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1. Introduction 

A pension fund is a common asset pool run by a financial intermediary on behalf of a 
company and its employees, with the goal of generating stable growth over the long 
term and providing pensions for the employees when they retire [1]. Pension funds 
control relatively large amounts of capital and represent the largest institutional 
investors in many countries. At times, a pension fund provides a fixed, preset benefit 
for employees upon retirement, helping workers plan their future spending. In other 
cases, the pension received in the future by each participant depends on the actual 
return of the fund investments (fixed income, stocks, real estate, etc.). Regardless of the 
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rules that specify the value of each pension, there is a significant dependence on several 
actuarial factors for the total amount of yearly liabilities of any pension fund. Once 
combined with the stochastic nature of the returns coming from the financial assets of 
the pension fund, this feature makes it necessary to have tools supporting decisions of 
pension fund management about assets allocation [2]. For any pension fund, the bare- 
minimum target of Asset and Liability Management (ALM) is to generate a stable cash 
flux in order to guarantee pension payments for a very long planning horizon [3]. To 
that purpose, ALM requires a risk analysis that, taking into account assets, liabilities 
and all the other features of any specific fund, can help the board of a pension fund in 
finding the most suitable investment policy [4] [5]. Within this context, we present a 
solution we developed for the pension fund of the personnel of a major Italian bank. 
The solution includes a software procedure that provides a close-to-optimal assets 
allocation policy with respect to a large set of future financial scenarios taking into 
account also the effects of different actuarial scenarios. The underlying model includes 
all the details of the specific pension fund so its results can be easily interpreted and 
used in practice. However, our approach to the optimization may be applied to a wide 
range of real world situations under the only condition that the number of asset classes 
among which the financial assets may be divided into is limited, or at least can be 
approximated, to few units. Moreover, to obtain a good approximation of the actual 
optimal solution, the objective function should have a smooth dependence on the 
portfolio composition so that tiny changes should never produce dramatic changes in 
the value of the objective function, although linearity is not necessary. The paper is 
organized as follows: Section 2 presents the model for the management of the pension 
fund; Section 3 describes the structure of the software solution we have developed for 
simulating the model; Section 4 proposes our approach to the optimization of the 
financial assets allocation based on a suitable combination of heuristics and parallel 
processing techniques; Section 5 concludes the work providing future directions of 
activity. 

2. The Model  

In this Section, we present the mathematical formulation of the asset and liability 
management problem for the pension fund. The model includes two sets of variables: 
the first one related to the actuarial component of the problem and the second one 
related to the financial component. First we describe, via coarse-grained variables, the 
actuarial aspects of the model, then we carefully depict the financial ones. 

The output of the optimization problem is the allocation of the financial components 
of the fund assets that optimizes the expected utility function verifying a set of 
constraints, with respect to a wide set of different scenarios for the evolution of the 
stochastic variables.  

2.1. Notation 

Let T denote the optimization period, { }1, , fT t t= � . For each t T∈  we define, for 
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the actuarial variables: 
• ( )a t : total amount of pension contributions paid by members into the Fund at 

time t;  
• ( )p t : total amount of pensions received by retirees at time t.  
The variables ( )a t  and ( )p t  represent the expected average evolution of the 

actuarial model that must consider all the possible events that may happen to each 
single participant in the fund. It is important to highlight that ( )p t , for t T∈ , de- 
pends on the decisions made by the Fund management, since the pensions vary 
according to the financial performance of the fund, as well as on actuarial events like 
death, invalidity, etc. of the participants [2]. As a consequence, it is not possible to 
separate the evolution of the actuarial component from the evolution of the financial 
component. 

The assets of the Fund are invested mainly in three areas: rented real-estate 
properties, Italian government securities and a combination of financial instruments 
including stocks, corporate bonds, etc. 

Currently the management of the real-estate properties and the trade of government 
securities are carried out following pre-defined (and fixed) internal policies. In the 
model, for the sake of simplicity, the disposal of the investment property and the trade 
of government securities are considered as input data used only for accounting reasons 
with no impact on the optimization process. 

Let us define the following quantities:   
• ( )Rc t : capital invested in rented properties at time t T∈ ;  
• ( )Rr t : revaluation rate of capital invested in rented properties at time t T∈ ;  
• ( )Ry t : yearly income received as rent at time t T∈ ;  

• ( )Bc t : capital invested in government securities at time t T∈ ;  
• ( )By t : coupons received from government securities at time t T∈ .  
The allocation among other financial instruments is the only way to influence the 

yearly performance of the Fund. Hence, defining K as the set of financial assets whose 
allocation can be modified, we need to consider, for k K∈ , the following quantities:   

• ( ), kk K n t∈ : number of shares in the k-th instrument at time t T∈ ;  

• ( ), kk K q t∈ : unit value of shares in the k-th instrument at time t T∈ .  

2.2. Variable Evolutions 

Every year, the Fund collects contributions from active workers and pays pensions to 
retirees. We define the actuarial deficit or surplus as:  

( ) ( ) ( ).t a t p tδ = −                           (1) 

Furthermore, the Fund receives rent and coupons from real estate properties and 
government bonds respectively. Hence, the overall deficit or surplus is given by:  

( ) ( ) ( ) ( ).R Bt t y t y tδ∆ = + +                       (2) 

For the sake of simplicity, let us define the total value of financial instruments at time 
t as:  
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( ) ( ) ( ) ,k k
k K

Q t n t q t
∈

= ∑                           (3) 

and the yearly gain from them as:  

( ) ( ) ( )1 .X t Q t Q t= − −                           (4) 

The nominal rate of return representing the Fund performance is defined as:  

( ) ( )
( ) ( )

,
1 0.5

t
R t

A t tδ
Π

=
− +

                        (5) 

where  

( ) ( ) ( ) ( )= + +R BA t c t c t Q t                         (6) 

is the total fund capital at time t and  

( ) ( ) ( ) ( ) ( ) ( )1R R R Bt c t r t y t y t X tΠ = − + + +                (7) 

is the total gain from that capital. 
Basically, the rate of return defined by (5) measures the ability of the Fund to yield a 

return provided the capital at the previous time while still considering the actuarial 
deficit. 

According to the Fund’s statute, the yearly contribution that each active worker pays 
into the Fund is a fraction of her/his salary which in turn evolves according to some 
corporate policy considering her/his category (director, manager, employee) and 
her/his length of service. 

Particular attention must be paid to pensions that members receive from the Fund, 
since, according to the Fund rules, those strongly depend on the rate of return at the 
end of the year preceding the time the pension is received. Based on the contributions a 
member paid into the Fund before retiring, her/his base pension is computed: each year 
the retiree receives a total pension, ( ) ( ) bp t I t p= , that is her/his base pension, bp , 
times a given coefficient ( )I t  which, in turn, is a function of the rate of return (5):  

( ) ( ) ( )1 1 ,I t R t C I t= + − −                        (8) 

where C is a constant value defined in the Fund’s statute. 
Further details of the rules according to which the contributions and pensions are 

computed every year are not very interesting for the purposes of the present work; 
nevertheless, it is important to remind once more that ( )p t , for t T∈ , depends on 
the decisions the Fund makes as well as on actuarial events like death, invalidity, etc. of 
the participants: hence, the actuarial component of the model is strongly coupled with 
the financial one.  

2.3. Allocation Strategy  

Every year, the portfolio composition over K, the set of financial instruments, can be 
modified by buying/selling shares in order to fulfill the balance constraint (see next 
Section) or for market reasons (e.g., to take advantage of changed market conditions). 

Let us define the percentage of allocation of the instrument k K∈  as:  



M. Bernaschi et al. 
 

391 

( ) ( ) ( )
( )

.k k
k

n t q t
x t

Q t
=                           (9) 

Variables ( )kx t  are the control variables, since at each decision step, a different 
proportion of ( )kx t  can be imposed, modifying the portfolio composition, albeit 
under the condition that a set of constraints is fulfilled.  

2.4. Balance Constraint  

The most important constraint the Fund has to fulfill is the balance constraint: the 
yearly actuarial deficit has to be covered by using the total gain from fund’s investments 
or, if this is not possible, and under particular conditions, by selling shares of the 
financial assets. 

The balance constraint can be written as:  

( ) ( ) 0.t tδ +Π ≥                           (10) 

In order to get some insight into the previous equation we rewrite it as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1R R R B k k k k
k K k K

t c t r t y t y t n t q t n t q tδ
∈ ∈

+ − + + + = − −∑ ∑  

where we use Equations (3), (4) and (7) and the identity sign. If the quantity 
( ) ( ) ( ) ( ) ( )1R R R Bt c t r t y t y tδ + − + +  is less than zero, then enough shares must be sold 

in order to balance out the deficit. 
Other important constraints regard the limitations on the changes that can be 

introduced in the portfolio composition in a single decision time. These constraints will 
be presented in detail in Section 4. Basically they prevent from selling (or buying) a 
number of shares that exceeds a predefined percentage.  

2.5. Objective Function  

Given the rate of return in Equation (5), the Fund management defined the following 
objective function:  

( ) ( ) ( ) ( )
3,10,30

1 0.5 ,γ ρ δ
=

= − + −Π  ∑ k k
k

CF t A k k k             (11) 

where, for 3,10,30k = : 
• [ ]0,1kγ ∈  represents the different weight that the different maturities have in the 

objective function, with 3,10,30 1kk γ
=

=∑ ;  
• kρ  are arbitrary constants representing targets on the return.  
In words, once decided the return targets kρ  at different periods, the management 

of the Fund has to select the best policy in order to achieve the expected return target at 
that given period. 

3. Software Architecture 

The model presented in Section 2 has been implemented in a software following a 
modular approach (see Figure 1) which makes it easier to evaluate different simulators 
for the evolution of the financial assets. 
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Figure 1. The software organization of the solution for Pension Fund ALM. Blocks in dark green 
represent input data; blocks in light green are computational engines; blocks in red are output 
data. The block in blue is the Graphical User Interface.                                     
 

Each module is responsible for a particular part of the model. In this way, it becomes 
easier also to unit-test the individual components. 

Actuarial engine: The total amount of contributions members pay into the Fund 
and the pensions received by retirees each year depend on particular events that may 
happen to members (death, invalidity, etc.) due to their characteristics and some given 
probabilities (reported in actuarial tables), and on the rules defined in the Fund’s 
statute. In particular, a very important feature is that the pensions depend on the return 
of the Fund. 

The actuarial engine is the software module dealing with statistical events and rules 
imposed by the Fund’s statute. 

The module communicates with the security manager by means of a simple textual 
protocol similar to HTTP: this protocol allows the actuarial engine to query the security 
manager for the rate of return and send the total amount of pensions paid to retirees 
and contributions received by members back to the former. 

The ordered sequence of statistical events happening to members and retirees can be 
considered an actuarial scenario, and it is what we call a repetition. 

Scenarios generator: The goal of the Fund management is to find the best strategy 
for the allocation of the capital among the available financial instruments over the 
simulation period. 

In order to perform a cost-risk analysis that supports investments decisions, we need 
to test possible investment strategies on a set of scenarios, each representing the 
dynamics of ( )kq t , for any k K∈  and t T∈ . 
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The scenario generator is in charge for producing such evolution, according to any of 
several possible statistical/probabilistic models. It is important to realize that the 
architecture of our solution does not depend on a specific model of assets’ evolution. 
The model can be either a simple VAR with no specification of the financial meaning of 
each component or a classic model that describes the evolution of few basic financial/ 
economic variables (e.g., risk-free interest rate, inflation, output gap, risk-premium, 
etc.) and then determines the value of the assets according to their relation with those 
fundamental variables. 

Actualization server: This is a simple generator of the term structure used for the 
actualization of cash flows for the exposed funding ratio, i.e., the ratio between the 
assets of the fund, including the discounted value of the future contributions, and the 
sum of the discounted value of the future pension payments. The term structure is 
generated according to the well-known Nelson-Siegel model [6] calibrated on a time 
frame of three-five years. 

Security manager: This is the module that implements most part of the logic 
described in the present work. The security manager queries the scenario generator and 
the actualization server for data to test the chosen investment strategy on. 

For each scenario, and for each repetition on that scenario, the security manager 
computes all the variables required for the evaluation of the objective function. Such 
dataset is further processed to carry out a complete statistical analysis that is finally 
presented to the user. 

Launcher: The Investor must be confident as much as possible about her/his 
decisions, thus each strategy has to be tested on a pretty large set of scenarios (at least 
5000) and a reasonably large set of repetitions on each scenario (~20). If S is the set of 
scenarios and R is the set of repetitions, the dimension of the problem is ( )O S R⋅ . 

Given the number of participants in the Fund, the computation of many statistical 
events (depending on a large set of random numbers) all over the simulation period 
may be a very demanding process from a computational point of view. Hence it is very 
important to parallelize independent streams of computation. 

Since both the scenarios and the repetitions are based on pseudo-random numbers, it 
is easy to reproduce a certain scenario or a certain repetition provided we know the 
corresponding random number generator seed. 

The launcher is responsible for launching different instances of the previous modules 
and collect their output once they terminate. 

Chart generator: When the launcher ends, the results can finally be presented as a 
set of plots. This module parses the output files and generates various kinds of charts 
that the user can examine through the Graphical User Interface. Although the main 
purpose of the present work is not the visualization of the results, we report a sample 
output in Figure 2. 

Graphical User Interface: The purpose of this module, based on the GTK library, is 
to let the user conveniently insert data in a human readable form or through Excel files, 
run the launcher and present the tabular/graphical output. 
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Figure 2. Example of output of the model: total amount of pensions paid in a simulation 
spanning years 2013-2045. The picture shows that it is possible to print the plot, save the results 
in plain text format and export them to Excel.                                               
 

Software technologies: The software is highly portable and may run under the 
control of Linux, Mac OS X and Windows Operating Systems. The computational 
engines (i.e., the blocks in light green in Figure 1: optimizer, scenarios generators, etc.) 
are written in C and C++. Modules exchange data each other by using stream sockets. 
This makes possible to run the modules on distinct systems. Parallel processing exploits 
multi-process techniques. Due to the differences between Linux/Mac OS X and 
Windows this part is operating system dependent. We do not resort to multi-threading 
since the computation done by each task takes so much time that the overhead due to 
tasks creation (that is, regardless of the operating system, much higher than the 
overhead due to thread creation) is negligible. Moreover, a multi-task implementation 
can be ported to a distributed platform in a much easier way. 

4. The Optimization Process 

In this Section we present our approach to the optimization of the objective function of 
the model presented in Section 2. 

Given the initial composition of the investment portfolio divided into N asset classes, 
the goal is to determine, through the optimization process, the best allocation strategy 
with respect to the given objective function. With the term strategy we mean a time 
series of N-tuples, one for every year over the specified simulation period. For a given 
year, the corresponding N-tuple contains the N percentage values expressing the 
relative proportion of the N asset classes on the total investments (i.e., the control 
variables defined in (9)). 

It is apparent that the objective function has a critical role in choosing the 
optimization process. In general, nonlinear objective functions as well as nonlinear 
constraints may turn an optimization problem into a computationally intractable one.  
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Here, we propose an approach that may be used when nonlinear computationally 
intensive optimization problems are encountered. In our case, we have an objective 
function that makes it possible to exploit parallel computing architectures: the 
computations required for the evaluation of S scenarios are divided onto the C cores 
available on any modern CPU and among the CPUs of multiprocessor systems. 

We assume that the following constraints hold for the optimization process: 
•for any asset class, the relative percentage may vary only within a given asset class 

specific range;  
•for any asset class, the possible allocation change cannot exceed its specific turnover 

limit;  
•the sum of the relative percentages for all asset classes must always add up to 100%.  
We also assume that the N asset classes can be partitioned into two groups: 1G  with 

1N  asset classes and 2G  with 2N  asset classes ( 1 2N N N+ = ), where the assets in 

1G  account for the prevailing amount of the initial portfolio allocation (e.g., 2/3 of the 
total capital). In general, the portfolio can be partitioned into more than two groups: in 
this case the optimization steps (see below) can be applied in sequence to all groups. In 
other words, we introduce a hierarchy among the asset classes, assuming that the 
optimum can be approximated at the leading order by varying the composition of the 
first (most significant) 1G  group alone whereas other variations would lead to sub- 
leading corrections. For objective functions depending in a balanced way on the 
portfolio composition this assumption is fully acceptable since it is very unlikely that 
any asset class having a limited weight had a dramatic impact on the value of any 
reasonable objective function. 

The search for a quasi-constant allocation strategy is a further simplification in our 
optimization procedure. In this respect, we consider constant an allocation strategy 
where the relative percentages of all asset classes remain constant throughout the whole 
simulation period. A quasi-constant allocation strategy is a constant strategy that may 
be modified only in a predefined set of revision years selected by the Investor, i.e., for 
t T∈ . Within this framework, the optimization process proceeds as follows: 

Step 1: Exhaustive search on 1G . The above mentioned constraints define a set 1S  
of 1N -tuples: we search the best constant allocation strategy for the asset classes in 1G  
by evaluating the objective function for all possible combinations in 1S  while keeping 
the allocation in 2G  equal to the initial one. Once the best constant strategy is found, 
the allocation of the assets in 1G  is linearly transformed into the best one, starting 
from the initial year using the minimum number of years compliant with turnover 
limits1. 

Step 2: Exhaustive search on 2G . Given the set 2S  of 2N -tuples as defined by the 
above mentioned constraints, we search the best constant allocation strategy for the 
assets in 2G  by evaluating the objective function for all possible combinations in 2S  
while keeping the allocation in 1G  equal to that computed in Step 1. Once the best 

 

 

1E.g., if the optimal percentage for an asset class is 27%, the current percentage is 24% and the turnover limit 
is 1.5%, then two years are required to transform the current percentage in the optimal one. 
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constant strategy is found, the combination of the asset classes in 2G  is linearly 
transformed into the best one following the same procedure described in Step 1. 

The partitioning into two sets of asset classes affords a remarkable reduction in 
computing requirements. If im  is the number of possible percentages for the thi  
asset, performing the exhaustive search on N asset classes requires the computation of 

1 2 Nm m m× × ×�  evaluations of the objective function whereas, when the assets are 
partitioned into two groups, we need to compute only 

1 1 1 21 1N N N Nm m m m+ +× × + × ×� �  
evaluations. For instance, if we have 6N =  asset classes partitioned into two groups 
( 1 2 3N N= = ) and 10im =  for all asset classes, we have to evaluate 1000 1000 2000+ =  
times the objective function instead of 1,000,000 times (the work is reduced to 0.2% of 
the original one). Furthermore, if we define  

1 11Sum 0 0= + +�G Nc c  and 
2 1 11Sum 0 0 100 Sum+= + + = −�G N N Gc c  

where 0ic  ( 1, ,i N= � ) are the initial percentages of the asset classes, the constraints 
imply that (within a group) the sum of asset classes percentages is constant and equal to 
Sum

jG  ( 1,2j = ). This constraint further simplifies the optimization problem since 
only 1jN −  asset classes percentages vary independently within jG  whereas the last 

jN  is given by the difference with respect to Sum
jG .  

Step 3: Optimality check on revision years for group 1G . For any year in which a 
revision of the allocation is possible (or strictly required), the objective function is 
evaluated on a set of new strategies obtained from the current one by varying (locally, 
within the turnover limits) the allocation from the current revision year up to the end 
of the simulation period. If a better allocation strategy is found, that becomes the new 
quasi-constant allocation strategy.  

Step 4: Optimality check on revision years for group 2G . This is analogous to what 
is done in Step 3 for the asset classes in 1G . 

By using the GUI shown in Figure 3 and Figure 4 the user defines the constraints of 
the optimization process, the number of scenarios and the initial composition of the 
portfolio. The optimization process is carried out by running a subset of the scenarios 
evaluations on each of the available cores. When all scenarios have been evaluated, the 
average value of the objective function is determined and compared with the current 
reference (i.e., best) value. If the new value is better (i.e., lower for the objective 
function defined by Equation (11)), it replaces the reference value and the asset 
allocation that produced it becomes the new reference asset allocation. Then a new 
asset allocation is selected according to the rules above explained and the procedure 
starts to evaluate its performance with the same set of scenarios. Note that the 
parallelization is carried out so that everything but the subset of scenarios is the same 
for all cores running the optimization procedure. Moreover there is no need to 
exchange data among the different instances during the evaluation and in the end only 
the value of the objective function must be communicated. As a matter of fact, our 
performance tests with increasing number of cores (up to 48) and a fixed number of 
scenarios and repetitions (5000 and 10, respectively) showed a close-to-ideal speedup 
(i.e., linear with respect to the number of cores). To further speedup the optimization  
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Figure 3. The GUI by which the user can set up the optimization procedure. In particular it is 
possible to define lower and upper bounds for the percentages of each asset classes (in this case 
there are seven asset classes) and the turnover limit for each decision time.                       
 

 
Figure 4. The GUI by which the user can set up the initial number of shares for each asset class 
and the initial Net Asset Value (NAV) of the single share. Future NAVs for each asset class are 
determined by the scenarios generator.                                                  
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procedure, during the evaluation of the scenarios, only the quantities required for the 
computation of the objective function are saved. When the optimization procedure 
completes, the user can load the resulting asset allocation generating all other quantities 
of interest as explained in Section 3. 

Figure 5 shows what we call search surface for a typical execution of our optimiza- 
tion procedure applied to the model described in Section 2. There are three asset classes 
in the first group 1G : 2c  (government securities), 3c  (high yield corporate bonds) 
and 5c  (stocks). The initial (i.e., the pre-existing) allocation (see also Figure 3) is 

2 24%c = , 3 18.3%c =  and 5  23%c =  of the total amount of financial assets. The 
optimization procedure with default constraints on lower (10%) and upper (47%) 
bounds and turnover limit requires a total of 90 iterations (52 for Steps 1 - 2 and 38 for 
Steps 3 - 4) using 5000 scenarios and 20 repetitions for the actuarial factors. Total 
execution time on a server equipped with 4 Intel Xeon E5645 running at 2.4 GHz 
providing a total of 24 cores and 96 GB of RAM is slightly less than 12 hours (we do not 
use hyper-threading). The final (best) allocation for the three asset classes is: 2 25%c = , 

3 30%=c , 5 11%c = . 

5. Summary and Conclusions 

We presented an alternative to the widely used techniques of stochastic programming  
 

 
Figure 5. Search surface for asset classes 2c  and 3c  (part of 1G , the first group of asset classes). 
The x axis shows the percentage of asset class 2c  (Governments Securities) whereas the y axis 
shows the percentage of asset class 3c  (High Yield Corporate Bonds). The percentage of 5c , the 
last asset class in the 1G  group (stocks) is computed as difference between the total percentage 
of group 1G , that is assumed to be constant, and the sum of the percentages of 2c  and 3c . The 
z axis shows the value of the cost (or objective) function defined by Equation (11). For this 
objective function, lower is better, and the best asset allocation for the 1G  group found by the 
optimization procedure is 2 25%c = , 3 30%c = , 5 11%c = , (the total percentage of group 1G  
is ~66%).                                                                          
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[7] for the optimization of the financial assets allocation for a pension fund. The asset 
classes are divided in groups and then the exploration of the space of possible solutions 
is carried out in two phases: a first exhaustive search of the optimal initial allocation 
and a second local (around the initial optimal allocation) search for possible adjust- 
ments in later (pre-set) times. There are several advantages following this approach: the 
main being the possibility of using large sets of different scenarios for the evolution of 
the Net Asset Value of the asset classes without imposing any a priori structure like 
scenario-trees. This fact has a significant relevance because with six asset classes the size 
of a decision tree becomes quickly too large. If we indicate with T the number of 
decision stages and with c the number of possible states for the NAV of any asset2, the 
number of branches increases as ( )6 T

c  so that even 3T =  becomes unfeasible. The 
second advantage is its flexibility that makes it possible to take into account all the 
details of the real-world problem under study. For instance, in the case of the asset 
allocation for the pension fund, the problem is not linear: there is a relation among the 
return of the fund, the pensions received by retirees and the total value of financial 
assets since, in case of balance problems, a suitable number of shares of the financial 
assets must be sold according to the Fund’s statute. In situations like this, most 
portfolio selection models are simplified just to make them solvable by using standard 
techniques requiring limited computing resources (e.g., linear programming). How- 
ever, the solution obtained with this simplification may be very far from the optimal 
one. With our approach, there is no limitation in the description of the problem 
imposed just for the sake of simplicity. The only assumption is that the objective 
function does not have too many extrema (minima or maxima depending on the 
formulation) very far from each other. The idea of using techniques of exhaustive 
search in combinatorial optimization by exploiting the potential of parallel processing 
is not brand new [8]. However, to the best of our knowledge, it has never been applied 
to asset allocation problems. Techniques of exhaustive search may be applied also to 
optimization problems in engineering design [9] [10], but in those cases, in general, 
there is no need to update the solution at different simulation times. Our local search 
around the optimal initial allocation makes that problem tractable under pretty 
reasonable assumptions. We expect to extend the present work along several possible 
directions. First of all, we are going to apply the same approach to similar problems of 
asset allocation and to extend the software architecture to support distributed evalua- 
tions of scenarios. We also expect to test alternative approaches like randomized search 
[11] to improve the performance of the periodic refinement of the solution. Finally, we 
want to assess whether a double-level parallelism (scenarios evaluation and multiple 
concurrent searches) may provide any advantage. 
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