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Abstract 
Bubonic plague is a serious bacterial disease, mainly transmitted to human beings and rodents 
through flea bite. However, the disease may also be transmitted upon the interaction with the in-
fected materials or surfaces in the environment. In this study, a deterministic model for bubonic 
plague disease with Yersinia pestis in the environment is developed and analyzed. Conditions for ex-
istence and stability of the equilibrium points are established. Using Jacobian method disease free 
equilibrium (DFE) point, E0 was proved to be locally asymptotically stable. The Metzler matrix me-
thod was used to prove that the DFE was globally asymptotically stable when R0 < 1. By applying 
Lyapunov stability theory and La Salles invariant principle, we prove that the endemic equilibrium 
point of system is globally asymptotically stable when R0 > 1. Numerical simulations are done to ve-
rify the analytical predictions. The results show that bubonic plague can effectively be controlled or 
even be eradicated if efforts are made to ensure that there are effective and timely control strategies. 
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1. Introduction 
Bubonic plague is the bacterial infection caused by Yersinia pestis when the bacteria infect lymphatic system [1]. 
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It is characterised by geographical foci and extraordinarily adaptation capability which gives it ability to re- 
emerge even after decades of silence. Thus even though the disease is historic it still infect and kill thousands of 
people around the world [2]. 

The disease mainly affects wild rodents, it can also be transmitted to human and other domestic animals 
through flea bites. Bubonic plague causes fever and very throbbing swelling of the lymph glands also called bu-
boes, which is the reason why the disease is called bubonic plague. 

When the flea is infested with pathogens causing bubonic plague the bacteria multiply in the proventriculus 
(foregut) of the flea [3]. The bacteria have the tendency of blocking the flea’s bloodsucking apparatus which 
consequently lead to inability of flea to pump blood into the midgut for digestion. This makes the flea to become 
ravenous as a result flea bites the host repetitively while vomiting the bacteria causing disease into the host. 
When a host dies, fleas move off the body to seek another live warm-blooded host [4]. 

Although it is not yet clearly known how, but Yersinia pestis may survive in the soil and remain viable and 
fully virulent for 40 weeks in soil and can cause the infection upon the adequate interaction with the susceptible 
individual. This is believed to be the reason for possible mechanism of interepizootic persistence, epizootic 
spread, and as a factor defining plague foci [5]. 

In this paper, we discuss the stability analysis of the bubonic plague epidemic model in human, rodent and 
flea population. The model includes the transmission from the environment to the susceptible human or rodent. 
We also discuss the disease-free equilibrium point, endemic equilibrium point of the model and analyze the local 
and global stability of these steady states. We finally use the numerical simulation to support our analytical re-
sults. 

2. Model Formulation 
This paper presents the stability analysis of the bubonic plague epidemic model developed by [6]. The model in-
cludes four interacting population which are: human population, Flea population, Rodent population and patho-
gens in the environment is developed. We use HS , HE , HI  and HR  to represent Susceptible human beings, 
Exposed human beings, Infected human beings and Recovered human beings respectively; RS , RE  and RI  
for Susceptible rodents, Exposed rodents and Infected rodents respectively. The Susceptible and the Infectious 
flea are denoted by FS  and FI  respectively. The pathogens in the environment are denoted by A. The total 
population for human being, rodent and flea population is by 

1 H H H HN S E I R= + + +                                  (1a) 

2 F FN S I= +                                          (1b) 

3 R R RN S E I= + +                                       (1c) 

The parameters used in the model are described in Table 1. 

Model Equations for Bubonic Plague 
Since we allow the population in and out of the compartments, the rate at which new infections occur in a popu-
lation will depend on the fraction of the population that is infected (disease prevalence). The infection rate in 
human depends on the probability that a contact between infectious flea and susceptible human and between in-
fectious environment and susceptible human leads to infection. For the rodent the infection depends on the 
probability that a contact between infectious flea and susceptible rodent and between infectious environment and 
susceptible rodent leads to infection. For the flea the infection depends on the probability that a contact between 
infectious human and susceptible flea and between infectious rodent and susceptible flea leads to infection. 
Therefore the infection rates of susceptible humans, rodent population and flea population are as given in (2a), 
(2b) and (2c) respectively. 

1
2

F
fh

I A
N

ωΓ +                                      (2a) 

2
2

F
fr

I A
N

ωΓ +                                     (2b) 
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Table 1. Parameters and their description. 

Parameters Description 

rfΓ  Adequate contact rate: infected rodent to flea 

fhΓ  Adequate contact rate: infected flea to human 

frΓ  Adequate contact rate: infected flea to rodent 

1α  Progression rate of susceptible human to exposed 

1γ  Progression rate of susceptible rodent to exposed 

hfΓ  Adequate contact rate: infected human to flea 

4λ  Recruitment rate of pathogens 

2α  Progression rate of exposed human to infected 

2γ  Progression rate of exposed rodent to infected 

3α  Human recovery rate 

ϖ  Progression rate of recovered human to susceptible 

1µ  Natural death rate for Human 

1δ  Disease induced death rate for Human 

3δ  Disease induced death rate for rodent 

3µ  Natural death rate for rodent 

1ω  Adequate contact rate: Pathogens to human 

2ω  Adequate contact rate: Pathogens to rodent 

4µ  Natural death rate for Pathogens 

2µ  Natural death rate for flea 

2δ  Disease induced death rate for flea 

1ψ  Immigration rate of human 

2sψ  Immigration rate of Susceptible flea 

2iψ  Immigration rate of Infected flea 

3ψ  Immigration rate of rodent 

1π  The proportion of human migrants that are Susceptible 

2π  The proportion of human migrants that are Exposed 

3π  The proportion of human migrants that are Recovered 

1κ  The proportion of rodent migrants that are Susceptible 

2κ  The proportion of rodent migrants that are Exposed 

3κ  The proportion of rodent migrants that are Infected 

β  The rate at which fleas become infected 
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( )
1 3

1H r
hf rf

I I
N N

ρ ρΓ + − Γ                                (2c) 

Pathogens in the environment are recruited at a constant rate 4λ  and they are removed through natural death 
4µ  or removed when they contact with susceptible human and rodent at the rates 1ω  and 2ω  respectively. 
Using the definition of variables and parameters stated in Table 1, we drive model for the dynamics of bu-

bonic plague disease in human, rodent, flea and pathogens in the environment as given in (3), (4), (5) and (6) 
respectively. 

Human 

1 1 1 1 1
2

d ,
d

H F
H fh H H

S IR A S S
t N

π ψ ϖ α ω µ
 

= + − Γ + − 
 

                     (3a) 

2 1 1 1 2 1
2

d ,
d

H F
fh H H H

E I A S E E
t N

π ψ α ω α µ
 

= + Γ + − − 
 

                   (3b) 

( )2 3 1 1
d ,
d

H
H H H

I E I I
t

α α µ δ= − − +                                   (3c) 

3 1 3 1
d .
d

H
H H H

R I R R
t

π ψ α ϖ µ= + − −                                   (3d) 

Rodent 

1 3 1 2 3
2

d
d

R F
fr R R

S I A S S
t N

κψ γ ω µ
 

= − Γ + − 
 

                            (4a) 

2 3 1 2 2 3
2

d
d

R F
fr R R R

E I A S E E
t N

κ ψ γ ω γ µ
 

= + Γ + − − 
 

                      (4b) 

( )3 3 2 3 3
d
d

R
R R

I E I
t

κ ψ γ µ δ= + − +                                     (4c) 

Flea 

( )2 2
1 3

d 1
d

F H R
s hf rf F F

S I I S S
t N N

ψ β ρ ρ µ
 

= − Γ + − Γ − 
 

                    (5a) 

( ) ( )2 2 2
1 3

d 1
d

F H R
i hf rf F F

I I I S I
t N N

ψ β ρ ρ µ δ
 

= + Γ + − Γ − + 
 

               (5b) 

where 2 2s iψ ψ<  
Pathogens 

4 1 2 4
d
d H R
A AS AS A
t

λ ω ω µ= − − −                           (6) 

3. Steady State and Local Stability of the Critical Points 
In this section we consider existence of equilibrium states and stability of the equilibrium states of the system 
(3)-(6). 

3.1. Disease Free Equilibrium 
The model has disease free equilibrium which is obtained by setting 0H H HI E R= = = , 0R RI E= = , 0FI =  
and 0A =  and the derivatives equal to zero into the system (3)-(6). 
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Then we have the disease free-equilibrium point given as 0 1 1

1

, 0,0,0HE π ψ
µ

 
=  
 

, 0 1 3

3

, 0,0RE κψ
µ

 
=  
 

,  

0 2

2

, 0s
FE ψ

µ
 

=  
 

 and 0 0AE =  for Human, Rodent, Flea and Pathogen respectively. 

Then the disease free equilibrium of the entire system is 

( )0 0 0 0 0 0 0 0 0 0 0 1 3 21 1

1 3 2

, , , , , , , , , , 0, 0,0, , 0,0, , 0,0s
H H H H R R R F FE S E I R S E I S I A κψ ψπψ

µ µ µ
 

=  
 

 

3.2. Local Stability of the Disease-Free Equilibrium Point 
In this section we consider the local stability analysis of the disease free equilibrium point of the bubonic plague 
disease system (3)-(6). We analyze the local stability of the disease free equilibrium point using the Jacobian 
method in which all equations in system (3)-(6) are considered and analyzed at the disease free equilibrium 0E . 
In this method we compute and examine the eigenvalues of Jacobian matrix of the system (3)-(6) to prove that 
the DFE is locally and asymptotically stable. We are required to show that all real parts of the eigenvalues at 

0E  are negative. Now in order to attest that the eigenvalues are negative we need to prove the general condition 
that the determinant and the trace of the Jacobian matrix are positive and negative respectively [7]. 

Now the Jacobian matrix of the system (3)-(6) at 0E  is given by: 

( )

1 1 1 1
1 3

1

1 1 1 1
7 3

1

2 6

3 9

1 1 3 20
3 4

3

1 1 3 2
10 4

3

2 11

1 2 2

1 2 8

5

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

k

k k

k
k

kE

k k

k
k k

k k k
k

α πψ ωµ ϖ
µ

α πψ ω
µ

α
α

γ κψ ωµ
µ

γ κψ ω
µ

γ
µ

−− −



−

 −


−
 −

− −=


 −

 −
 − − −


−
−

J






















 


           (7) 

where 

( )2 1 2 3 1 1 1 2
1 2 3

1 1 2 1 3 2 1 2

1 1 3 2
4 5 1 2 4 6 3 1 1

3 2

7 2 1 8 2 2 9 1

10 2 3 11 3 3

1hf s rf s fh

s

fr

s

k k k

k k k

k k k
k k

βρ ψ µ β ρ ψ µ α πψ µ
πψ µ κψ µ µψ

γ κψ µ
ω ω µ α µ δ

µ ψ
α µ µ δ ϖ µ
γ µ µ δ

Γ − Γ Γ
= = =

Γ
= = + + = + +

= + = + = +
= + = +

 

We now use Trace and determinant method to check the stability of the disease free equilibrium point 0E  in 
which we need to prove that the trace and the determinant of matrix (7) are negative and positive respectively 

Then using mathematica software we prove that trace of the matrix (7) given by 

( ) ( ) ( ) ( ) ( )1 2 1 6 1 3 2 3 3 3 2 2 2 5k kµ α µ ϖ µ µ γ µ µ δ µ µ δ= − − + − − + − − + − + − − + −Trace  
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where 

5 1 2 4 6 3 1 1,k kω ω µ α µ δ= + + = + +  

It is clear that the trace of the matrix (7) in negative. Then using the same software (mathematica) we are able 
to prove that the determinant of the matrix (7) is positive provided: 

( )
( )

( ) ( ) ( ) ( )
2 1 2 1

2 2 3 2 3 3 2 1 3 1 1

1
1rf fr hf fhγ γ ρ ρα αβ

µ δ µ γ µ δ α µ α µ δ
 Γ Γ − Γ Γ

+ <  + + + + + + 
 

where 

( )
( )

( ) ( ) ( ) ( )
2 1 2 1

2 2 3 2 3 3 2 1 3 1 1

1rf fr hf fhγ γ ρ ρα αβ
µ δ µ γ µ δ α µ α µ δ

 Γ Γ − Γ Γ
+  + + + + + + 

                   (8) 

is the basic reproduction number, 0R . 
0R  measures the average number of secondary infection produced when a typical infectious individual enters 

an entirely susceptible population. In our case, due to presence of multiple transmission cycle the basic repro-
ductive number do not give the number of cases infected by a single individual but rather the geometric mean of 
the number of infections per generation [8]. 

Referring to (8), the geometric mean of the number of infections per generation depends on: rodent’s infective  

period 
3 3

1
µ δ+

, the probability that flea gets the disease from the rodent or human which are ( )1 rfρ− Γ  or 

hfρΓ  respectively The human infective period 
1 1 3

1
µ δ α+ +

, probability that human survive the infected class 

2

1 2

α
µ α+

, the rate at which fleas gets infected β , flea’s infective period 
2 2

1
µ δ+

, probability that rodent sur-

vive the infected class 2

3 2

γ
µ γ+

, the adequate contact rate flea to human fhΓ , the adequate contact rate flea to  

rodent frΓ  and the rate at which human and rodent become exposed to the the disease which are 1α  and 1γ  
respectively. 

Thus disease free equilibrium point 0E  is therefore locally asymptotically stable and leads to the following 
theorem: 

Theorem 1. The Disease Free Equilibrium 0E  of bubonic plague is locally asymptotically stable if 0 1R <  
and unstable if 0 1R > . 

3.3. Global Stability of the Disease-Free Equilibrium Point 
In this section we analyze the global stability of the disease free equilibrium point using Metzler matrix method 
as stated by [9]. To do this we first sub-divide the general system (3)-(6) of bubonic plague disease into trans-
mitting and non-transmitting component. 

Now let nY  be the vector for non-transmitting compartment, iY  be the vector for transmitting compartment 
and 

0 ,E nY  be the vector of disease free point. Then 

( )01 , 2

3

d
d

d
d

n
n E n i

i
i

t

t

 = − +

 =


Y A Y Y A Y

Y A Y
                               (9) 

We then have 

( ) ( )
0

T 1 3 21 1
,

1 3 2

, , , , , , , , , 0, , s
n H H R F i H H R R F E nS R S S E I E I I A κψ ψπψ

µ µ µ
 

= = =  
 

Y Y Y  
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0

1 1

1

, 1 3

3

2

2

H

H

n E n
R

s
F

S

R

S

S

π ψ
µ

κψ
µ
ψ
µ

 − 
 
 
 − =  −
 
 
 − 
 

Y Y  

Now to prove the global stability of the DFE we need to show that Matrix 1A  has real negative eigenvalues 
and 3A  is a Metzler matrix in which all off diagonal element must be non-negative. Referring to (9) we write 
the general model as given below 

1 1

1
1 1 1 1

3 1 3 1
1 21 3

1 3 1 3
3

2 2
2

2

,
.

H H

H H H H
H

H H H R

RR R R

s F F F
s

F

S E
R kS S I

R
I R R E

SMS S I
YS S I

S A

π ψ
µ

πψ ϖ α µ
π ψ α ϖ µ

κψ
κψ γ µ

µ
ψ β µ

ψ
µ

 −   
  + − −       + − −    = +     −− −      − −        −   

 

A A  

and 

( )

( )
( )

2 1 1 2 1

2 3 1 1

2 3 1 2 3
3

3 3 2 3 3

2 2 2

4 1 2 4

,
,

H H H H

H H H H

R R R R

R R R

i F F F

H R

kS E E E
E I I I

MS E E E
E I I

YS I I
AS AS A A

π ψ α α µ
α α µ δ
κ ψ γ γ µ
κ ψ γ µ δ
ψ β µ δ
λ ω ω µ

+ − −   
   − − +   
   + − −

=   
+ − +   

   + − +
     − − −   

A  

For 

( )1 2
2 2 1 3

1F F H R
fh fr hf rf

I I I Ik A M A Y
N N N N

ω ω ρ ρ
    

= Γ + = Γ + = Γ + − Γ    
     

 

Now using the transmitting and non-transmitting element on the general system we will have the matrices be-
low: 

( )
1

1
1

3

2

0 0
0 0 0
0 0 0
0 0 0

µ ϖ
ϖ µ

µ
µ

− 
 − + =
 −
 

− 

A                                             (10) 

( )

1 1 1 2 1 1 1 1

1 2 1

3

1 1 3 22 1 1 3 2

3 2 3

2 1 2 3

2 1 1 2 1 3

0 0 0 0

0 0 0 0 0

0 0 0 0

1
0 0 0 0

fh

s

fr

s

s hf s rf

α πψ µ α πψ ω
µψ µ

α
γ κψ µ γ κψ ω
µψ µ

βψ µ ρ βψ µ ρ
µ π ψ µ κψ

− Γ −
 
 
 
 

− Γ= − 
 
 
 − Γ − − Γ
  
 

A          (11) 
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( )

( )

( )
( ) ( )

1 1 1 2 1 1 1 1
2 1

1 2 1

2 1

1 1 3 2 1 1 3 2
2 3

3 2 33

2 3 3

2 3
3 2 2

1 3 2

2

0 0 0

0 0 0 0

0 0 0

0 0 0 0
1

0 0 0

0 0 0 0 0

fh

s

fr

s

rf s

α πψ µ α πψ ωα µ
µψ µ

α ζ
γ κψ µ γ κψ ωγ µ

µ ψ µ
γ µ δ

β ρ ψ µ
ζ µ δ

κψ µ
ζ

Γ 
− + 
 
 −
 

Γ − + =  
 − +
 

− Γ − + 
  − 

A        (12) 

where ( )1 3 1 1ζ α µ δ= + + , ( )2 1 2 4H RS Sζ ω ω µ= + +  and 2 1
3

1 1 2

.hf sβρ ψ µ
ζ

π ψ µ
Γ

=  

Now when we consider matrix 1A , the computation shows that the eigenvalues are real and negative, which 
now confirms that the system 

( )01 , 2
d
d

n
n E n it

= − +
Y A Y Y A Y  

is globally and asymptotically stable at 
0EY . And for matrix 3A  we find that all its off-diagonal elements are 

non-negative and thus 3A  is a Metzler stable matrix.Therefore Disease Free Equilibrium point for the general 
bubonic plague system is globally asymptotically stable as a result we have the following theorem: 

Theorem 2. The disease-free equilibrium point is globally asymptotically stable in 0E  if 0 1R <  and un- 
stable if 0 1R > . 

3.4. Existence of Endemic Equilibrium 
Here we consider the situation in which the disease persist in a population. We investigate conditions for exis-
tence of the endemic equilibrium point of the system (3)-(6). The endemic equilibrium point  

( )* * * * * * * * * * *, , , , , , , , ,H H H H R R R F FE S E I R S E I S I A  is obtained by solving the equations obtained by setting the deriva-
tives of (3)-(6) equal to zero as in (13)-(16) which exist for 0 1R > . 

Human 

1 1 1 1 1
2

0F
H fh H H

IR A S S
N

π ψ ϖ α ω µ
 

+ − Γ + − = 
 

                   (13a) 

2 1 1 1 2 1
2

0F
fh H H H

I A S E E
N

π ψ α ω α µ
 

+ Γ + − − = 
 

                  (13b) 

( )2 3 1 1 0H H HE I Iα α µ δ− − + =                                 (13c) 

3 1 3 1 0H H HI R Rπ ψ α ϖ µ+ − − =                                (13d) 

Rodent 

1 3 1 2 3
2

0F
fr R R

I A S S
N

κψ γ ω µ
 

− Γ + − = 
 

                         (14a) 

2 3 1 2 2 3
2

0F
fr R R R

I A S E E
N

κ ψ γ ω γ µ
 

+ Γ + − − = 
 

                   (14b) 

( )3 3 2 3 3 0R RE Iκ ψ γ µ δ+ − + =                                  (14c) 

Flea 
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( )2 2
1 3

1 0H R
s hf rf F F

I I S S
N N

ψ β ρ ρ µ
 

− Γ + − Γ − = 
 

                       (15a) 

( ) ( )2 2 2
1 3

1 0H R
i hf rf F F

I I S I
N N

ψ β ρ ρ µ δ
 

+ Γ + − Γ − + = 
 

                  (15b) 

where 2 2s iψ ψ<  
Pathogens 

4 1 2 4 0H RAS AS Aλ ω ω µ− − − =                              (16) 

Since it is difficult to obtain explicitly the endemic equilibrium points of the model we will prove its existence 
using the study by [10] [11]. For the endemic equilibrium to exist it must satisfy the condition 0HE ≠  or 

0HI ≠  or 0RE ≠  or 0RI ≠  or 0FI ≠  or 0A ≠  that is 0HS >  or 0HE >  or 0HI >  or 0RS >  or 
0RI >  or 0RE >  or 0FS >  or 0FI >  or 0A >  must be satisfied. Now adding system (13)-(16) we have 

( ) ( )
( )

1 2 2 3 4 1 2

3 1 2 3 1 2 4 0
s i H H H H F F

R R R H F R H R

S E I R S I

S E I I I I AS AS A

ψ ψ ψ ψ λ µ µ

µ δ δ δ ω ω µ

+ + + + − + + + − +

− + + − − − − − − =
              (17) 

Substituting 1 H H H HN S E I R= + + + , 2 F FN S I= +  and 3 R R RN S E I= + +  in (17) we have 

1 2 2 3 1 1 2 2 3 3 1 2 3 4 1 2 4 0s i H F R H RN N N I I I AS AS Aψ ψ ψ ψ µ µ µ δ δ δ λ ω ω µ+ + + − − − − − − + − − − =   (18) 

But from Equation (16), we have 4 1 2 4 0H RAS AS Aλ ω ω µ− − − =  
It follows that 

1 1 2 2 3 3 1 2 3 1 2 2 3=H F R s iN N N I I Iµ µ µ δ δ δ ψ ψ ψ ψ+ + + + + + + +  

Since 1 2 2 3 0s iψ ψ ψ ψ+ + + > , 1 0µ > , 2 0µ > , 3 0µ > , 1 0δ > , 2 0δ >  and 3 0δ >  we can discern that 
1 1 0Nµ > , 2 2 0Nµ > , 3 3 0Nµ > , 1 0HIδ > , 2 0FIδ >  and 3 0RIδ >  implying that 0HS > , 0HE > , 0HI > , 

0FS > , 0FI > , 0RS > , 0RE >  and 0RI > . 
Hence endemic equilibrium point of the bubonic plague disease model in human, rodent, flea and pathogens 

in the environment exists. 
Since the endemic equilibrium points exist, we now determine the conditions under which they are stable or 

unstable. We prove whether the solution starting sufficiently close to the equilibrium remains close to the equi-
librium and approaches the equilibrium as t →∞ , or if there are solutions starting arbitrary close to the equili-
brium which do not approach it respectively. 

3.5. Global Stability of Endemic Equilibrium Point 
Using the idea from the study by [12] we say that the local stability of the Disease Free Equilibrium advocates 
for local stability of the Endemic Equilibrium for the reverse condition. We then work to find the global stability 
of Endemic equilibrium using a Korobeinikov approach as stipulated in [12]-[14] by forming a suitable Lyapu-
nov function for our general model as given below: 

We construct the Lyapunov function as given in the form: 

( )* lni i i iV a y y y= −∑  

where ia  is defined as a properly selected positive constant, iy  defines the population of the thi  compart-
ment, and *

iy  is the equilibrium point. 
We will have the following Lyapunov function, 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )

* * *
1 2 3

* * *
4 5 6

* * *
7 8 9

*
10

ln ln ln

ln ln ln

ln ln ln

ln

H H H H H H H H H

H H H R R R R R R

R R R F F F F F F

V W S S S W E E E W I I I

W R R R W S S S W E E E

W I I I W S S S W I I I

W A A A

= − + − + −

+ − + − + −

+ − + − + −

+ −
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The constants iW  are non negative in Φ  such that 0iW >  for 1, 2,3, ,10i =  . The Lyapunov function V 
together with its constants 1 2 10, , ,W W W  chosen in such way that V is continuous and differentiable in a space 

We then compute the time derivative of V from it we get; 
* * * * *

1 2 3 4 5

* * * *

6 7 8 9 10

d d d d dd 1 1 1 1 1
d d d d d d

d d d d1 1 1 1 1
d d d d

H H H H H H H H R R

H H H H R

R R R R F F F F

R R F F

S S E E I I R R S SV W W W W W
t S t E t I t R t S t

E E I I S S I I AW W W W W
E t I t S t I t

         
= − + − + − + − + −         

         
       

+ − + − + − + − + −       
       

* d
d
A

A t
 
 
 

 

Now using the general system (3)-(6) we will have 

( )

[ ]

*

1 1 1 1 1 1
2

*

2 2 1 1 1 2 1
2

*

3 2 3 1 1

*

4 3 1 3 1

*

5

d 1
d

1

1

1

1

H F
H fh H H

H

H F
fh H H H

H

H
H H H

H

H
H H H

H

R

R

S IV W R A S S
t S N

E IW A S E E
E N

IW E I I
I

RW I R R
R

SW
S

π ψ ϖ α ω µ

π ψ α ω α µ

α α µ δ

π ψ α ϖ µ

    
= − + − Γ + −    

    
    

+ − + Γ + − −    
    

 
+ − − − +    

 
 

+ − + − − 
 

+ −

( )

( )

1 3 1 2 3
2

*

6 2 3 1 2 2 3
2

*

7 3 3 2 3 3

*

8 2 2
1 3

9

1

1

1 1

F
fr R R

R F
fr R R R

R

R
R R

R

F H R
s hf rf F F

F

I A S S
N

E IW A S E E
E N

IW E I
I

S I IW S S
S N N

W

κψ γ ω µ

κ ψ γ ω γ µ

κ ψ γ µ δ

ψ β ρ ρ µ

    
− Γ + −    

    
    

+ − + Γ + − −    
    

 
 + − + − +   

 
    

+ − − Γ + − Γ −    
    

+ ( ) ( )

[ ]

*

2 2 2
1 3

*

10 4 1 2 4

1 1

1

F H R
i hf rf F F

F

H R

I I I S I
I N N

AW AS AS A
A

ψ β ρ ρ µ δ

λ ω ω µ

    
− + Γ + − Γ − +    

    
 

+ − − − − 
 

 

At endemic equilibrium point we have 
Human 

*
* * * *

1 1 1 1 1*
2

,F
H fh H H

IR A S S
N

π ψ ϖ α ω µ
 

= − + Γ − + 
 

                      (19a) 

*
* * * *

2 1 1 1 2 1*
2

,F
fh H H H

I A S E E
N

π ψ α ω α µ
 

= − Γ − + + 
 

                    (19b) 

( )( )* *
2 3 1 1*

1
H H

H

I I
E

α α µ δ= + +                                    (19c) 

* * *
3 1 3 1H H HI R Rπ ψ α ϖ µ= − + +                                     (19d) 

Rodent 



R. C. Ngeleja et al. 
 

 
130 

*
* * *

1 3 1 2 3*
2

F
fr R R

I A S S
N

κψ γ ω µ
 

= Γ − + 
 

                                 (20a) 

*
* * * *

2 3 1 2 2 3*
2

F
fr R R R

I A S E E
N

κ ψ γ ω γ µ
 

= − Γ − + + 
 

                         (20b) 

( )* *
3 3 2 3 3R RE Iκ ψ γ µ δ= − + +                                         (20c) 

Flea 

( )
* *

* *
2 2* *

1 3

1H R
s hf rf F F

I I S S
N N

ψ β ρ ρ µ
 

= Γ − − Γ + 
 

                         (21a) 

( ) ( )
* *

* *
2 2 2* *

1 3

1H R
i hf rf F F

I I S I
N N

ψ β ρ ρ µ δ
 

= − Γ − − Γ + + 
 

                   (21b) 

where 2 2s iψ ψ<  
Pathogens 

* * * * *
4 1 2 4H RA S A S Aλ ω ω µ= + +                                (22) 

We can then rewrite d
d
V
t

 using (19), (20), (21) and (22) as: 

* *
* * * *

1 1 1 1 1 1 1*
22

* *
* * * *

2 1 1 2 1 1 1 2 1*
22

*

3

d 1
d

1

1

H F F
H fh H H H fh H H

H

H F F
fh H H H fh H H H

H

H

H

S I IV W R A S S R A S S
t S NN

E I IW A S E E A S E E
E NN

IW
I

ϖ α ω µ ϖ α ω µ

α ω α µ α ω α µ

      
= − − + Γ − + + − Γ + −      

     
      

+ − − Γ − + + + Γ + − −      
     

 
+ −


( )( ) ( )* *

3 1 1 3 1 1*

*
* * *

4 3 1 3 1

* *
* * *

5 1 2 3 1 2 3*
22

*

6 1

1

1

1

1

H H H H H
H

H
H H H H H H

H

R F F
fr R R fr R R

R

R
fr

R

I I E I I
E

RW I R R I R R
R

S I IW A S S A S S
S NN

EW
E

α µ δ α µ δ

α ϖ µ α ϖ µ

γ ω µ γ ω µ

γ

  
+ + − − +   

   
 

 + − − + + + − −   
 

      
+ − Γ − + − Γ + −      

     

 
+ − − Γ 

 

( ) ( )

( ) ( )

*
* * * *

2 2 3 1 2 2 3*
22

*
* *

7 2 3 3 2 3 3

* * *
* *

8 2* *
1 31 3

1

1 1 1

F F
R R R fr R R R

R
R R R R

R

F H R H R
hf rf F F hf rf

F

I IA S E E A S E E
NN

IW E I E I
I

S I I I IW S S
S N NN N

ω γ µ γ ω γ µ

γ µ δ γ µ δ

β ρ ρ µ β ρ ρ

    
− + + + Γ + − −    

   
 

 + − − + + + − +   
 

    
+ − Γ − − Γ + − Γ + − Γ    

    

( ) ( )

( ) ( )

2

* * *
*

9 2 2* *
1 3

2 2
1 3

*
* * * * *

10 1 2 4 1 2 4

1 1

1

1

F F

F H R
hf rf F F

F

H R
hf rf F F

H R H R

S S

I I IW S I
I N N

I I S I
N N

AW A S A S A AS AS A
A

µ

β ρ ρ µ δ

β ρ ρ µ δ

ω ω µ ω ω µ

 
− 

  
   

+ − − Γ − − Γ + +   
   

 
+ Γ + − Γ − +  

  
 

 + − + + − − −   
 
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After simplification the above equation becomes: 
2 2 2* * *

1 2 3

2 2 2* * *

4 5 6

2 2 2* * *

7 8 9

2*

10

d 1 1 1
d

1 1 1

1 1 1

1 , , , , , , , ,

H H H

H H H

H R R

H R R

R F F

R F F

H H H H R R R F

S E IV W W W
t S E I

R S EW W W
R S E

I S IW W W
I S I

AW F S E I R S E I S
A

     
= − − − − − −     

     

     
− − − − − −     

     

     
− − − − − −     

     

 
− − + 

 
( ),FI A

 

where the function ( ), , , , , , , , ,H H H H R R R F FF S E I R S E I S I A  is non positive, Now following the procedures by 

[15] [16]. We have ( ), , , , , , , , , 0H H H H R R R F FF S E I R S E I S I A ≤  for all , , , , , , , , ,H H H H R R R F FS E I R S E I S I A ,  

Then d 0
d
V
t
≤  for all , , , , , , , , ,H H H H R R R F FS E I R S E I S I A  and it is zero when *

H HS S= , *
H HE E= , *

H HI I= ,  
*

H HR R= , *
R RS S= , *

R RE E= , *
R RI I= , *

F FS S= , *
F FI I= , *A A=  Hence the largest compact invariant set  

in , , , , , , , , ,H H H H R R R F FS E I R S E I S I A  such that d 0
d
V
t
=  is the singleton *E  which is Endemic Equilibrium  

point of the model system (3)-(6). 
LaSalles’s invariant principle by [17] then implies that *E  is globally asymptotically stable in the interior of 

the region of , , , , , , , , ,H H H H R R R F FS E I R S E I S I A  and thus leads to the Theorem 3. 
Theorem 3. If 0 1R >  then the bubonic plague disease model system (3)-(6) has a unique endemic equili- 

brium point *E  which is globally asymptotically stable in , , , , , , , , , .H H H H R R R F FS E I R S E I S I A  

4. Numerical Simulation 
Numerical simulation is carried out in order to observe and understand the kinetics of bubonic plague disease 
and demonstrate analytical results. In particular we illustrate through numerical simulation the stability of the 
endemic equilibrium states in human, rodent, flea and pathogens in the environment. 

Parameter Values 
The values of the parameters used in bubonic plague disease model are shown in Table 2. The parameters are 
taken from the previous studies that relate to this study, existing information and through estimation. 

In the simulation we assume different cases where each sub-population starts at different initial values (six 
different initial values) ultimately returns to its endemic point. We thus justify that a solution that starts suffi-
ciently close to the equilibrium remains close to it and it eventually approaches the equilibrium as t →∞ . 

Figure 1 shows the dynamical behavior of the human population. The sub-Figure 1(a) shows a marginal in-
crease in number of susceptible human as people moves in through migration. When the disease becomes en-
demic, the number of susceptible human decreases as they becomes exposed to the disease due to the increase of 
force of infection which resembles to the general scenario of vector borne infection as depicted in [23]. Given 
that the model assumes no treatment nor vaccination is applied, it thus justifies the behavior illustrated in 
sub-Figure 1(b). The figure shows the very slight increase of a exposed human beings before it drops to its en-
demic level as the large number of exposed human progresses and become infected human. The increase of 
number of infected human beings from the exposed class is depicted in sub-Figure 1(c). We can see that in the 
first five years the number infected human subgroup experience a substantial increase before it decreases to its 
endemic level. The decrease in number of infected human is mainly through natural death and disease induced 
death whereas very few will recover and join a recovery class. The system considers only natural recovery (re-
covery due to individual’s strong body immunity), thus the number of recovery human will slightly increase be-
fore it decreases and reaches its endemic level as illustrated in sub-Figure 1(d) [24] [25]. 
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Table 2. Parameters values for Bubonic Plague disease model. 

Parameters Value/Range Reference/Source 

rfΓ  0.6 Estimated 

fhΓ  0.09 [18] 

frΓ  4.7 [19] 

1α  0.9 Estimated 

1γ  0.9 Estimated 

hfΓ  0.28 [18] 

4λ  0.89 Estimated 

2α  0.04 [20] 

2γ  0.05 [20] 

3α  0.1 [20] 

ϖ  0.1 [20] 

1µ  0.04 [20] 

1δ  0.04 [20] 

3δ  0.05 [21] 

3µ  0.2 [22] 

1ω  0.01 [20] 

2ω  0.073 [18] 

4µ  0.1 Estimated 

2µ  0.07 [18] 

2δ  0.03 [18] 

1ψ  0.09 Estimated 

2Sψ  0.008 [21] 

2iψ  0.08 Estimated 

3ψ  0.03 [20] 

β  0.99 Estimated 

 
Figure 2 shows the dynamics in rodent population. The results seen in this figure also settles with the findings 

by [26] [27]. We can see from sub-Figure 2(a) that the susceptible rodent population drops very fast within the 
first year, before it slightly rise due to migration at the rate 1 3κψ , to its endemic equilibrium level. The quick 
drop of susceptible rodent may be due to the fact that rodents are the primary victim of bubonic plague so that 
when the disease is endemic most of them are infected and become exposed to the disease [28]. The increase of 
the rate of infection in susceptible rodent population proportionally increase the number of exposed rodent [29]. 
After the significant increase of the exposed rodent population within the first five years it then drops to its en-
demic level. It takes only 2 to 6 days for an exposed rodent to become infectious [30] which is the reason for a 
quick decrease of exposed rodent as seen in sub-Figure 2(b). The infectious rodent population increases as the 
number of rodent progressing from exposed class to infectious increase. RI  then drops to its endemic level as it 
experience both natural and disease induced death as in sub-Figure 2(c). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1. Simulation of the model’s solution trajectories to show stability of the endemic point in subsystem (3). 
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(a) 

 
(b) 

 
(c) 

Figure 2. Simulation of the model’s solution trajectories to show stability of the endemic point in subsystem (4). 
 

The dynamics in the flea population are as seen in Figure 3, we can see that the number of susceptible flea 
decreases exponentially as they die naturally or acquire infection from the infected rodent or human at the rate 

hfΓ  or rfΓ  respectively see sub-Figure 3(a). The increased death of rodent due to the endemicity of the dis-
ease, will as a result lead to scarcity of hosts for flea to feed on and thus die [26]. The addition of natural and 
disease induced death in infected flea population will lead to a quick drops to its endemic level as illustrated in 
sub-Figure 3(b) (this corresponds well with the findings in the study by [20] [31]). The pathogens in the envi-
ronment are removed when they come to contact with the susceptible human and rodent at the rate 1ω  and 2ω  
respectively and due to natural death at the rate 4µ . Since we assume that human and rodent infectious classes 
have a negligible contribution in increasing the number of pathogens in the environment (see Equation (6)). 
Now as the disease become endemic the rates 1ω  and 2ω  increase which in turn decrease the number of pa-
thogens in the environment. Pathogens are also highly affected by the condition in the environment (temperature, 
humidity and precipitation). Most of the time this lead to a massive decay of the pathogens population in the en-
vironment as the environment is not favorable for their survival and growth [32] Then the number of pathogens 
in the environment will gradually decrease to its endemic level as in Figure 4. 
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(a) 

 
(b) 

Figure 3. Simulation of the model’s solution trajectories to show stability of the endemic point of subsystem (5). 
 

 
Figure 4. Simulation of the model’s solution trajectories to show stability of the endemic point in (6). 

5. Conclusion 
In this paper, we have considered a bubonic plague in human, rodent and flea with Yersinia pestis in the envi-
ronment. We have carried out the stability analysis of the equilibrium states in which the analytical results show 
that the disease free equilibrium point is locally and globally asymptotically stable when 0 0R <  and unstable 
when 0 0R > . This result necessitates that the basic reproduction number, which is the expected number of 
secondary cases produced by a single infected individual during the entire infectious period of that particular in-
dividual in a completely susceptible population is a key non-dimension parameter that dictates whether the dis-
ease will spread or die out. When 0R  is increased or decreased above or below unity compels to the persistence 
or eradication of bubonic plague disease respectively. The decrease or increase of the basic reproduction number  

will as a result affects negatively or positively the flea’s infective period 
2 2

1
µ δ+

, probability that rodent sur-
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vive the infected class 2

3 2

γ
µ γ+

, the adequate contact rate flea to human fhΓ , rodent’s infective period 

3 3

1
µ δ+

, the probability that flea gets the disease from the rodent or human which are ( )1 rfρ− Γ  or hfρΓ  

respectively. The human infective period 
1 1 3

1
µ δ α+ +

, probability that human survive the infected class 

2

1 2

α
µ α+

, the rate at which fleas gets infected β , the adequate contact rate flea to rodent frΓ  and the rate at  

which human and rodent become exposed to the the disease which are 1α  and 1γ  respectively. The endemic 
equilibrium point is also found to be locally and globally asymptotically stable whenever they exist. Using the 
model’s parameters values from literature reviewed in this paper and some estimated, we use the simulation to 
show the endemic equilibrium for Human, Rodent, Flea and pathogens in the environment are stable thus sup-
ports the analytical results. We observe that without intervention that controls the value of 0R  to less than a 
unity bubonic plague may be very fatal and a life threatening disease whenever it occurs. 
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