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Abstract 
 
In this paper the behaviour of various popular risk portfolios measures used for portfolio construction are 
compared using data from the recent financial crisis. Results are revealing the way optimal portfolios should 
be constructed. Despite the conventional wisdom, short selling gives only a marginal improvement to portfo-
lio performance during the crisis period. Optimal semivariance portfolio produces better results than the 
portfolio constructed with the more advanced expected short fall method. Additional historical information 
has added to performance up to a point and long dated history seems not to be commensurate with additional 
benefits. Rebalancing frequency seems to have an optimal point that favours neither overtrading nor the 
conventional buy and hold strategy. 
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1. Introduction 

The financial market turmoil, which emerged in late 
2007, has led to the most severe financial crisis since the 
Great Depression. The bursting of the housing bubble 
forced banks to write off several hundred billion dollars 
in bad loans caused by mortgage delinquencies. At the 
same time, the stock market capitalization of the major 
banks declined by more than twice as much. While the 
overall mortgage losses were large on an absolute scale, 
they were still relatively modest compared to the $8 tril-
lion of US stock market wealth losses between Oc- tober 
2007 when the stock market had reached an all- time 
high and October 2008. Stulz [1] mentions the need for 
taking into account events of small probability that can 
lead to such big losses.  

This highlights once again the importance of con-
structing minimum risk portfolios with no implicit nor-
mality assumptions on returns. This work attempts to 
search for a methodology to construct optimal minimum 
risk portfolios by capitalizing on different risk measures. 
Various minimum risk portfolio selection measures, us-
ing data from the recent financial crisis, are compared. 
These measures are used ex-ante, and optimal portfolios 

are constructed. In this way, the preferences of a risk- 
avert investor who wants to choose portfolios ex-ante 
based on different minimum risk measures are reflected.  

The risk measures optimized are variance (variance 
minimization-VM), the Expected Shortfall (ES) and the 
semivariance method (SEMI). Results are compared to 
the results produced by the naive method (NM) and by 
using various benchmark indices. Although the variance 
measure ([2]) is criticized for its simplicity since it uses 
only the first two moments for portfolio selection and 
implicitly assumes normality of portfolio returns, it re- 
mains a well-accepted measure at least for comparison 
reasons. Modern VAR or ES can be either as a constraint 
embedded on broader stochastic portfolio maximization 
problem ([3,4]) or as an objective function to be mini-
mized ([3,5-7]).  

Extensions when the exit time is uncertain can be 
found in [8]. The lack of subadditivity of the VAR meas- 
ure ([9-11]) makes the ES measure a better candidate for 
optimization since it is consistent to risk management 
objectives for capital allocation, especially within the 
scope of the Basel II regulation framework. VAR/ES 
methods has also been extensively used for derivatives 
portfolio ([12,13]). Gilli and Schummann [14] investi-
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gate the empirical performance of alternative selection 
criteria in portfolio optimization. Although the results 
presented there have a great sensitivity to small data 
perturbations, alternative selection criteria such as the 
semivariance measure seems to produce superior results 
to the variance measure. This is the reason semivariance 
minimization is included in the portfolio selection crite-
ria. The naive method, although has a questionable effi-
ciency ([15]), is used for reasons of comparison since its 
diversification is guaranteed. This paper is organized as 
follows: In Section 2 the optimization methodology is 
presented. Section 3 includes the data used and the soft-
ware employed. Our main results can be found in Section 
4. Conclusions and extensions can be found in Section 5. 

2. Optimization Methodology  

We employ three minimization programs: the variance 
minimization, the expected short fall minimization and 
the semivariance minimization. The objective is to find 
the optimal portfolios that minimize the programs above 
and to actually test them during the recent crisis. We use 
the following notation: 

N: is the number of portfolio assets. 

1T , 2T : are the first and the last day respectively in the 
period under examination. 

T : is the number of trading days in the periods [ 1T , 

2T ]. 
t : is the first day of portfolio rebalancing. 
H: is the number of trading days in the historical win-

dows used for the calculation of portfolio variance, 
semivariance or expected shortfall, when needed. It must 
hold 1t T H  .  

F : is the number of days until rebalancing. Rebal-
ancing takes place at dates t jF , 0, , tj L  , where 

tL  is the integer part of the ratio 2T t

F


. 

 1 2, , ,
Tj j j J

N     , 0, , tj L   represent vector 
of the weights in the N assets at the j rebalancing period. 

In case of short sale restrictions it holds 0 1j
i  . 

Moreover, 1 1N j
i i  . Let χ be the set of all possible 

admissible portfolio vectors. 
Let  1 2, , ,

Ti i i
i NP P P P   be the asset price vector at 

the i date. We have the usual budget constraint T
t tP   

u  where 0u  . The minimum variance program is the 
usual convex minimization program that is performed on 
the rebalancing periods: 

min
J

TJ JV


 
 

 

The variance covariance matrix V is calculated using 
daily data from the historical window prior to the rebal-
ancing date. 

Following Uryasev et al. (2002), for the VAR and ex-
pected shortfall program with probability  0,1   we 
first define the function ( )g   for a portfolio vector 
   

       
1

1
( ) ,

1

H

k
k

g f y a
H     







       

where     is the β-quantile of the portfolio loss 
distribution and  ,f y  is the negative daily portfolio 
return with portfolio vector x and portfolio daily re-
turns  1, ,

T

Ny y y  . So we have  ,f y y    
and   ( ) min ,a a R P       where P(χ) is the 
probability of  ,f y  not exceeding the α threshold. 
The daily portfolio returns are calculated from the port-
folio vector prices as a log returns. 

The VAR and expected shortfall program is 

 min
j

jg





 

where the optimization is performed on the rebalancing 
periods 0, , tj L  . This setting of minimizing  jg   
is a problem of convex programming as  jg   is con-
vex as a function of x and VAR and therefore differenti-
able in these variables. If ˆ j  is the optimal portfolio 
vector at the rebalancing date j then the VAR is  ˆ ja   
and the expected shortfall is  ˆ jg  . 

Finally the semivariance optimization program is ob-
tained similarly to the minimum variance optimization 
but now instead of variance of returns, the partial mo-
ment of semivariance ([16]) is used. It is clear from the 
above that on each rebalancing date three optimization 
programs are performed and the optimal VM portfolio, 
the minimum VAR/ES portfolio and the minimum SEMI 
portfolio are obtained. 

3. Data and Software  

Four different data sets with only risky assets were con-
sidered and time series of closing prices spanning from 
1/11/1997 to 3/3/2009 were used. The credit crunch pe-
riod was from 1/11/2007 to 3/3/2009. The data sets were 
composed of big capitalization stocks, listed in the Greek, 
European and US market and two zero Greek govern-
ment coupon bonds with maturities of two and ten years. 
Greek market has been chosen, because it is within the 
euro area but still has emerging markets characteristics 
like increased volatility, increased bid-offer spreads and 
lack of depth compared to the core European markets 
during periods of crises. Also the Greek bond market is 
very suitable for this analysis because on the one hand it 
is very liquid and is quoted on a spread to the German 
bond market and on the other hand during the recent cri-
sis has been more damaged compared to other European 
or American markets. Since in the analysis only risky 
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assets are considered, Greek bonds used present a risky 
class albeit of different nature from stocks. The bond 
maturities used were capturing the most part of the yield 
curve, and zero coupon were chosen so that the rein-
vestment coupon problem to be avoided. 

Stocks with sufficient data history, which cover at 
minimum the historical window, were grouped by their 
national market and formed different data sets. The data 
sets are the following: 1) 24 different time series of 
stocks included in FTSE20 and FTSE40 Greek indexes; 
2) 24 time series of stocks included in Dax30 Index; 3) 
29 time series of stocks included in Dow 30 index and 4) 
time series of ASE, Dax 30, Dow 30 indexes plus time 
series of 10 years and 2 years Greek zero coupon bonds. 

The formation of the objective function was based on 
historical distribution and risk measures instead of risk 
reward ratios (i.e. sharp ratios) were optimized. Keeping 
the number of assumption to the minimum, rebalancing 
frequencies, historical windows, risk measures, data 
groups and short sales indicators were all variables to be 
optimized during the credit crunch period. 

During the credit crunch period rolling- window back-
-tests with a historical window of length H, and a holding 
period of length F, were conducted. Overall, the time 
evolution of 1440 different portfolios by using 4 histori-
cal windows, 9 rebalancing periods, 5 risk measures, 4 
data groups and 2 short sales on/off indicators were 
tested. 

Each one of the different historical windows consid-
ered was of length 1 year, 2 years, 5 years and 10 years 
and each one of the holding periods was of length 1 day, 
1 week, 2 weeks, 1 month, 2 months, 3 months, 4 months, 
5 months and 8 months. 

Thus, at point in time 1t , on data from 1t H  to 

1 1t  , optimization is performed with the resulting port-
folio to be held until 2 1t t F  . At this point, a new 
optimal portfolio is computed, using data from 2t H  
until 2 1t  , and the existing portfolio is rebalanced. This 
new portfolio is then held until 3 2t t F   and so on 
and so forth until the end of the period. So during the 
walk forward through the data, wealth trajectories are 
computed optimizing each one of the above variables 
considered and holding the others fixed. In order to per-
form the wealth trajectories through time, the initial port-
folio was set to contain only cash in amount of 100,000 
EUR. No limits were imposed on the individual positions 

i . The optimal values for each of the above variables, 
formed the selection criteria of the optimal portfolio to 
be tested against indexing and equal weight strategies. 

The software used for the computations was Matlab 
R2007b. Optimizations were performed using sequential 
quadratic programming methods (SQP), which transform 
the constrained optimization problem into an easier sub-
problem that can then be solved and used as the basis of 

an iterative process. Fmincon function capitalizes on this 
method by solving the constrained problem using a se-
quence of parameterized quadratic programming uncon-
strained optimizations (more details about fmincon and 
constraint non linear optimization exist in http://www. 
mathworks.com). 

4. Results 

4.1. Risk Measures Performance 

Interesting results were drawn concerning the choice of 
the optimal risk measure, the optimal rebalancing period, 
the optimal historical window and the usage or not of 
short sales. The main result from the comparison of the 
risk measures was that portfolios constructed by mini-
mizing partial and conditional moments like SEMI and 
ES performed better than those constructed by simply 
minimizing variance. Furthermore, when considered con-
fidence levels for the ES methodology, the optimal level 
was the 95% and not 90% or 99% confidence levels. 
Table 1 summarizes the findings where for each risk 
measure the average portfolio value and the average an-
nual percentage change was calculated. 

Table 1 shows that for the different risk measures the 
portfolios performances are very close to each other with 
that of SEMI being the optimal.  

These findings suggest that during high volatility pe-
riods, like the credit crunch crisis, the optimal risk meas-
ure selection does not play such a crucial role. Next 
finding was relative to the rebalancing frequency of the 
portfolios. If a portfolio is never rebalanced, it will 
gradually drift from its target asset allocation to higher- 
return, higher-risk assets. Compared to the target alloca-
tion, portfolio’s expected return increases, as does its 
vulnerability to deviations from the return of the target 
asset allocation. Therefore there is a trade-off between 
risk of return deviation and expected return deviation. 
This trade off accounts for the cost of rebalancing, which 
in this study is set to 30 basis points for buy transactions 
and 70 basis points for sell transactions. Optimizations 
with no transaction costs were run and it was found that 
transaction costs did not significantly influence the re-  

Table 1. Risk measures. 

Risk Measure Portfolio Value Change 

Variance 71.32% –22.59% 

ES99% 71.89% –22.12% 

ES95% 72.55% –21.58% 

ES90% 72.11% –21.94% 

Semivariance 74.45% –20.03% 
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sults. Nevertheless as the portfolio was rebalanced more 
frequently than usual (i.e. daily rebalancing), costs be-
came a bigger drag on performance.  

Table 2 summarizes the findings, where for each re-
balancing period the average portfolio value and the av-
erage annual percentage change were calculated. 

Table 2 shows that optimal rebalancing period is every 
three months. Long rebalancing period were expected, 
given the fact that the data set was coming from a 
downward-trending market and therefore exhibited high 
correlation. High correlated assets tend to move together 
and eliminate the need for frequent rebalancing. Pliska 
and Suzok [17] mention correlation, volatility and ex-
pected return as the asset class characteristics that influ-
ence the rebalancing strategy. Further studies also sug-
gest that market environment also plays a role. In trend-
ing markets rebalancing frequency should be decreased 
as opposed to mean reverting markets where portfolio 
rebalancing should be applied more often. 

A third finding was relative to the use of the optimal 
historical window H. Using the empirical distribution to 
derive optimal portfolios means that every set of histori-
cal P/Ls forms a different set of scenarios. A large set of 
scenarios with a long sample period produced distribu-
tions that better captured the reality including both high 
and low volatility periods. On the other hand newer in-
formation in a sample is more informative than older one 
and the longer the sample period is, the more periods 
over which results distorted by past events are unlikely to 
recur. Therefore there is a tradeoff between a large set of 
scenarios and newer more relative information which 
better capture the current situation. This tradeoff is ap-
parent in the findings given the fact that by using the 
intermediate five year period the best portfolio perform-
ances were accomplished. Table 3 summarizes the find-
ings where for each historical window the average per-
centage portfolio value and the average annual percent-  

Table 2. Rebalancing frequency. 

Rebalancing Period Portfolio Value Change 
1 day 52.33% –100% 

1 week 72.20% –22.96% 
2 weeks 74.72% –20.49% 
1 month 76.12% –19.20% 
2 months 75,46% –19.47% 
3 months 76.53% –18.74% 
4 months 75.41% –19.74% 
5 months 75.37% –19.48% 
8 months 70.58% –23.54% 

Table 3. Historical window. 

Historical Window Portfolio Value Change 
1 year 73.66% –21.31% 
2 years 73.58% –21.35% 
5 years 73.74% –20.82% 
10 years 68.87% –24.94% 

age change was calculated. 
As for the usage or not of short sales, it was found out 

that by using short sales there was a marginal improve-
ment in the portfolio’s performances. Nevertheless the 
volatility of the wealth trajectories of portfolios con-
structed with short sales was a lot bigger than the rest and 
in some cases these portfolios even resulted losing all 
their initial value. That’s short sales were excluded from 
the selection criteria that formed the optimal portfolio. 
Table 4 summarizes the findings. 
 
4.2. Risk Measures and Benchmarks 
 
Given the above results, the optimal minimum risk port-
folio was constructed without using short sales, with re-
balancing frequency of every three months and by using 
five years of data to minimize the semivariance risk 
measure. The wealth trajectories of this portfolio are 
tested versus the wealth trajectories of benchmarks 
formed from the four different data sets.  

The benchmarks used for comparison were for the first 
3 data sets (Greek equity market, European equity mar-
ket and US equity market) the relevant equity market 
indexes and for all 4 data sets including the global data 
set, which is not directly comparable with a specific 
stock market index, the naïve equal weight strategy ([5]). 
The results detailing the wealth trajectories of the opti-
mal portfolio versus the benchmarks for each data set are 
presented in Tables 5, 6, 7 and 8.  

From these tables (and the corresponding graphs 1 
through 4) it is shown that the wealth trajectories formed 
by the optimal portfolio clearly outperform the wealth 
trajectories formed by the benchmarks. 

Exception to this was the Greek market, where the 
performances of the optimal portfolio and the perform-
ance of the benchmark index were equal. 
 
5. Conclusions 
 
In this paper ex-ante minimum risk measures in various 

Table 4. Short sales. 

Short Sales Portfolio Value Change 
No 73.66% –21.77% 
Yes 73.58% –21.53% 

Table 5. Greek market. 

Rebalancing 
Period 

Optimal 
Portfolio 

Equal Weight General index

1 100,000 100,000 100,000 
2 85064.78 76319.97 84489.76 
3 81539.96 76265.07 79194.03 
4 64165.71 61659.91 64529.23 
5 38767.88 28842.23 38984.12 
6 31639.11 25055.39 33293.54 
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Table 6. Europe market. 

Rebalancing 
Period 

Optimal Portfolio Equal Weight 30DAX  

1 100000 100000 100000 
2 92153.45 88792.59 86179.51 
3 92346.11 91484.52 87781.68 
4 87570.46 84704.49 82019.79 
5 87959.28 66777.33 60336 
6 80073.42 67781.57 58496.55 

Table 7. US market. 

Rebalancing 
Period 

Optimal Portfolio Equal Weight 30DOW  

1 100000 100000 100000 
2 92553.60 90036.49 90214.66 
3 97774.04 94161.37 92411.87 
4 99179.93 86102.95 82881.67 
5 85140.55 67320.99 63047.37 
6 81532.31 65328.67 59966.56 

Table 8. Global. 

Rebalancing Period Optimal Portfolio Equal Weight 

1 100000 100000 
2 99644.36 92279.67 
3 99759.51 92201.97 
4 99523.01 85227.92 
5 100847.08 68399.73 
6 102348.14 65903.66 

 

Figure 1. Greek market. 

 

Figure 2. German market. 

 

Figure 3. US market. 

 

Figure 4. Global market. 

markets during the recent credit crunch crisis were tested. 
Tests were also performed as far as the optimal rebal-
ancing portfolio period and the optimal historical win-
dow are concerned. After the optimal portfolios having 
being produced, they were compared to the performance 
of benchmarks indices in each market. The results ob-
tained are more or less the same for all markets. The op-
timal measure is the semivariance, the optimal rebalanc-
ing portfolio rebalancing period is three months and the 
optimal historical period is five years. The performance 
of the optimal portfolio clearly outperformed the bench-
marks. Inclusion of short sales did not add to the per-
formance even in a crisis period and the inclusion of 
transaction costs seemed not to influence the perform-
ance of the optimal portfolios. Future directions can in-
clude derivatives portfolios and the study of risk meas-
ures under different volatility regimes (low volatility 
periods with upward trending or mean-reverting markets). 
In this way more effective tests could be performed and 
further insight might be gained concerning correlation 
among asset classes when structuring the optimal portfo-
lios. 
 
6. References 
 
[1] R. M. Stulz, “Risk Management and Derivatives,” 1st 

Edition, Thomson South Western, Florence, 2006. 

[2] H. M. Markowitz, “Portfolio Selection,” Journal of Fi-
nance, Vol. 14, No. 1, 1952, pp. 77-91.  
HUdoi:10.2307/2975974 U 

[3] A. A. Gaivoronski and G. Pflung, “Finding Optimal 
Portfolios with Constraints on Value at Risk,” Proceed-
ings of the 3rd Stockholm Seminar in Risk Behaviour and 
Risk Management, Stockholm, 14-16 June 1999. 

[4] R. Gandy, “Portfolio Optimization with Risk Constraints,” 
PhD Thesis, Universitat Ulm, Ulm, 2005. 

[5] R. T. Rockafellar and S. Uryasev, “Optimization of Con-
ditional Value at-Risk,” The Journal of Risk, Vol. 2, No. 
3, 2000, pp. 21-41. 

[6] R. T. Rockafellar and S. Uryasev, “Conditional Value-at- 
Risk for General Loss Distributions,” Journal of Banking 
and Finance, Vol. 26, No. 7, 2002, pp. 1443-1471.  
HUdoi:10.1016/S0378-4266(02)00271-6U 

http://dx.doi.org/10.1016/S0378-4266(02)00271-6�
http://dx.doi.org/10.1016/S0378-4266(02)00271-6�
http://dx.doi.org/10.1016/S0378-4266(02)00271-6�


T. MAVRALEXAKIS  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                 JMF 

39

[7] P. Krokhmal, J. Palmquist and S. Uryasev, “Portfolio 
Optimization with Conditional Value-at-Risk Objective 
and Constraints,” Journal of Risk, Vol. 4, No. 2, 2002, pp. 
43-68. 

[8] D. Huang, S. Zhu and F. Fabozzi, “Portfolio Selection 
with Uncertain Exit Times: A Robust CVAR Approach,” 
Journal of Economics Dynamics and Control, Vol. 32, 
No. 2, 2008, pp. 594-623. HUdoi:10.1016/j.jedc.2007.03.003U 

[9] P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, “Co-
herent Measures of Risk,” Mathematical Finance, Vol. 9, 
No. 3, 1999, pp. 203-228. HUdoi:10.1111/1467-9965.00068U 

[10] S. Cheng, Y. Liu and S. Wang, “Progress in Risk Meas-
urement,” Advanced Modelling and Optimization, Vol. 6, 
No. 1, 2004, pp. 1-20. 

[11] H. Follmer and A. Schied, “Convex and Coherent Risk 
Measures,” In: R. Cont, Ed., Encyclopedia of Quantita-
tive Finance, John Wiley & Sons, Hoboken, 2010, pp. 
355-363. 

[12] S. Alexander, T. F. Coleman and Y. Li, “Derivatives 
Portfolio Hedging Based on CVAR,” In: D. Szegö, Ed., 
Risk Measures for the 21 Century, Wiley, Hoboken, 2003, 

pp. 339-363. 

[13] S. Alexander, T. F. Coleman and Y. Li, “Minimizing 
CVAR and VAR for a Portfolio of Derivatives,” Journal of 
Banking and Finance, Vol. 30, No. 2, 2006, pp. 583-605.  
HUdoi:10.1016/j.jbankfin.2005.04.012 U 

[14] M. Gilli and E. Schumann, “An Empirical Analysis of 
Alternative Portfolio Selection Criteria,” Swiss Finance 
Institute Research Paper No. 09-06, March 2009. 

[15] V. DeMiguel, L. Garlappi and R. Uppal, “Optimal versus 
Naive Diversification: How Inefficient Is the 1/N Portfo-
lio Strategy,” Review of Financial Studies, Vol. 22, No. 5, 
2007, pp. 1915-1953. 

[16] C. Mamoghli and S. Daboussi, “Optimisation de Porte-
feuille Dans le Cadre du Downside Risk,” Portfolio Op-
timization in a Downside Risk Framework, Working Pa-
per, 19 August 2008. 

[17] S. R. Pliska and K. Suzuk, “Optimal Tracking for Asset 
Allocation with Fixed and Proportional Transaction Costs,” 
Journal of Quantitative Finance, Vol. 4, No. 2, 2004, pp. 
233-243. HUdoi:10.1080/14697680400000027U 

 

http://dx.doi.org/10.1016/S0378-4266(02)00271-6�
http://dx.doi.org/10.1016/j.jedc.2007.03.003�
http://dx.doi.org/10.1016/j.jedc.2007.03.003�
http://dx.doi.org/10.1016/j.jedc.2007.03.003�
http://dx.doi.org/10.1016/j.jedc.2007.03.003�
http://dx.doi.org/10.1111/1467-9965.00068�
http://dx.doi.org/10.1111/1467-9965.00068�
http://dx.doi.org/10.1111/1467-9965.00068�
http://dx.doi.org/10.1111/1467-9965.00068�
http://dx.doi.org/10.1016/j.jbankfin.2005.04.012�
http://dx.doi.org/10.1016/j.jbankfin.2005.04.012�
http://dx.doi.org/10.1016/j.jbankfin.2005.04.012�
http://dx.doi.org/10.1016/j.jbankfin.2005.04.012�
http://dx.doi.org/10.1080/14697680400000027�
http://dx.doi.org/10.1080/14697680400000027�
http://dx.doi.org/10.1080/14697680400000027�
http://dx.doi.org/10.1080/14697680400000027�

