amplitude. 
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5. Applications 

The results shown so far allow for a more objective use of nonparametric periodo-
grams. These are processing tools used to reduce significantly the signal leakage by ap-
plying spectral windowing, [9]-[12]. Using Equation (2) and Equation (3), Welch’s pa-
rametric periodogram was applied to the compound signal with four frequency com-
ponents that is analyzed in Figure 4 and Figure 5. Figure 18 shows the results. 

The Welch parametric periodogram was applied to the same signal considered in 
Figure 18. Figure 19 shows the periodogram using rectangular windows with 512 sam-
ples. Equation (2) and Equation (3) yield Figure 20, which shows a Welch periodogram  
 

 
Figure 17. Hanning-Poisson window applied to a signal with two frequency components. The 
amplitude difference between the components determines whether the lobes, central or lateral, of 
a window affect the observation of the component of smaller amplitude. 
 

 
Figure 18. FFT of a four component signal. N = 16,834 and 5 MHzsf = ; 297 Hzf∆ = . 
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Figure 19. Welch’s periodogram with rectangular windows of 512 samples. 
 

 
Figure 20. Welch’s periodogram with rectangular windows of 1024 samples. 
 
with rectangular windows of 1024 samples. 

The decrease in spectral leakage is remarkable in the previous figures, just as the 
theory predicts. It is clear that, the lower the number of samples in the spectral window 
used, the more the leakage decreases. However, by choosing a window with few sam-
ples, wrong results could be obtained, as can be seen in Figure 19. Assessing the mini-
mum size of a window by using Equation (2) and Equation (3), gives us a greater as-
surance that the results obtained will be correct. The closely spaced component may be 
vaguely apparent in Figure 20. It was not possible to observe this component with a 
window size with less than 1000 samples. 

It is clear that increasing the number of samples in the window will bring us closer to 
the original signal, but since one of the objectives is to decrease nonparametric periodo-
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gram spectral leakage of a signal, it is desirable to have a window with the fewest possi-
ble samples but that provides relevant information about the original signal. 

Figure 21 shows higher resolution by increasing the number of samples of the win-
dows used in the Welch periodogram. In the aforementioned figure, the effects of the 
overlap recommended when using the Welch periodogram are presented. The results 
are as predicted by the theory, there is a decrease in the magnitude of the leakage—though 
with little significance for this example—when using an overlap of 75% in the rectan-
gular windows employed. 

Prabhu [12] suggests: “The resolution can be defined as the 3 dB bandwidth of the 
data window…”. 

Even though there are no clear methods to determine the minimum size of a win-
dow, the 2013 version of Matlab in the path Signal Processing Toolbox/User Guide/ 
Statistical Signal Processing/Spectral Analysis/Nonparametric Methods states that 

Resolution refers to the ability to discriminate spectral features, and is a key con-
cept on the analysis of spectral estimator performance. 
In order to resolve two sinusoids that are relatively close together in frequency, it 
is necessary for the difference between the two frequencies to be greater than the 
width of the mainlobe of the leaked spectra for either one of these sinusoids. The 
mainlobe width is defined to be the width of the mainlobe at the point where the 
power is half the peak mainlobe power (i.e., the 3 dB width). This width is ap-
proximately equal to sf L . 
In other words, for two sinusoids of frequencies 1f  and 2f , the resolvability 
condition requires that  

( )1 2
sff f f

L
∆ = − >                          (8) 

 

 
Figure 21. Nonparametric Welch periodogram, window with 2048 samples, applied with differ-
ent overlap percentages. 
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If the Matlab suggestion is applied to the example of two sinusoids separated by 10 
KHz, the value obtained for L is 

( )1 2

5 MHz 500
10000

sfL
f f

> = =
−

                     (9) 

However, as Figure 19 shows, L = 512 cannot resolve the two nearby frequencies. 

6. Conclusions 

In this paper, an inequality is proposed to determine objectively the minimum size of a 
window, instead of the trial and error technique commonly used. The results can be 
applied in particular to certain spectral estimators, better known as nonparametric pe-
riodograms. 

It is also shown that the minimum size of a window is required to observe all the 
frequency components of a given signal; it is necessary that the frequency resolution 
should be considered when a signal is acquired and not only the Nyquist theorem. 

Once the minimum size of a window has been evaluated, the relative amplitude of 
the frequency components and window type would be factors to be considered de-
pending on the leakage they produce. 

This work leaves behind the subjectivity to determine the minimum size of a win-
dow, merely by considering the desired resolution, which is now possible to assess ob-
jectively by controlling the number of samples and the sampling frequency. 

The resolution f∆  is a parameter that, when considered before acquiring, optimizes 
the software or the hardware being used. 

The consideration and evaluation of f∆  will end to the ambiguity of ad-hoc “me-
thods” employed in various signal processing tools to determine the minimum size of a 
given window, by using Equation (2) and Equation (3). 

Harris [1] concludes “We have demonstrated the optimal windows (Kaiser-Bessel, 
Dolph-Chebyshev, and Barcilon-Temes) and the Blackman-Hams windows perform 
best in detection of nearby tones of significantly different amplitudes”. This paper 
shows that, in addition to the type of window used, there are factors—as important as 
this one—that thwart the visualization of adjacent components, such as the difference 
in amplitude among components and the minimum size of a window. 
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