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Abstract 
We consider the defocusing mass-critical nonlinear Schrödinger equation in the ex-
terior domain Ω  in d  ( 2d ≥ ). By analyzing Strichartz estimate and utilizing 

the inductive hypothesis method, we prove the stability for all initial data in ( )2L Ω . 
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1. Introduction 

In this short note, we consider the defocusing mass-critical nonlinear Schrödinger equ-
ation in the exterior domain Ω  in d  ( 2d ≥ ) with Dirichlet boundary conditions:  
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Here :u ×Ω→   and the initial data ( )0u x  will only be required to the 2L  
space. 

This equation has Hamiltonian  

( )( ) ( ) 2
, d .dM u t u t x x= ∫                        (2) 

As (2) is preserved by (1), we shall refer to it as the mass and often write ( )M u  or 
M for ( )( )M u t . 

H. Brezis and T. Gallouet [1] considered that 2
tiu u k u u− ∆ = −  in [ )0,Ω× ∞ , 

k ∈ , the nonlinear Schrödinger equation in Ω  of a bounded domain or an exterior 
domain of 2  with Dirichlet boundary conditions. In [2], N. Burq, P. Gérard and N. 
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Tzvetkov described nonlinear Schrödinger equations in exterior domains. In [3] [4], R. 
Killip, M. Visan and X. Zhang considered the defocusing energy-critical nonlinear 
Schrödinger equation and the focusing cubic nonlinear Schrödinger equation in the 
exterior domain Ω  of a smooth, compact, strictly convex obstacle in 3  with Di-
richlet boundary conditions, respectively. 

In [5], T. Tao and M. Visan established stability of energy-critical nonlinear Schrödinger 
equations in ( )3d d ≥ . However, we established stability of mass-critical nonlinear 
Schrödinger equations in the exterior domain Ω  in d  ( 2d ≥ ). 

Throughout this paper, we restrict ourselves to the following notion of solution.  
Definition 1 (solution). Let I be a time interval containing zero, a function 
:u I ×Ω→   is called a solution to (1) if it lies in the class ( )0 2

t xC L I ′×Ω  for any 
compact interval I I′ ⊂ , and it satisfies the Duhamel formula  

( ) ( ) ( )
4

0 0
d

t i t sit du t e u i e u u s s− ∆∆  = +  
 

∫                   (3) 

for all t I∈ . The interval I is said to be maximal if the solution cannot be extended 
beyond I. We say u is a global solution if I =  .  

In this formulation, the Dirichlet boundary condition is enforced through the ap-
pearance of the linear propagator associated to the Dirichlet Laplacian. 

Our stability theorem concerns mass-critical stability in ( )2L Ω  for the initial-value 
problem associated to the Equation (1).  

Theorem 2 (Stability theorem). Suppose 2d ≥ , I is a compact interval and let u  
be an approximate solution to  

4
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u
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=
                          (4) 

in the sense that  
4
dti u u u u e∂ + ∆ = +                            (5) 

for some function e. 
Assume that  
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for some positive constants M and L. 
Let 0t I∈  and ( )0u t  obey  

( ) ( ) 20 0
xL

u t u t M ′− ≤                         (8) 

for some 0M ′ > . Moreover, assume the smallness conditions  
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for some 10 < <  , where ( )1 1 , , 0M M L′= >   is a small constant. 
Then, there exists a solution u to  

4

0

dt
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i u u u u

u
×∂Ω

 ∂ + ∆ =


=
                         (11) 

on I ×Ω  with initial data ( )0u t  at time 0t t=  satisfying  
( )

( ) ( )2 2

,
, ,d

d
t xL Iu u C M M L+

×Ω
′− ≤                     (12) 

( ) ( )0 , ,S Iu u C M M L M′ ′− ≤                     (13) 

( ) ( )0 , ,S Iu C M M L′≤ .                       (14) 

The rest of the paper is organized as follows. In Section 2, we introduce our notations 
and state some previous results. In Section 3, we finally prove Theorem 2, except for 
proving a lemma about approximate solutions. 

2. Preliminaries and Notations 

In this section we summarize some our notations and collect some lemmas that are 
used in the rest of the paper. 

We write A B  to signify that there is a constant 0C >  such that A CB≤ . We 
use the notation ~A B  whenever A B A  . If the constant C involved has some 
explicit dependency, we emphasize it by a subscript. Thus uA B  means that 

( )A C u B≤  for some constant ( )C u  depending on u. We write ( )
4
dF z z z=  for 

the nonlinearity in (1). 
We define that for some 0δ > ,  

( ) ( )0
( , ) admissible

2

sup ,q r
t xS I L L Iq r

q

u u
δ

×Ω ×Ω

≥ +

=

 

( ) ( ) ( ){ }0
0 0 2 : .t x S IS I u C L I u

×Ω
×Ω = ∈ ×Ω < ∞

 
We also define ( )0N I ×Ω  to be the space dual to ( )0S I ×Ω  with appropriate 

norm. 
With these notations, the Strichartz estimates read as follows: 
Theorem 3 (Strichartz estimates [3] [6]). Let I ⊂   be a time interval and let 

0t I∈ , then the solution :u I ×Ω→   to  

tiu u fΩ+ ∆ =  
satisfies 

( ) ( ) ( )0 020 .S N IL
u u t f

Ω
≤ +

 
Proposition 4 (Local well-posedness). Given 0E > , there exists ( )0 0 0Eδ δ= >  

such that if ( )2L Eφ
Ω
≤  and  

( ) 0q r
t x

it
L L I

e φ δ∆

×Ω
≤

 
on some interval 0I  , 1I ≤ , then there exists a unique solution ( )0 2

t xu C L I∈ ×Ω  
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of (1) satisfying ( )0u φ= . Besides, 

( ) ( )0

3
2 .q r

t x

it it
ES I L L I

u e e φ∆ ∆
×Ω ×Ω

− 
 

The quantities ( )M u  defined in (2) are conserved on I. 

3. Proof of Theorem 2 

We need the following lemma to prove this theorem. 
Lemma 1. Let I be a compact interval and let u  be an approximate solution to  
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in the sense that  
4
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for some function e. 
Assume that  
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for some positive constant M. 
Let 0t I∈  and ( )0u t  be such that  
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for some 00 < ≤  , where ( )0 0 , 0M M ′= >   is a small constant. 
Then, there exists a solution u to  
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on I ×Ω  with initial data ( )0u t  at 0t t=  satisfying  
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Proof of Lemma 1. By symmetry, we may assume 0 inft I= . Let w u u= −  , then w 
satisfies the following problem  
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where ( )
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On the other hand, by Strichartz, (20), (21), we get  
( )
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Combining (27) and (28), we obtain  

( ) ( )( ) ( )( )
441

0 .ddA t A t A t
+

+ + + +   
 

By bootstrapping, we see if 0  is taken sufficiently small,  

( ) for ,A t t I∈  
which implies (26). 

Using (26) and (28), we see (23). 
Moreover, by Strichartz, (18), (21) and (26),  

( ) ( ) ( ) ( ) ( ) ( )0 0020

,
xS I N IN IL

w w t F u w F u e

M

+ + − +

′ +

 

 
 

which establishes (24) for ( )0 0 M ′=   sufficiently small. 
To show (25), we use Strichartz, (17), (18), (26), (19),  
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Choosing ( )0 0 ,M M ′=   sufficiently small, this finishes the proof of the lemma.  
We now turn to the proof of stability theorem. 

Proof of Theorem 2. We now subdivide I into 

( )2 2

0

~ 1

d
dLJ

+

 
+ 

 
 subintervals  

1,j j jI t t + =   , 0 1j J≤ ≤ − , such that  
( )
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, 0 ,d
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where ( )0 0 , 2M M ′=   as in the lemma. 

We need to replace M ′  by 2M ′  as the mass of the difference u u−   might grow 
slightly in time. 

By choosing 1  sufficiently small depending on J, M and M ′ , we can apply the 
lemma to obtain for each j and all 10 < <  , 
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provided we can show that analogues of (8) and (9) hold with 0t  replaced by jt . 

In order to verify this, we use an inductive argument. 
By Strichartz, (8), (10) and the inductive hypothesis,  
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Similarly, by Strichartz, (9), (10) and the inductive hypothesis, we see  
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Choosing 1  sufficiently small depending on J, M and M ′ , we can guarantee that 
the hypotheses of the lemma continue to hold as j varies.                         

4. Conclusion 

In this paper, we consider a mass-critical stability of the defocusing mass-critical non-
linear Schrödinger equation. Then we prove two different types of perturbation to show 
the stability of nonlinear Schrödinger equation. 

Acknowledgements 

The research of Guangqing Zhang has been partially supported by the NSF grant of 
China (No. 51509073) and also “The Fundamental Research Funds for the Central 
Universities” (No. 2014B14214). The author would like to thank his tutor Zhen Hu for 
helpful conversations. The author also thanks the referees for their time and comments. 
 

References 
[1] Brezis, H. and Gallouet, T. (1980) Nonlinear Schrödinger Evolution Equations. Nonlinear 

Analysis, 4, 677-681.  

[2] Burq, N., Gérard, P. and Tzvetkov, N. (2004) On Nonlinear Schrödinger Equations in Exte-
rior Domains. Annales de l’Institut Henri Poincaré (C) Analyse Non Linear Analysis, 21, 
295-318.  

[3] Killip, R., Visan, M. and Zhang, X. (2012) Quintic NLS in the Exterior of a Strictly Convex 
Obstacle. Mathematics. arXiv:1208.4904. 

[4] Killip, R., Visan, M. and Zhang, X. (2015) The Focusing Cubic NLS on Exterior Domains in 
Three Dimensions. Mathematics, 89, 335-354.  

[5] Tao, T. and Visan, M. (2005) Stability of Energy-Critical Nonlinear Schrödinger Equations 
in High Dimensions. Electronic Journal of Differential Equations, 2, 357-370. 

[6] Keel, M. and Tao, T. (1997) Endpoint Strichartz Estimates. American Journal of Mathe-
matics, 120, 955-980. 

 
 
 
 
 

 
Submit or recommend next manuscript to SCIRP and we will provide best service 
for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles  
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 

http://papersubmission.scirp.org/

	On the Stability of the Defocusing Mass-Critical Nonlinear Schrödinger Equation
	Abstract
	Keywords
	1. Introduction
	2. Preliminaries and Notations
	3. Proof of Theorem 2
	4. Conclusion
	Acknowledgements
	References

