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Abstract 
A large body of evidence links ambient fine particulates (PM2.5) to chronic disease. 
Efforts continue to be made to improve large scale estimation of this pollutant for 
within-urban environments and sparsely monitored areas. Still questions remain 
about modeling choices. The purpose of this study was to evaluate the performance 
of spatial only models in predicting national monthly exposure estimates of fine par-
ticulate matter at different time aggregations during the time period 2000-2009 for 
the contiguous United States. Additional goals were to evaluate the difference in pre-
diction between federal reference monitors and non-reference monitors, assess re-
gional differences, and compare with traditional methods. Using spatial generalized 
additive models (GAM), national models for fine particulate matter were developed, 
incorporating geographical information systems (GIS)-derived covariates and me-
teorological variables. Results were compared to nearest monitor and inverse dis-
tance weighting at different time aggregations and a comparison was made between 
the Federal Reference Method and all monitors. Cross-validation was used for model 
evaluation. Using all monitors, the cross-validated R2 was 0.76, 0.81, and 0.82 for 
monthly, 1 year, and 5-year aggregations, respectively. A small decrease in perfor-
mance was observed when selecting Federal Reference monitors only (R2 = 0.73, 0.78, 
and 0.80 respectively). For Inverse distance weighting (IDW), there was a signifi-
cantly larger decrease in R2 (0.68, 0.71, and 0.73, respectively). The spatial GAM 
showed the weakest performance for the northwest region. In conclusion, National 
exposure estimates of fine particulates at different time aggregations can be signifi-
cantly improved over traditional methods by using spatial GAMs that are relatively 
easy to produce. Furthermore, these models are comparable in performance to other 
national prediction models. 
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1. Introduction 

Evidence has been accumulating from long-term and short-term studies linking am-
bient air pollution to health outcomes. Fine particulate matter has demonstrated fairly 
consistent links to cardiovascular and respiratory health [1]-[9]. As a consequence, ef-
fort continues to be made to improve large-scale estimation of air pollutants for in-
tra-urban environments and sparsely monitored areas using different methods. Gene-
ralized additive models (GAM), which capture spatiotemporal trends, have been used 
to predict monthly PM10, PM2.5, and coarse fraction PM, across the north-eastern US 
[10]-[12], and nationally [13]. Using Bayesian maximum entropy (BME) one study es-
timated average PM2.5 for the year 2003 [14], and another study used BME in a hybrid 
approach to estimate national monthly PM2.5 [15]. A geographically weighted regres-
sion was used to estimate PM2.5 in the southeastern US for the year 2003 [16]. In west-
ern Europe, land-use regression (LUR) models were developed to predict PM10 and 
NO2 that included satellite data for the years 2005-2007 [17]. 

Our goal in this study was to evaluate how spatial GAMs perform and to create na-
tional monthly predictions of PM2.5 in order to evaluate the effect of aggregating on the 
monthly, 1-year, and 5-year time metrics for the years 2000 to 2009, to assess different 
exposure windows. It is also of interest to compare the effect of using a non-reference 
method (NRM) in contrast to the Federal Reference Method (FRM) alone [18]. Finally, 
nearest monitor and inverse distance weighted (IDW) methods were used to contrast 
suggested approaches. The results of these analyses are useful for national epidemiolog-
ic investigations of long-term exposure to air pollution that require a moving exposure 
window with different exposure intervals such as is the case for cardiovascular disease [7]. 

2. Methods 

Spatial monthly generalized additive models (GAM) were developed to predict PM2.5 
for the contiguous US for the period 2000-2009. These models are a sum of smooth 
functions of predictor variables that allow for flexible non-linear relationships with the 
outcome variable [19]. In this research the outcome variable is PM2.5 monitoring data 
from the US Environmental Protection Agency’s (EPA) national ambient air quality 
monitoring network. Meteorological and GIS-derived variables were used as potential 
predictors. The resulting models makes it possible to predict ambient PM2.5 levels at any 
specified spatial resolution used to represent subject locations, such as street-level resi-
dential addresses. 

2.1. PM2.5 Monitoring Data 

Daily and hourly PM2.5 data were downloaded from the US EPA’s Air Quality System 
(AQS) online database for the period 2000-2009 [18]. Parameter code 88101 was used 
for the FRM. The NRM used parameter code 88502 which is comparable to FRM with 
less than 10% bias [20]. The NRM included the Interagency Monitoring of Protected 
Visual Environments (IMPROVE) network which monitors national parks and cap-
tures PM2.5 data in rural settings [21]. There were three inclusion criteria applied to the 
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air pollution data. First, for hourly PM2.5 data, at least 75% of the hourly values during a 
day must be available to consider them valid for aggregation to daily amounts. Second, 
only months could be included where observed counts of valid daily values per month, 
divided by expected counts of daily values per month, were at least 75%. Last, there 
must be at least three valid observations in a given month for that monthly average to 
be included. A square root transformation was applied to the PM2.5 data and these were 
back transformed once predictions were made. Performance evaluation was done on 
back transformed data. 

2.2. Potential Predictors 

Candidate predictors were either GIS derived or meteorological. The following va-
riables were GIS derived: Land use maps from the Multi-Resolution Land Characteris-
tics Consortium allowed calculations of the proportion of imperviousness (2006 data) 
and tree canopy (2001 data) within 1 km, 2 km, 4 km, and 8 km buffers [22]. The pro-
portion of land use (2006 data) was also calculated for high, medium, and low intensi-
ties, and cultivated crops within 1 km, 2 km, and 4 km buffers. US census databases for 
the year 2000 were used to determine block group population density within 1 km, 2 
km, 4 km, and 8 km buffers (Environmental Sciences Research Institute-(ESRI), Red-
lands, CA). Elevation was extracted from the US Geological Survey (USGS) National 
Elevation Dataset [23]. US EPA National Emissions Inventory was used for point- 
source emissions of PM2.5 within 1 km, 2 km, 4 km, 8 km, and 12 km buffers (2005 da-
ta) [24]. Distance to nearest road by 4 road classes was measured using ESRI’s Street 
Map database (2011 data). Indicator variables were created for the South Coast and San 
Joaquin Valley air basins in California because of the unique characteristics of the re-
gions and the high number of extreme values [25]. All of the above GIS determined va-
riables were created in Arc Map 10.0 (ESRI), and except for elevation, all of the conti-
nuous GIS variables were log transformed.  

National meteorological data including average temperature, maximum temperature, 
dew point temperature, relative humidity, barometric pressure, air stagnation, and 
wind speed, were downloaded from the National Climate Data Center for the study 
time period [26].  

2.3. Subgroups 

Six US regions were defined in this research to evaluate model performance in geog- 
raphic subgroups (see Figure 1). They were the northwest (NW = OR, WA, ID), south- 
west (SW = CA, NV, UT, AZ), north central (NC = MT, WY, ND, SD,NE, MN, IA), 
south central (SC = CO, NW, KS, OK, TX, MO, AR, LA), northeast (NE = WI, MI, IL, 
IN, OH, KY, WV,VA, PA, NY, VT, NH, ME, MA, CT, RI, MD, DE, NJ, and DC), and 
southeast (SE = TN, MS, AL, NC, SC, GA, and FL).  

2.4. Generalized Additive Models 

Separate spatial only models were created for each of the 120 months during the 10 
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Figure 1. PM2.5 monitoring locations and the six regions of the US de-
fined in this study. 

 
year study period (1/2000 to 12/2009). The model was defined as: 
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where yi,t is the square-root transformation of PM2.5 for monitoring site i and month t. 
The function c () is a bivariate thin plate regression spline for the spatial coordinates zi 
for each monitoring location. The functions d () and f () are a single cubic regression 
spline for j = 1 … J time invariant predictors xj, and for k = 1 … K time varying predic-
tors wk, respectively. GAM procedures used the gam () function from the mgcv package 
from R [19]. When modeling GAMs, the maximum degree of flexibility of the spline 
functions can be set by the user by choosing the basis dimension. For the spatial coor-
dinates function the basis dimension was set at 300, and for time invariant and time 
varying predictors the basis dimension was set at 10. These models were compared to 
the traditional methods IDW and the nearest monitor approach. 

2.5. Model Building 

The data were divided into 10 random sets. Cross-validation was used to select cova-
riates and assess model predictive ability within data sets 1 - 9 by taking each out in 
turn and predicting to the held out set. The computed squared correlation (regression 
based R2) between the observed and predicted values helped determined covariate and 
model choice along with root-mean-squared prediction error (RMSPE). Because se-
lecting variables by cross-validation could bias the performance of the cross-validated sta-
tistics, the 10th set was not used for variable selection, but was held out until after the final 
model was selected to evaluate evidence of over-fitting of this final model [10] [11]. Per-
formance was further evaluated by: 1) the average mean prediction error (MPE), 2) the 
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regression slope where observed is the dependent variable and the predicted value is the 
independent variable, and 3) by a mean squared error based R2 (MSE-R2) which is a 
measure of fit to the 1-1 line, defined as MSE-R2 = 1-RMSPE2/var (obs) [27]. 

The first step in model building was to force spatial coordinates of monitoring loca-
tion into the model (assumed a-priori to be the most important predictor of PM2.5). The 
second step added additional covariates that gave the highest cross-validated R2 and 
lowest RMSPE in datasets 1 - 9. In the last step covariates were retained only if they 
improved the R2 by approximately 1% or more [28]. Cross-validated performance stati- 
stics were reported on a monthly basis (calculating statistics for each month and then 
averaging statistics across 120 months), a 1 year aggregation (averaging statistics across 
10 years), a 5 year aggregation (averaging statistics across 2 time periods: 2000-2004, 
2005-2009), and no aggregation (e.g. reporting a single R2 for datasets 1 - 9). Once a fi-
nal model was selected then performance statistics from datasets 1 - 9 were compared 
to the holdout dataset 10 to see if there was any evidence of over fitting. 

3. Results 
3.1. Descriptive Statistics 

During the study period all of the monitors (including non-reference) located on the 
east coast had on average the highest levels of PM2.5 (NE = 12.7 and SE = 12.4 µg/m3) 
and the northwest had the lowest (7.4 µg/m3) as seen in Table 1. The highest peak was 
in the north central region (88.0 µg/m3). It is however more instructive to look at the 

 
Table 1. Descriptive statistics of mean monthly PM2.5 (μg/m3) by region and season for combined monitors and federal reference method 
only. 

Subgroup 
PM2.5 μg/m3 PM2.5 μg/m3 (FRMa) 

Mean SD Min 5% 95% Max N Mean SD Min 5% 95% Max N 

Total 10.9 5.0 0.0 3.6 19.7 88.0 1892 11.8 4.8 0.0 5.1 20.3 88.0 1580 

NWb 7.4 4.6 0.3 2.1 16.5 50.5 201 8.8 5.0 0.8 3.7 19.3 50.5 134 

SWc 9.8 6.9 0.0 2.2 23.8 69.5 224 11.3 6.9 0.0 4.3 25.5 69.5 165 

NCd 8.0 4.2 0.3 2.2 14.9 88.0 198 8.8 4.0 1.2 4.0 15.4 88.0 161 

SCe 10.0 3.9 0.5 3.8 16.5 82.5 353 10.6 3.7 0.7 5.0 17.0 82.5 280 

NEf 12.7 4.4 1.6 6.3 20.7 68.4 621 13.0 4.3 1.6 6.8 20.8 68.4 577 

SEg 12.4 4.1 1.8 6.8 20.0 48.0 295 12.6 4.1 2.5 7.1 20.2 48.0 263 

Mar-May 9.8 4.1 0.0 3.6 16.7 48.0 1832 10.5 3.8 0.0 4.7 17.0 48.0 1535 

Jun-Aug 12.3 5.5 0.0 4.4 21.8 88.0 1829 13.2 5.3 0.0 5.4 22.1 88.0 1524 

Sep-Nov 10.5 4.8 0.0 3.6 18.7 82.5 1848 11.3 4.7 0.0 5.1 19.2 82.5 1543 

Dec-Feb 11.1 5.3 0.0 2.4 19.8 65.3 1866 12.1 4.8 0.0 5.7 20.4 65.3 1562 

aFederal reference method only; bOR, WA, & ID; cCA, NV, UT, & AZ; dMT, WY, ND, SD, NE, MN, & IA; eCO, NM, KS, OK, TX, MO, AR, & LA; fWI, MI, IL, IN, 
OH, KY, WV, VA, PA, NY, VT, NH, ME, MA, CT, RI, MD, DE, NJ, & DC; gTN, MS, AL, NC, SC, GA, & FL. 
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95th percentile where the north central region had the lowest value (15.0 µg/m3) and the 
southwest had the highest value (23.2 µg/m3). Non-reference monitors had a much 
lower overall mean (6.8 µg/m3) when compared to the reference method (11.8 µg/m3) 
(Table 2). The non-reference monitoring locations tend to be in rural areas and the 
largest number of these (n = 133), were found in the northwest which may help explain 
the lowest average levels observed for this area (Table 2). 

Temporal trends for combined monitors and FRM show a steady decline in average 
PM2.5 and the 95th percentile over the study period (see Figure 2). Non-reference moni- 
tors show an increase through 2007 followed by a decline. Seasonally, it appears that 
PM2.5 has highs in the summer months and in the winter months, with July and August 
having the highest peaks followed by January. April has the lowest valley with a dra-
matic drop for the 95th percentile (see Figure 3). The number of active monitors was 
not very different for the different seasons (Table 1). 

3.2. Prediction 

The final model contained only variables that improved the cross-validation R2 among 
data sets 1 - 9 by approximately 1% or more. The retained variables were monitoring 
spatial coordinates and two GIS predictors; population block group density at a 4-km 
buffer and elevation. 

When reporting overall performance results, we chose to report performance statis-
tics four ways to reflect different time aggregations. For the spatial GAMs, that included 
all monitors, performance was strong with an R2 = 0.80, 0.76, 0.81 and 0.82 for categories 
None, Month, 1-Year, and 5-Year time aggregations, respectively (Table 3). The first  
 
Table 2. Descriptive statistics of mean monthly NRMa PM2.5 (μg/m3) by region and season. 

Subgroup 
PM2.5 μg/m3 NRMa 

Mean SD Min 5% 95% Max N 

Total 6.8 4.1 0.3 1.5 14.3 42.2 431 

NWb 6.2 3.7 0.3 1.6 13.5 42.2 133 

SWc 4.9 3.4 0.3 1.1 11.2 36.1 63 

NCd 4.7 3.4 0.3 0.9 11.1 35.4 42 

SCe 7.9 3.9 0.5 1.9 14.4 29.1 95 

NEf 8.5 4.0 1.8 3.3 15.9 26.5 58 

SEg 10.3 3.8 1.8 5.1 17.5 29.1 40 

Mar-May 6.4 3.5 0.6 1.9 12.8 24.7 400 

Jun-Aug 7.9 4.3 1.3 3.0 16.1 40.4 413 

Sep-Nov 6.7 3.8 0.4 1.9 13.8 34.0 412 

Dec-Feb 6.2 4.4 0.3 0.8 14.2 42.2 415 

aNon-federal reference method; bOR, WA, & ID; cCA, NV, UT, & AZ; dMT, WY, ND, SD, NE, MN, & IA; eCO, NM, 
KS, OK, TX, MO, AR, & LA; fWI, MI, IL, IN, OH, KY, WV, VA, PA, NY, VT, NH, ME, MA, CT, RI, MD, DE, NJ, & 
DC; gTN, MS, AL, NC, SC, GA, & FL. 
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Figure 2. Average and upper 95th percentile Yearly trends for PM2.5 including all 
monitors, federal reference method (FRM), non-reference method (NRM), and re-
gression lines, for monitoring locations during the period 2000 to 2009. 

 

 
Figure 3. Average and upper 95th percentile Monthly seasonal trends for PM2.5 in-
cluding all monitors, federal reference method (FRM), and non-reference method 
(NRM), for monitoring locations during the period 2000 to 2009. 
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category None (for no aggregation) is a single R2 for all the data of observed and pre-
dicted values during the 10 year period (see Table 3). Although a convenient number to 
report, this number does not accurately represent the way the data are used in health ef-
fects models, hence the presentation of other time aggregations. The MSE-R2s were very 
close to the regression based R2s showing little bias, i.e. deviation from the 1-1 line. The 
regression slopes similarly were close to 1.0 also indicating little bias from the 1-1 line. 
The GAMs were significantly better than the IDW methods by 7% - 10% in absolute dif-
ferences and even more so than the nearest monitors. The nearest monitors showed a dis-
tinctive drop in MSE-R2s when compared to regression based R2s and a deviation of the 
slopes from 1.0. RMSPE decreased when the time aggregation was increased and had 
the smallest values for the GAM method. FRM monitors alone had a 2% - 5% absolute 
drop in R2s values compared to all monitors. 

For Table 4, results are shown for the 10th hold out set. When compared to Table 3, 
there is little evidence that there was over-fitting due to model selection in datasets 1 - 9. 

When graphically comparing observed versus predicted values for all monitors in da-
tasets 1 - 9, the model is a good fit except for a small number of extreme observations that 
under predicted (see Figure 4). Eight observations had observed values over 55 μg/m3 
which should be considered exceptional events (e.g. fires) since each one of these moni- 

 
Table 3. Cross-validated statistics on datasets 1 - 9 predicting PM2.5 (μg/m3) for NMa, IDWb, and 
spatial GAMc, by four aggregations of time from 2000-2009. 

Model Time 
PM2.5 μg/m3 

Reg-R2d MSE-R2e MPEf RMSPEg Slope 

NM 

None 0.64 0.60 −0.299 3.19 0.80 

Month 0.60 0.53 −0.300 3.03 0.76 

1 Year 0.64 0.60 −0.309 2.28 0.82 

5 Year 0.67 0.63 −0.282 2.14 0.83 

IDW 

None 0.73 0.72 −0.212 2.64 0.99 

Month 0.68 0.68 −0.213 2.51 0.99 

1 Year 0.71 0.70 −0.232 1.97 1.02 

5 Year 0.73 0.72 −0.195 1.85 1.01 

GAM 

None 0.80 0.80 0.066 2.23 0.99 

Month 0.76 0.76 0.066 2.16 0.99 

1 Year 0.81 0.81 0.080 1.55 0.98 

5 Year 0.82 0.82 0.116 1.49 0.97 

GAM (FRMh) 

None 0.78 0.78 0.041 2.24 0.97 

Month 0.72 0.72 0.041 2.15 0.95 

1 Year 0.76 0.76 0.039 1.49 0.96 

5 Year 0.79 0.79 0.041 1.40 0.96 

aNearest monitor; binverse distance weighting; cgeneralized additive model; dregression based R2; emean squared error 
based R2; fmean prediction error; groot mean squared prediction error; hfederal reference method only. 
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Figure 4. Observed PM2.5 vs. predicted PM2.5 for data sets 1 - 9. 
 
Table 4. Evaluating model over-fit on dataset 10 for spatial GAMc, by three aggregations of time 
from 2000-2009. 

Model Time 
PM2.5 μg/m3 

Reg-R2d MSE-R2e MPEf RMSPEg Slope 

GAM 

Month 0.75 0.75 0.046 2.29 1.02 

1 Year 0.81 0.80 0.086 1.66 1.03 

5 Year 0.84 0.83 0.113 1.51 1.03 

GAM (FRMh) 

Month 0.71 0.70 0.009 2.28 0.99 

1 Year 0.74 0.74 0.036 1.60 1.02 

5 Year 0.79 0.79 0.003 1.49 1.02 

cgeneralized additive model; dregression based R2; emean squared error based R2; fmean prediction error; groot mean 
squared prediction error; hfederal reference method only. 

 
tors did not have similar values (over 55 μg/m3) at other times during the study period. 

In Figure 5, a map of the US is shown of surface predictions for PM2.5 for the year 
2005. The impact of population density is readily seen with the increases in PM2.5 in the 
population centers of the US. The effect of elevation is also easily seen in the mount- 
ainous regions of the nation. 

3.3. Subgroup Analysis 

The northwest had much poorer model performance judged by a monthly R2 = 0.37 
and a 1 year R2 = 0.46 (Table 5). The regression slopes were also lower than 1.0. Fur-
thermore, without use of the non-reference monitors, the performance was noticeably 
worse with an R2 = 0.23 and 0.29, MSE-R2 = 0.06 and 0.02, and a regression slope of 
0.59 and 0.69 for monthly and 1-year aggregations, respectively. It is interesting to note 
that the north central region had a similar number of monitors compared with the 
northwest over a larger geographic area and yet it performed well like the other regions.  
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Figure 5. Surface predictions of PM2.5 (µg/m3) across the contiguous US for the year 2005. 

 

Table 5. Cross-validated performance measures of GAMa for predicting two sets of PM2.5 monitors, by three aggregations of time and by 
regions, on datasets 1 - 9 during 2000-2009. 

Time Region 
PM2.5 μg/m3b PM2.5 μg/m3 (FRMc) 

Reg-R2d MSE-R2e MPEf RMSPEg Slope Reg-R2 MSE-R2 MPE RMSPE Slope 

Month 

NWh 0.37 0.33 0.177 2.70 0.83 0.23 0.06 0.154 2.98 0.56 

SWi 0.69 0.68 0.166 3.25 1.04 0.61 0.60 0.064 3.50 0.95 

NCj 0.68 0.67 −0.026 1.95 0.93 0.61 0.58 −0.026 1.88 0.86 

SCk 0.69 0.67 0.027 1.88 0.90 0.63 0.61 0.013 1.88 0.88 

NEl 0.70 0.69 0.063 1.77 0.97 0.67 0.67 0.054 1.75 0.95 

SEm 0.66 0.66 0.031 1.56 0.93 0.67 0.66 0.029 1.49 0.92 

1 Year 

NW 0.46 0.45 0.193 2.11 0.89 0.29 0.02 0.029 2.21 0.62 

SW 0.76 0.75 0.178 2.45 1.06 0.65 0.65 0.081 2.67 0.98 

NC 0.75 0.75 0.012 1.52 0.97 0.70 0.70 −0.017 1.30 0.91 

SC 0.77 0.76 0.053 1.40 0.92 0.71 0.70 0.022 1.38 0.92 

NE 0.79 0.78 0.070 1.16 0.97 0.76 0.76 0.053 1.13 0.97 

SE 0.81 0.81 0.029 1.00 0.97 0.85 0.85 0.021 0.87 0.98 

5 Year 

NW 0.44 0.41 0.180 1.84 0.83 0.25 0.07 −0.072 2.21 0.58 

SW 0.74 0.74 0.225 2.43 1.04 0.64 0.63 0.088 2.58 0.95 

NC 0.66 0.65 0.165 1.84 0.95 0.73 0.72 0.019 1.19 0.91 

SC 0.82 0.81 0.085 1.23 0.91 0.79 0.79 0.017 1.17 0.93 

NE 0.82 0.82 0.071 1.07 0.98 0.80 0.80 0.061 1.04 0.98 

SE 0.83 0.82 0.088 0.96 0.93 0.88 0.88 0.037 0.77 0.98 

ageneralized additive model; ball monitors; cfederal reference method only; dregression based R2; emean squared error based R2; fmean prediction error; groot mean 
squared prediction error; hOR, WA, & ID; iCA, NV, UT, & AZ; jMT, WY, ND, SD, NE, MN, & IA; kCO, NM, KS, OK, TX, MO, AR, & LA; lWI, MI, IL, IN, OH, KY, 
WV, VA, PA, NY, VT, NH, ME, MA, CT, RI, MD, DE, NJ, & DC; mTN, MS, AL, NC, SC, GA, & FL. 
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However there was a drop in the 5-year aggregation R2 (0.66), probably related to the 
effect of aggregation on a reduced sample size and range. For a 1-year aggregation the 
southeastern part of the US had the best model performance (R2 = 0.81; RMSPE = 
1.00). Consistently, December through February had the lowest R2 and the largest 
RMSPE, and June through August had the highest R2 and the lowest RMSPE (Table 6). 

4. Discussion 

We created spatial GAMs that are simple and effective in modeling PM2.5 across large 
areas like the US with R2 = 0.80, 0.76, 0.81 and 0.82 for categories None, Month, 1 Year, 
and 5 Year time aggregations, respectively. There have been a few attempts at modeling 
PM2.5 over the contiguous US. Beckerman et al. used a hybrid approach to model na-
tional monthly PM2.5 estimates using Federal Reference Method only with an R2 = 0.79. 
They created a spatiotemporal model by combining LUR models as a first stage and 
Bayesian maximum entropy interpolation of the LUR residuals as a second stage [15]. 
Our analysis including only the federal reference method monitors with no time aggre-
gation had a similar value (R2 = 0.78, No aggregation). Another analysis, using the 
Bayesian maximum entropy framework with a moving window, estimated PM2.5 across 
the US for the year 2003 with a Pearson’s correlation of 0.90 (R2 = 0.81) [14]. Using 
combined monitors our analysis had an R2 = 0.81 for a comparable 1-year aggregation. 
Considering only FRM monitors, the R2 dropped to 0.78. It was not clear from the de-
scription which set of monitors was used in the previously mentioned moving window 
approach. A study using spatiotemporal GAMs for the northeastern US had an R2 =  

 
Table 6. Cross-validated performance measures of GAMa for predicting two sets of PM2.5 monitors, by three aggregations of time and by 
seasons, on datasets 1 - 9 during 2000-2009. 

Time Season 
PM2.5 μg/m3b PM2.5 μg/m3 (FRMc) 

Reg-R2d MSE-R2e MPEf RMSPEg Slope Reg-R2 MSE-R2 MPE RMSPE Slope 

Month 

Mar-May 0.79 0.78 0.044 1.73 0.99 0.74 0.73 0.026 1.75 0.96 

Jun-Aug 0.86 0.86 0.029 1.85 0.99 0.85 0.85 0.016 1.82 0.99 

Sep-Nov 0.74 0.74 0.059 2.18 0.99 0.71 0.71 0.036 2.18 0.96 

Dec-Feb 0.66 0.66 0.133 2.89 0.98 0.60 0.59 0.086 2.87 0.91 

1 Year 

Mar-May 0.82 0.82 0.044 1.46 0.99 0.77 0.77 0.023 1.46 0.96 

Jun-Aug 0.89 0.89 0.029 1.52 1.00 0.89 0.89 0.015 1.45 0.99 

Sep-Nov 0.77 0.77 0.069 1.84 0.99 0.74 0.73 0.037 1.82 0.97 

Dec-Feb 0.68 0.68 0.149 2.60 0.98 0.61 0.60 0.089 2.53 0.92 

5 Year 

Mar-May 0.85 0.85 0.074 1.30 0.98 0.83 0.83 0.030 1.26 0.97 

Jun-Aug 0.91 0.91 0.071 1.35 0.99 0.93 0.93 0.029 1.17 0.99 

Sep-Nov 0.80 0.80 0.091 1.67 0.98 0.79 0.79 0.017 1.57 0.97 

Dec-Feb 0.68 0.68 0.174 2.43 0.97 0.60 0.59 0.074 2.37 0.91 

ageneralized additive model; ball monitors; cfederal reference method only; dregression based R2; emean squared error based R2; fmean prediction error; groot mean 
squared prediction error. 
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0.77 for monthly estimations during a three-year period [12] and when extended to the 
contiguous US and for a longer time period (through 2007) had the same R2 value while 
including non-reference methods as well [13]. 

The current research compares well to previous research by others. Although cover-
ing the contiguous US like the previously mentioned papers, there are some unique 
characteristics of this analysis. First, we showed the effects of time aggregation and the 
amount of improvement that is gained by longer time aggregations. This is useful when 
considering different time windows for long-term exposure for health effects like car-
diovascular disease [7]. Second, we attempted to quantify the difference between using 
all available monitors, versus using the Federal Reference Method only. Because of the 
scarcity of monitors in particular areas like the northwest, using good quality, non-refe- 
rence method monitors may be an appropriate approach for these areas. It is not clear 
what the impact is on the exposure estimates and ultimately to the health effects models 
by introducing methods that potentially have more measurement error. Third, an anal-
ysis by region is helpful to understand where there are regional weaknesses in model 
performance. Knowing the number of monitors in a region doesn’t necessarily help 
with this prediction. The north central region had a similar number of monitors as the 
northwest and even though the network covered a larger geographic area, predictions 
were much better. This result suggests that special attention should be given to the 
northwest to find ways to improve the relatively poor results. Last, while comparing 
well with other methodologies, spatial GAMs are relatively simple models that are easi-
er to set up than spatiotemporal models that have two stages. These results, although 
not perfectly comparable to other research (somewhat overlapping time periods), would 
seem to suggest that almost all of the predictive performance comes from spatial con-
siderations alone. 

Three predictors were retained for the final model: spatial coordinates, population den-
sity with 4-km buffer, and elevation. It should be noted that the results were not substan-
tially different from a 1-km buffer or imperviousness with a 4-km buffer. It is possible 
that using a 1-km buffer is useful when evaluating inter-urban spatial heterogeneity. 

Further analysis should look for ways to improve the modeling of fine particulates in 
the northwest. Possibly different predictors are important for this region. It would seem 
that using non-reference monitors for this region is particularly important. Another 
possible way to improve these models is using daily predictions. Last, using spatial 
GAMs may be a good input for a second stage using spatiotemporal residuals for time 
trend effects. 

5. Conclusion 

There are a number of appropriate methods that can be used to predict national PM2.5. 
The method advocated in this paper (i.e. spatial GAM) is useful in that while it had 
strong model performance, similar to other recently described methods, its implemen-
tation is relatively simple. We feel that spatial GAMs have an important contribution to 
the discussion of and research for the modeling of PM2.5 across large-scale areas for 



D. J. Shavlik et al. 
 

107 

chronic exposure. 
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