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http://creativecommons.ore/licenses/by/4.0/ L€ weak convergence method of proving a large deviation principle has been developed

by Dupuis and Ellis in [1]. The main idea is to get sevral variational representation

formulas for the Laplace transform of certain functionals, and then to prove an equi-

valence between Laplace principle and large deviation principle (LDP). For Brownian
functionals, Boué and Dupuis [2] have proved an elegant variational representation
formula (also can be found in Zhang [3]). For Poisson functionals, we can see Zhang [4].
Recently, a variational representation formula on Wiener-Poisson space has been estab-
lished by Budhiraja, Dupuis, and Maroulas in [5]. These type variational representations
have been proved to be very effective for both finite-dimensional and infinite-dimen-
sional stochastic dynamical systems (cf. [6]-[10]). The main advantages of this method
are that we only have to make some necessary moment estimates.

However, there are still few results on the large deviation for stochastic evolution

equations with jumps. In [11], Rockner and Zhang considered the following type
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semi-linear stochastic evolutions driven by Lévy processes
4Z; = AZ;dt+bdt-+edW, + [, f (x)(eN" (dx dt) = v(dx)dt) e € (0.1],
Zy=1€H,

they established the LDP by proving some exponential integrability on different spaces.
Later, Budhiraja, Chen and Dupuis developed a large deviation for small Poisson
perturbations of a more general class of deterministic equations in infinite dimensional
([12]), but they did not consider the small Brownian perturbations simultaneously.
Motivated by the above work, we would like to prove a Freidlin-Wentzell’s large
deviation for nonlinear stochastic evolution equations with Poisson jumps and Brownian
motions. At the same time, nonlinear stochastic evolution equations have been studied in
various literatures (cf. [13]-[17]). So we consider the following stochastic evolution

equation:
0z; = A(t,Z; )dt+eB (620w, + [, F (.22, x)(eN* (dydt) —v ()t e (0,1,
Zy=1€H,
in the framework of a Gelfand’s triple:
VcH=H cV’

where V, H (see Section 2) are separable Banach and separable Hilbert space respec-
tively. We will establish LDP for solutions of above evolution equation on

D([O,T]; H)m L2 ([O,T];V), where D([O,T]; H) is H-valued cadlag function space
with the Skorokhod topology. For stochastic evolution equations without jumps, Ren
and Zhang [9] and Liu [8] achieved the LDP on C ([O,T]; H)m L ([O,T];dt) (q=2)
and C ([O,T]; H ) AL ([O,T];dt) (g >1) respectively. In our case, there are two new
difficulties. The first one is to find a sufficient condition to characterize a compact set
in D ([O,T ] ;V*) (see Proposition 4) instead of Ascoli-Arzela’s theorem for continuous
case, the second one is to control the jump parts. This form of equation contains a large
class of (nonliear) stochastic partial differential equation of evolutional type, for
applications and examples we refer the reader to [8], [9]. The equations we consider
here are more general than the equations considered in [11], and we use a different
method. We note that, the large deviations for semilinear SPDEs in the sense of mild
solutions were considered in paper [18] recently. For other recent research on this
topic, see also [12], [19].

In Section 2, we firstly give some notations and recall some results from [5], which
are the basis of our paper, and then introduce our framework. In Section 3, we prove
the large deviation principle. In the last section, we give an application. Note that
notations ¢ C,, and C;,, below will only denote positive constants whose values

may vary from line to line.

2. Preliminaries and Framework

We first recall some notations from [5].
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Let X be a locally compact Polish space and denote by M (X) the space of all
measures v on (X,B(X)), satisfying v(I') <o for every compact I' < X. Let
C.(X) be the space of continuous functions with compact support. M (X) isa Polish
space endowed with the weakest topology such that for every f e C_(X),

M(X)sv > vi= IX f (u)v(du) isa continuous function.

Set Y ::XX[O,OO). Fix Te(0,0) andlet Y; ::[O,T]XY. Let M:=M(Y;) and
denote by P, the unique probability measure on (M, B (M)) such that the canonical
map, N:N—M, N(m):=m,isa Poisson random measure with intensity
vi =2 ®v®4,, where ve M(X), 4 and A, are Lebesgue measures on [0,T]
and [0,0) respectively.

Let Gbe a real separable Hilbert space and let Qbe a positive definite and symmetric
trace operator defined on G. Set W :=C ([O,T];G) and Q:=WxM.Let N:Q—>M
be defined by N(w,m)=m, for (w,m)eQ. Let W be the coordinate map on Q
defined as W (w,m):=w. Define G :=c{N((0,s]xA)W,:0<s<t,AcB(Y)}. We
denote by Pthe unique probability measure on (Q, B (Q)) such that under 2

1) W is a Q-Wiener process;

2) N is a Poisson random measure with intensity measure v ;

3) {Wt te [O,T]} , {N ([O,t] , A),t € [O,T]} are G -martingales for every Ae B(X).

We denote by F be P-completion of the filtration §,. From now on, we will work
on the probability space (Q, B(Q), P) with filtration {%,0<t<T}.

Denote by P the predictable o-field on [O,T] x Q) with the filtration
{F:0<t<T} on (QB(Q)). Let
A= { f:[0,T]xXxQ—[0,), f is P®B(X)\B([0,)) measurable} . VpeA, de-

fine
L (p) = J[O’T]XXI ((p (t,x, a))) dtv (dx),

where

I(r)=rlog(r)-r+1 re[0,)
and define a counting process N as

N’ ((0,t]xU) = Lo,qxuf(o,w)l[o,qa(s,x)](r)N (ds,dx,dr), te[0,T],U e B(X).

For fixed M eN, let
Sw=1{9:[0,T]xX > [0,0):L; (g)<M}. (1)

By [5], we can define v{ (A):= IA g(s,x)v(dx)ds, Ae B([O,T]x X) for a function
g €S, » and identify g with measure 2. Besides, {ng :geS, } is a compact subset
of M([O,T]XX) through the superlinear groth of Z We can also consider the to-
pologyon S,, which makes S,, acompact space.

Remark 1. We note that, for ,, € §M , 0, = O in this topology means
vin v, thatis, forany teC ([0, T]xX;R),
J;jxf (5,%)(9, (s.x) =g (s.x))v(dx)ds| >0 holdsas n— .
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Set. 8, =Q(6) and define |u],, =[(Q*)"V] et
G

P, = {y/ 1P\ B(G, ) measurable and H "l//(S)"iQ ds<oo as. P}

— 1,7 2
5, :={h = ([07)i80) 2 [ (s ds < M}. @
We endow S,, with the weak topology on the Hilbert space such that S,, is a
compact subset of | ([O,T I; GQ) .
Let S, =S, xS, with the usual product topology. Set U =P, xA and let U,

be the space of S,, -valued controls:
Uy, = {u =(v.p)e

U:u(w)eSy,P ae of.
Let D be a Polish space and let {Xe} i be a set of D -valued random variables

defined on (Q,B(Q),P) by
X< =G (\Ew,eNf’l),

where {g‘ }90 is a family of measurable maps from Q to D.
Hypothesis. There exists a measurable map G°:Q — 1 such that the following hold.
1) For M eN, if a family {u, =(v,.¢.),e€(0,1)} =, converges in distribution
to U=(y,p)el, ,then

Q‘(«/—W +j . (s)ds,eN” <”():>g°(j (s)ds, VT)

where = denotes the weak convergence.
2)For M eN,let (h,,g,).(h,g)eS,, besuchthat (h, g,)—>(hg).Then

go(féhm(s)ds,vﬁ )—>g°(j h(s)ds, VT)

For ¢eD, define S¢::{(h g)eS:¢= g°(jh s)ds, VT)}.Let I:D—[0,%] be

@)= i, 216, e+ L (0)] ®

where infJi=w.

We have the following important result due to [5].

Theorem 2. Under the above Hypothesis, {X ‘ }90 satisfies a large deviation prin-
ciple with rate function I.

Now we introduce our framework and assumptions.

Let (H ,(-, ~>H ) be a real separable Hilbert space. Let V be a reflexive Banach space
and V~ be the dual space of V and v (-, ->V denotes the corresponding dualization.
Identify Hwith its dual H” and the following assumptions are satisfied:

1) VcH =H cV’;

2) Vis dense in H;

3) there exists a constant csuch that forall veV, ||V||H < c||v|L/ ;

4) <"‘>v HY :<".>H :
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Let L,(G;H) be the space of Hilbert-Schmidt linear operators from G to H, which

is a real separable Hilbert space with the inner product

(Bl’ BZ>L2(G;H) = Z<Bigi B20, >H '

i1

where {gi} is an orthonormal basis of G. We denote by LQ(G; H) the set of all
linear operators Cmapping QY?G into A such that CQ*” € L,(G;H), and the norm

el =l -
Let

A:[0,T]xV xQ -V,
B:[O,T]xV xQ— LQ(G;H),
f :[O,T]XV xXxQ -V

be progressively measurable. For example, for every te[0,T], A restricted to
[0,T]xV xQ is B([O,T ]) ® B(V)® F, -measurable.
We assume throughout this paper that:

(H1) Hermicontinuity: For any u,v,xeV, ©eQ andany te[0,T], the mapping
[01]3em . (A(tu+ev,m),x)

\

is continuous.
(H2) Weak monotonicity: There exist 4,4 >0 such thatforall u,veV

2V*<A(-,u)—A(-,v),u—vv>3—ﬂl||u —v||§ + 7 u —v|||2_‘

holds on [O,T] x Q).
(H3) Coercivity: Forall veV and te[0,T], thereexist ¢;,C, >0 such that

2v*<A(t’V)’V>v SCl||V"2H ) "V"j

holdson Q.
(H4) Forall te [O,T] and ueV ,thereexists ;>0 such that

||A(t,u)|Lv* <c, (1+||u||v)

holdson Q.
(H5) There exists ¢, >0 such thatforall u,veV, xeX and te [O,T]

[B(t)-B(LY)| <c,Ju-v,.
I (b~ 1 (b0, <cofui,.
B(t.v)l, <c.a+lul, )
and
I (ul, <c. (1]l ) @

(H6) There exist some compact ' X, f (t, u, X) =0, forall
(t,u,x) e[O,T]xV xI. Forany ueV, f(-u,) iscontinuouson [O,T]XF.
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(H7) V—H compactly.

3. Large Deviation Principle

Consider small noise stochastic evolution equation as following:

4z; = A(t,Z; )dt+VeB (1,20 )W, + [, T (6.2 x) (N (dk,dt) v (de)t ). e e(O,l],( |
5
Zy=1€H.

Under the assumptions (H1)-(H5), by [15], [17], there exists a unique solution in
D([O,T];H)m LZ([O,T];V) to Equation (5). By Yamada-Watanabe theorem, there
exists a measurable mapping G :Q — D([O,T]; H )m L2 ([O,T] ;V) such that

z' =g (Vow,en ).
We now fix a family of processes (., ¢, )€U, , and put
Z° =g (\/EW +[ v (s)ds,eN” ™ )

By Girsanov’s theorem, Z° is the unique solution of the following controlled sto-

chastic evolution equation:
dZ; = (A(LZ)+B(LZ] v, (1)) dt+eB(t.Z] )dw,
+ [ F(LZE )N (dx,dt)—v (dx) ) e < (0.1] 6)

Zi=1eH.

Remark 3. For (y,,¢.)e Uy, by (1) and (2), there exists a constant C,, >0 such
that for all ¢ e (0,1] ,

Jo

We will verify that G° satisfies the Hypothesis with ) replaced by
D([O,T];H)m LZ([O,T];V). By using the similar method as in [9], we have the

following uniform estimates about Z°.

W, (s)||(2BQ ds+'[;'[x¢f(s,x)v(dx)ds<CM as.. )

Lemma 1. There exists a constant C\ >0 such that, forall ¢<(0,1],

s lI2 TI5cl2 2
E(t:[lal?] Z; HJ+EJ'O Z:[ ds < cp (27, +1), (8)
Se 4 4
E[tz[tgg] Z: HJSCTM (||z||H +1). )

In order to characterize a compact setin D ([O,T] ;V*) , we need the following lemma.
Lemma 2. For any §>0 and n>0, there exist ¢,>0 and 0>0 such that for

any €<g¢,, we have

Zi-Z¢

P( sup *>77J£5 (10)
t,5€[0,T ] t-s|<0 v
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Proof For fixed 6>0 andany tsuchthat 0<t<t+@<T,we have
7, -7 = j”“’(A( $.Z0)+B(s, 2y, (s )ds+j "JeB(s.Z)dw,
[T (5,20 x) (N (ds,dx)-v (dx)ds).
=["(A(sZ0)+B(s Z v ()+], ( 5.2;,x)(¢. (5,%)-1)v(d))ds
# ] (s ZsJaw, + [, f (5,20 x) N (ds. )= (5, ) v ().

Therefore
E( sup ||Ztg Z" ) (L+1,+15),
tO<t<t+6<T
where
o5 [ (M6 206 2 61+, 4 (0255 ) o)

j IB(SZ)

2
I2:=E[ sup L j
tO<t<t+6<T

T 8 (5.2 x) (N (ds,dx) =, (s ) dsv (@) ).

)

I _E( sup

tO<t<t+0<T

For |, by (H4), Holder’s inequality and Lemma 1, we have

.[HBB(S, Z¢ )y, (s)ds

2
I<c]E( sup j ”A s, Z¢ Lds) +CE[I:O<?<L[JP€<T t

t:0<t<t+0<T
2
+CE(IO?L:P€<T _[ j (s VA x) (s,x)—1)v(dx)ds Hj
5 t+0 =\ T 2
sou( sp[“(uef] Joo ] es( s [[o(s 20 ol GO, o)
+ov(T E(mmg ~ (s,Zg,x)”H v(dx)ds)
+cE ([0 sup S, ZS( , X)Hi| 0. (S, X)V(d)()dsj':*'gj‘X o, (S, X)V(dX)de
SCE(ZHZ )+09E( J+cv(r)2 HZE( il ZJ
[OT] H sef0T] H

0
+cE [(
Se[O,T]

<ch® +co+cl,,

Jy = E([
SE[O,T]

By (7), we have

2
Lﬁ‘ff’“f e ]

where

2
zi[ ) (.0 (o0 |

sup  sup J' j )v(dx)ds -0, as., as6 0.

€g(0,1] t0<t<t+O<T

K2
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So by (9) and dominated convergence theorem, for all ¢ (0,1], we obtain

J, >0, as@lo.
For |,, l,;,byBDG’s inequality, (HS) and Lemma 1, we obtain

szeEjoTHB(s Z:) Z:

ds <c- eEI (1+

)ds<05

)

and

l, < ZEUUOTJXf (s,Zg_,x)(eNf’lw (ds,dx)—g, (s, x)d3v(dx))
seEf;jX“ s, Z¢. ,x)”zgo (s,x)dsv (dx)

< B[] jx(1+ ’

<[ jx(1+

< Ce.

)(p{ s, x)dsv (dx)

Zf
H
Z: )(pg s, x)dsv (dx +€E( sup ||Z¢

se[0,T]

Lo (s (o0

Hence, for any 7,6 >0

P( sup  |Zy,, —Z¢ |L > 77) < P( sup

t:0<t<t+6<T t0<t<t+6<T

vA3 vA3
Zt+€ _Zt

2 2
v*>77)

w

<77—2(I L)
<3

2

(0492 +cO+cd, + 206)
n

By choosing # and ¢ small enough, then (10) holds immediately.

Proposition 4. For a sequence of D([O,T];V*) -valued random variable {X”} , If
{X " } satisfies the following two conditons:

1) Forany & >0, thereare nyeN, ReR,, with

Xn

sup |

te[O T

n=n, :>P( >Rj<§

2)Forany 6>0 and 7>0,thereare nyjeN, >0, with

>77]£5;

Then {X”} is C-tight, that is, {X”} is tightness in D([O,T];V*) and if Xis a
limit point then X eC ([O,T ] ;V*) a.s..

Proof. It’s obvious that (2) implies the following condition (cf. [20], p. 290). For any
6>0 and 7>0,thereare nyeN, §,>0, with

n=n, = P(w(X"6,)>n)<s, (11)

nznO:P{ sup |

t,5€[0,T]Jt-s]<6

where

XM =X?

t S

w(X";6, ):=inf {max sup

ISP toseftig )

0=t <<t =T inf (G -t ) > 9}.
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For the finite family (X n )L ,wecanfind R'<ew and &' >0 such that
<n<ng

sup P(w(x”;e')>n)s5.

1<n<ny

sup P( sup ||Xt”

1<n<ng  \ te[0,T]

> R’JS&,
u

Hence, replacing Rby Rv R’ in(1)and 6, by 6, A6 in (11), we obtain that they
still hold with n, =1.
Fix §>0.Let R;<o and 6 ;>0 satisfy

5 0. 1\, ¢
y >R§j§5, SUin(W(X rek,5)>Ej32k+1'

sup P[ sup ||th

n te[0,T]
Then
2 « 1
K, ::ﬂ{x eD([0.T];V"): sup X, < Rg,W(X;HM)S—}
k=1 te0,T] k
satisfies

supP(X" ¢ K ) <sup P(sup ”th
n n ]

te[O,T

2 1
>Rs |+ supP| w(X";6,; >—)s§.
" oj kZ:l: np ( ( k,b) K

By (H7), we have H=H"<V" compactly. So, K, satisfies the conditions of
Theorem A2.2 ([21], p. 563), then it’s relatively compact in D ([O,T ] ;V*). This implies
tightness of {X ”} .

It remains to prove that if a subsequence, still denoted by (X ”) , converges in law to
some X, then Xis a.s. continuous. By taking the same scheme as in Proposition 3.26 (cf.
[20], p. 315) and replacing R’ by V" in the proof, we complete the proof.

According to Lemma 1 and Lemma 2, we have the following result:

Corollary 1. The sequence {Zf}fe(m] is C-tightin D ([O,T |RY% ) .

Lemma 3. Assume that for almost all o, {UE =(v..o )}65(01] weakly converges to
{u =(l//,go)} in U, for fixed M eN and there is a C([O,T];V*) -valued process

Z such that
Zi -7,

sup| L —0 as. (12)

0<t<T

Then, Z solves the following equation:
Z =2+ A(s.Z,)ds+ [ B(s.Z,)w (s)ds+ [ [ f(s,Z.x)(e(s,x)~1)v (dx)ds.

Moreover, we have

E(sup Z —Z~t||2H)—>O (13)
0<t<T
andif 4 >0 in (H2), then

B[, |Z:-Z at—>o. (14)

Proof. We divide our proof into several steps.

Step 1. By Lemma 1, we have

K2
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E%E]E("Z || )+ sup EJ "Z |L ds < oo (15)
and
sup E[sup Zf ’ J<oo. (16)
ec(01] \te0T] H

Therefore, by the strong convergence of Z° (4 a)) to Z (~, a)) as in (12). We get, for
almost all @, Z°(T,®») converges weakly to Z(T,®) in Hand Z(-®) converges
to Z (~, o) weaklyin L ([O,T] 'V ) ; and so we have

821, < o (2, ) <= )

154
o 145 ], 98 <o (18)

By (12), (16) and dominated convergence theorem, we have

IlmE[tzgg]"Z |L J

Thus

B[, |2 -2, ) =5() . (2 -2.2 -2, o

<B([, [z -2 [z -2}, )
<([1Elz: -z [ o B)z: -2 o)
s = Y2
STW( (ts[lé'flnz ‘Z|L B (IOTHZ{—ZJE dt) —0, ased 0.

Step 2. In this step, we prove Z solves Equation (13). By (H4) and (15), we have

S(L:)%E(J.OT |a(tz: (t))‘ﬁdt) <o, (20)

(19)

Hence, by (15) and (20), there exist subsequences of Z°, Z° (T) and A( Z (- ))
(still denoted by themselves for simplicity) and Z e L? (QX[O,T];V), Zrel? (Q H)
and Y e L (QX[O,T];V*) such that

KD
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Z°—>Z weaklyin*(Qx[0,T];V), (21)
Z(T)>Z; weaklyinL®(QH), (22)
and
Y= A(LZ())>Y  weaklyin L*(Qx[0,T];V7). (23)
Define
Z, :=z+_f;YSds+j;B(s, v ( ds+jj (s.Z,.x)(¢(s.x)~1)v (dx)ds.

Note that
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7 = Z+J;A(S,Z§)dS+ItB(S,ZE) s)ds+J€I;B(s,Z§)dW
#JuJ T2 x) (0 (5.0 -1y () s
+€J(§Ix f (s,Z )(N K (ds,dx)—e o, (s ,x)v(dx)ds).
By taking weak limits and by (19), we can get
2(t,w) =Z(t,0)=Z(t,®) fordtxdP-almostall (t,®).

Indeed, for any V-valued bounded and measurable process &,

B([; (5.2 -2), 0t =B([[; . (A(s.Z:). &), aset]

+E(IT <§1,ItB(s,Z§)M(S)ds> dt)+«/€EUO <§t,IOB(s,Z~§)dWS>H dt)
+5([[{&.[], £(s 22 x) (0. (5:) -2y (9x)ds) ]

+ EE( (6T, (5.2 ) (N7 (65,000 - g, (50w () s ) dtj.

By (21), (23) and taking limits for €4 0, then we get (see also the proof of (27) and

(29) below)
([ (6.2, -2), %) =0
which implies Z (t, a)) -7 (t, a)) for almost all (t, a)) . Similarly, we have

Z, (0)=Z;(w)=Z; (@) foralmostall .
We only have to prove

Y(s,0)= A(s, Z(s, co)) for dt x dP-almos tall (t, ). (24)
Let ®el? ([O,T] ;V) . By Itd’s formula

(e [, ) =1, - 2m (e [ oo)+ 23 (e (a(52:).2:), )
+2E(jTe%S<B(s,z”;) ).Z:), ds)+eEU e?[B(s,Z )LQ
+2E([ .fe’2’1°5< ).Z2), (0. (%)= 1)v () as)
ves( [ 1 H 0, (5:X)(@)d )

By (H2)

2E] Te*“ﬁ( (A(s.Z:).Z2), )

<2]E(.[ RN < ( ) > )+21E4(J.0Te’“cs V*<A(S,CDS) Z: > ds)
+2/10]E(J‘Oe’“°s (., - <ZS,CDS>H)ds) (26)

> ZE(jge%s Y -AG,),®,) ds)+ ZE(jOTe%S ~(A(s.2,).2,), ds)

+ 22,8l (Jo [}, -2(2,.,), )os|

j (25)
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as €4 0.

We now prove
E(L)Te’“"s (B(s.Z:)w.(s).2:), ds)—>E(IOTe’2‘°S (B(s.Z.)w(s).2.), ds). (27)

Since {w, (@)} weakly convergesto y (@) in S (see(2)), then

e (B(s.2.)(v. (5)-v (5)) Z.), &

(v (5)-v (5).e ™8 (s.2,)Z,) d

limE
L0

:O’

the last limit follows by using dominated convergence theorem. By (2), (H5), Lemma 1

and (19), we also have
E OT —onS<B<s,Z~§)y/€(s),Z~§ _ZS>H ds‘

SCE(IOT(

Z

! +1)||l//f($)

|

Gq

T (5. 215, 5|2 Y2 T 2 y2
<cu [[(|z:], o) 12 -2, o] (L O, )
Y2
- - Y2
<c|B| sup |2 +1 ( Tzszzds)
se[0,T] H 0
Tis, =12 \Y?
Sc( Zi-Z, ) — 0,
0 H
and
,zﬂos< )(// (s),Z~§>H dS‘
SCE( 7 4 )
GQ H
~ ~ 12
< CE( «—Z, )
0 H
(( D( 2 o
<[oT]
Then limit (27) follows.
Moreover, it is easy to get that
H T —2498 '€ 2 _
I:IQGEUOQ B(s,Zs) . ]—0 (28)

Now we prove the following limit:
ZE(j jef%s <(s 7 x) Z: >H (o, (s,x)—l)v(dx)ds)
> 28([ [ &% ((s.Z,).Z.), (#(s,X) ~1)v(ex) s

By (H5), Lemma 1 and (19), we have

(29)
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+%%, Scientific Research Publishing 687



H.Y. Zhao, S. Y. Xu

(30)

<c([[].(1+]z:], |z -], 0. (5. 0w (@)as)
+EU0TJX‘3%S (f(s.2.%).2,), (0. (s:0)~0(s X))V(dX)ds‘ =cl, +J,,
where
([ o], -2, 0 50w,
and

T ! ,2/10s<f (S’ZNS,X),ZS>H ((ﬂg (s’x)—(g(s,x))v(dX)dS‘.

For J,, by Young inequality, we have

J<(Ejf¢ (s,x)v dxds) {(

0 (s,x)v(dx)ds)m}

~ 2 12
ql, E(S,x)v(dx)ds) —0, ased0

0. (5. v(@)cs)

+]E](T
0JX

<
0

by noting (16) and (19). For J,, by (4), (H6) and Z C([O,T];V*), it’s easy to verify
g %S <f (S, Zs, X), ZS>H is a continuous function on [0,T]>< X with the compact su-

22(
H

S

pport [0,T]xI", and by the weak convergence of V¥ to v{ (see Remark 1) and domi-
nated convergence theorem, J, —0 as ¢ 0. Then (30) goes to 0 as ¢ 0. Similarly,

we have

T et (<f (S,Zsf,x),z”sf>H _<f (s,Zs,x),Zs>H)v(dx)ds‘, ase 0.

Then, we get (29).

It is obvious that

lim eEIOT j e f

H (s, x)dsv (dx) 0. (31)

Combining (26) to (31) yields that

(e |2, )< mir (e 2] )

<|lzff, + 2E(j§e%s Y -A(s®,)0,), ds)+ ZE(jOTe%S (A(s.2,).2,),
+AUE( e (lo. -2(z..0,), )ds)+2E( [le¥ (B(s.Z)w(s).Z,
w28([) [ (1 (s.2.x).Z.), (p(s.0)-1)v(0x)ds).

~—
T
o
wn
~——— o
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On the other hand, by It6’s formula we have

o[£, ~Ie -2 e 2
+2j0e 2‘°S<B(S,ZS)¢//(S),ZS>H ds

+2-[0T.[Xe‘“°s<f (s,Zs,x),ZS>H (¢(s.x)-1)v(dx)ds

To2os <Y 7 )V ds

s S

So, we have
T _ ~ T _ ~
E(joe o (Y, - A(s,®,),Z, - @, ), ds)sﬂoE(joe s |7 _

which implies (24) by (H1).
Step 3. In this step we prove (13) and (14). Notice that

Zi-Z,=[\(A(s.2:) - A(s.Z,))ds + [[(B(s.Z: v, (s)-B(s.Z, ) (s))ds
L (F (525 X)o. (300~ £ (8.2 x) (51 () s
(570 8) (52 ) (0005 (572w
ref .1 (5’25—’X)( 7 (ds,dx) —€ g, (5,%)v(d X)ds).

By Itd’s formula, we have

)

where

(t)= I;_[X( f (S,Z;,X)H: +2<Z~;, f (S,Z;,x)>Hj
(N (dt ) -, (5, %) v (6)ds ),

f (s,Zg,x)“: o, (s, x)v(dx)ds.
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By Lemma 1 and BDG’s inequality, we get
9
IimE( sup Z|If (t)|] —0.
0\ te0T]iz6

For I, we have

o{snl o <es{ {2, . o, 2, )
Y
SCEUOT( zd, +1)2 7 -7, ids) 2
~ 112 Tz 5 12 v
<cE tS[L(JJ,E] Zg||, _[0 Z;-Z, Hdsj
=12 V2 Tise = |2 y2
so[sswlzl, | (o221
. 2 \¥2

Similarly

ijE[ sup |I§ (t)|] =0.

te[O,T]

For I3,like J,, we have

E(f{t;gJﬁ(t)ﬂéZE(ﬁjx f(s,Z %) ] Z;-Z7,), (pE(S,X)V(dX)dS)
Te s 5 |12 yj2
sc(Ejo [|z:-2.[ » (s,x)v(dx)ds)
.. y2
<c, EJT 7.7 ds|] —o0, aselo.
0 H

Similarly

Ile{ sup |I;(t)|J:O.

te[0T]

For I¢, by (H5) and (H6) we have
t
E I:(t) [<2E
| tn s (0] <28,

< 2cV(r)1E,(j0T

ARy

f (s,Z;,x)— f(s.Z,, x)”H

v(dx)ds

SlH

Z.: _Zs

:ds)—>0, ase 0.

Assume A, >0, then

t) = ~ |12 t) = ~ |12
I () <A [ |[Ze-Z,[ ds+ 4 [ |Z: - 2], ds
Set
F(t):=limsupE| sup |Z; -Z ’
lalivas SE[oE] LD

then

(32)
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F(t)< 2] ,F (s)ds =0.
So
F(T)=0.

Notice (32), we get (13) and (14) immediately.
We also have the following main lemma.

Lemma 4. There exists a probability space (f_l F, |5) and a sequence (for conve-
nience, still denote by ¢) {(l//f,(p( («/_W +_[ v, |\_|f‘1@ )} and
{ ( I v (s)ds, vy )} defined on this space and taking value in
U, x D([O,T];V )XQ with ZeC ([O,T];V*) such that:

1) For each ¢, {(1/7E @), 25, (\/EVV + LJ!/Z (s)ds, N ™ )} has the same law as

(1,002 (VT + [y (sos. N )

2) {(7.2).Z} > {(7.9).Z} in U, xD(0,T];V')xQ, P-as,as €¢—0;
3) {(#.#).Z} uniquely solves the following equation:
Z =z+J'tA (s.Z, ds+.[tB (s.Z,)w(s)ds )
+H f(s,Z,x)(@ (s, x)-1)v(dx)ds.
Moreover, we have
(W z|| ) (34)
and if 4, >0, then
B |1z - Z dt —o. (35)

Proof. From Corollary 1, we have {ZE} is C-tight in D([O,T];V*). By the com-
pactness of S, , the law of {(y/(,(pe),Z”} in S, x D([O,T];V*) is tight. By Skorok-
hod’s embedding theorem, (1) and (2) hold. Since Z; =z P -a.s. and

Z: =2+ [[A(s,Z)ds+ [[B(s.Z: )7, (s)ds+e [ B(s, Z¢ )W
+” (.25 .x)(2. (s, %)~ )d5v(dx)
el 1 (5.2 x) (N7 (ds, )~ (s, x)dsv (6x) .
Then, the other conclusions follow from Lemma 3 and noting for P almost all o,
Z(w)eC([0,T]V7).

Remark 5. Assume that (H1)-(H7) and A, >0 hold, we have verified Hypothesis
(1) by the above lemma.

For fixed M eN,let (h,g)eS, andlet G°:Q—D such that g‘)(jh s)ds, VT)
is the unique solution of

Z,=2+[,A(s.Z,)ds+ [ B(s.Z,)h(s)ds+ [ ] f(s.Z,.%)(g (s x)~1)dsv (dx).
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We point out that the difference between (h,g) in the above equation and (y,,¢,)
in (13) is that (h,g) is not random. We have the following result.

Lemma 5. Assume that (H1)-(H7) and 4 >0 hold. Let (h,,9,), (h,g)eS, be
such that (h,,9,,)— (h,g) in the weak topology of S, (see Section2), then

g"(jh( d5v$m)—>g°(jh dSVT)

Proof. Similar to the proofs of Lemma 1 and 2, we can get {Q’O (f hy (s)ds, v )}
MeN

is C-tight. As in Lemma 4, there exist a subsequence m, (still denoted by m) and
z°eC([0.T];V") satisfying

QO(J'h dSVTgm) Z° -0, aam—-ow

v *

sup
te[0T]

Combining with this convergence and the method used in the proof of Lemma 3, we
have G° (I h(s)ds,v} ) =Z°, then the result holds.

Using Remark 5, Lemma 5 and Theorem 2, we obtain the following large deviation
principle.

Theorem 6. Under the same assumptions as in Lemma 5, {Z‘} i satisfies a large

deviation principle with rate function I defined as in (3), i.e. for any Ae B(D)

—inf 1 (¢)< I|m|nfelog,uf(A)< I|msupelog,u€( )_—|¢mf I(g),
pen® cA

where x4 isthelawof Z° in D and D is D([O,T]; H)m L2 ([O,T];V).
Remark 7. If 4, =0, then the conclusion still holds if D is replaced by

D([0,T];H).
4. Application—Stochastic Porous Medium Equation
Similar to [9], consider a bounded domain @ in R with smooth boundary. For
p=2,let
V=L (0), H=W"?(0), v =" (0).
The inner product in His defined by
W= (A x(s)-(-a) T y(s)ds, x,y eW T (0).

—A establish an isomorphism between W ™ (O) and W2 (O). We identify
W;?(0) with the dual space H™ and A, then H™=W}?(0)c LY (0). There-

fore
VcH=H <V,
and the inclusions are compact.
Let ¢,(r):=r|r|"”. For x€V,denote by
A(X) = Ad, (X).
Then A(X)EV* and (H1)-(H4) hold (cf. [9] [16]).
Let BB, L,(Q"G,H). Define
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B(t,x):= gk((enl,x)H ,---,(enk,x)H)Bk, e, €H,

where @, are Lipschitz continuouson R™.Let X:=R, h,---,h eH,and define

f (t,x,y)::kii: f, ((enl,x)H ""'(enk’x)H )hkl[oye](y), &, €H,

1

n
k=1

where f, are Lipschitz continuous on R™ . Then Band fsatisfy (H5)-(H6).

Consider the following stochastic porous medium equation
0Z; = A(Z{)dt+eB(1.Z; )aW, + [ f (£.Z¢,x)( N (dk,dt) -v (dx) ) e < (0.1],
Z'(,6)=0,¥& € 00,
2°(0,£)=2(&) e H.

Let v. be the law of Z° in D([O,T];H)r\ L?(0,T;V). Then the conclusion of
Theorem 6 holds.
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