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Abstract 
 
Morey and Morey [1] have developed an approach for gauging portfolio efficiencies in the context of the 
Markowitz model. Following some recent contributions [2,3], this paper analyzes the axiomatic properties of 
distance functions extending an earlier approach proposed by Morey and Morey. The paper also focuses on 
the hyperbolic measure and the McFadden gauge function [4]. Among other things, overall, allocative and 
portfolio improvements possibilities (in term of return expansion or/and risk contraction) based upon the in-
direct mean-variance utility function are analyzed. Along this line, duality results are established in each case. 
This enables us to calculate the degree of risk aversion maximizing the investor indirect mean-variance util-
ity function in either return expansion or risk contraction. An empirical illustration is provided and reveal 
ranking of preferred risks aversion for some “CAC40” assets. 
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1. Introduction 
 
Distance functions, have been introduced by Shephard to 
measure by Shephard [5] for efficiency measurement ei- 
ther in input or output orientation. At the same time, 
Markowitz [6,7] has formulated the mean-variance model, 
a mathematical approach for determining the optimal 
riskreturn trade-off for portfolio selection. This approach 
is based upon quadratic programming. However, its 
computational cost was very high. Hence, Sharpe [8,9] 
had developed the simplified diagonal model and later 
formulated the capital asset pricing model (CAPM) with 
Lintner [10]. Markowitz [11] criticized the relation be-
tween risk and excess returns described by the linear 
model due to Sharpe and Lintner. He argued that differ-
ent expected returns might surely be obtained from the 
same risk structure. 

Nevertheless, the mean-variance approach is the cor- 
nerstone of portfolio management and risk assessment. 
The purpose of this paper is to provide a general taxon-
omy of ratio-based performance indicator for risk man-
agement. This contribution extends the analysis proposed 
by Morey and Morey [1] and also provides a new look at 
some more recent contributions. In [2,3] a general 

framework was introduced that is based upon the short-
age function a concept introduced by Luenberger [12] in 
microeconomic analysis. Transposed in a portfolio opti-
mization context, this function looks for possible simul-
taneous improvement of return and reduction of risk in 
the direction of a vector g. Though this approach gener-
alizes that of Morey and Morey in the mean-variance 
space, the choice of a direction remains much arbitrary. 
In this paper, we make other investigations about meas-
ures involving a proportionate improvement of risk and 
return. It is shown that the measure proposed by Morey 
and Morey satisfies a special type of duality, termed 
“fractional duality”. It is also established that one can 
obtain a duality result linking the indirect mean-variance 
utility both to the hyperbolic measure and the McFadden 
gauge function [4]. Some mathematical programs are 
also proposed and we propose a procedure to measure 
the risk aversion from the Khum and Tucker multipliers. 

Among other things we propose a procedure to com- 
pute the distance functions introduced by Morey and 
Morey in the case where short sales are allowed. Hence, 
it is then possible to measure the impact the budget con- 
straint has on performance. This we do by introducing a 
special version of the Thomson metric. 
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This paper is organized as follow. In Section 2, suc- 
cinctly presents the basic tools of the portfolio manage- 
ment approach proposed in Briec et al. [2]. Section 3 
focusses on the distance function proposed by Morey and 
Morey. We then study some of their more appealing 
properties. Duality results are analyzed in Section 4 and 
allow us to decompose efficiency following the Farrell 
approach [13]. Hence, the preferred risk aversion in input 
or output orientation can be computed. Sources of per-
formances change are discussed in Section 5. Section 6 
introduces an indicator based under the Thomson metric 
to measure the impact on the performance of managerial 
constraint. In the next section the dual properties of hy-
perbolic measures and McFadden gauge are analyzed. 
They are compared to the return oriented measure. The 
last section provides an empirical illustration with some 
“CAC40”. A concludingsection outlines conclusions and 
possible extensions. 
 
2. Efficient Frontier and Portfolio  

Management 
 
This section introduces main ideas of the portfolio selec-
tion problem. Let us consider a market with n financial 
assets. Note E[Ri] for i = 1, ..., n the expected return of 
the asset i and the covariance matrix of these assets such 
that , i j i j  for i, j  {∈ 1, ..., n}. A portfo-
lio is an combination of one or more of these assets. 
Their proportions may be represented by the vector x = 
(x1, x2, ..., xn) with  and xi > 0 if short sales is 
not allowed. 

,  Cov R R

1n x 1i i

It is assumed throughout the paper that economic con-
straints (Pogues [14], Rudd and Rosenberg [15]) are lin-
ear functions of the asset weights. Thus, the set of the 
admissible portfolios may be written as follow : 

1

: 1,


     



n

n
A i

i

x x Ax ,     (2.1) 

where A is an affine m × n map whose the range on  

is a subset of . If Ax is null for all x ∈  then we 
say that short-sales are allowed. In such a case, the set of 
admissible portfolios is extended from the unit simplex 
to an unbounded hyperplane. In general, the constraint 
Ax ≥ 0 represents the economic and managerial con-
straints the manager must deal with. The return of port-
folio x is 1 i . The expected return and its 
variance can be defined as follows: 1  

n

ix E

m

 R x

n

   x
 n

i ix R
 n

iE R
 iR and ,   respec-
tively. For the sake of simplicity, let us denote 

 x     , jR ,iCov R n
i j i jx xVar R

      x E R x  and     x Var R x .  (2.2) 

In addition, we consider the map  de-
fined by 

2:  A 

      , x x x            (2.3) 

See for instance [20] for more details about mean- 
variance approaches and stochastic dominance. The return 
and the variance are continuous in x. Hence   A  is a 
compact subset of . Following the Markowitz ap-
proach, the subset 

2
  A  is important to identify the 

efficient portfolios. However, it is not convex and, conse-
quently, this subset cannot be used for a quadratic pro-
gramming approach. Briec, Lesourd and Kerstens [2] have 
extended the subset   A  as follows: 

       ADR A          (2.4) 

It is important to notice that DRA is convex. Equiva-
lently, one has: 

 
      

2, :

                , , ,

 

    

A

A

DR r m

x r m x x 


 (2.5) 

This set is not only compatible with the definition in 
Markowitz [6], it guarantees a minimum variance of the 
feasible portfolios analogously to a “Free-Disposal Hull”. 
The subset of the all the mean-variance points that are 
not strictly dominated is termed the “efficient frontier”. It 
is useful to define the efficient portfolios from the above 
definition. 

Definition 2.1. The set of the weakly efficient portfo-
lios n the simplex is defined as: 

        
  

: , ,

                                                  ,

M
A

A

x x x r m

r m DR

       

 
 

For a given degree of risk aversion, Markowitz [6] de-
fined the following utility function to compute the cor-
responding efficient portfolio. 

    ,  AU x x x      

where 0  and 0 . The following program 
maximize this mean-variance utility function. 

    ,

1

max

                . . 0

            1,  0

A

n

i
i

U x x x

s t Ax

x x

   



 



 


 

where the ratio  0,      stands for risk aver-
sion. 
 
3. Portfolio Efficiency Measures 
 
Measuring efficiency in a portfolio context accounts 
usually the possible return improvements and/or risk 
contractions. In this paper, we propose some class of 
measures which consider investor preferences for risk. 
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3.1. The Morey and Morey Distance Functions 
 
Two distance functions were introduced by Morey and 
Morey to gauge portfolio performance. The first function 
computes the maximum expansion of the mean of return 
for a given level of risk. The map    : 1, A

RED x  
defined as: 

      sup : ,A RED x x x DR   A

0

  (3.1) 

is called the Morey return expansion distance function. It 
is easy to see that this measure has some drawbacks for 
portfolios whose the return is not positive. Thus, we shall 
restrict its domain to the subset of  defined by: 

  :   A Ax x .       (3.2) 

Focusing on the risk contraction, the map :A
RCD  

 0,1  defined by: 

      inf : , A RCD x x x DR   A    (3.3) 

is called the Morey risk contraction distance function. 
Notice that this function may be zero valued when there 
is a riskless asset whose the variance is 0. We propose 
some of their elementary properties which are essentials 
in portfolio performance gauging. To simplify the nota-
tions, we introduce the partial order   defined by: 

         ,    ,x y x x y    y .  (3.4) 

Proposition 3.1. Let A
RED  be the mean expansion re-

turn distance defined in (3.1). A
RED  has the following 

properties: 
i)   1    A

A REx D x
   1A Mii) RC

, x y
A

iii) , if 
D x      (Weak efficiency). 

x y  then    A A
RE RED y D x  (Weak 

monotonicity). 
iv) A

RED  is continuous on A . 
Proof. Let us prove i). The first inequality is immedi-

ate. From the definition of the representation set, if 
 then the subset x

           , : , ,    AC x v e DR v e x x   

is bounded. It trivially follows that    RED x


. To 
prove ii), assume that . In such a case, 
there exists some 

 M
Ax

 ,  Av e DR  such that  , v e  
    , x x  . But, from Definition (3.1), it immedi-

ately follows that . Consequently, it can be 
deduced that 

  1D x
1A

A
RE

   M
RE A . To prove the 

converse, assume that . We get: 
D x

A

x  
  1A

RED x


           , ,  REx D x x x x    . 

It can immediately be deduced that   M
Ax

 
. Let 

us prove iii). , if , Ax y   y x  and  y  
  x  then    A xA

RED y RED . From the notations 

above, we have   C x C y , for all , Ax y . Con-
sequently, 

          : , : A A, x x DR y y DR     , 

and the result follows. We end by proving iv). Let 
: AT DR R  be the function defined by  

    ADR, sup :m r, T r m   

Since DRA is convex and satisfies the free disposal rule, 
it is easy to show the continuity of T (see Shephard [5]). 
Hence  A

RED x  is continuous on . A

The next result analyzes the case where the distance 
function involves a risk contraction of portfolios. 

Proposition 3.2. Let A
RCD  be the risk contraction dis-

tance function defined in (3.3). We have the following 
properties. 

i) If there is no riskless asset then  0 1 A
RCD x  

ii) For all A  D xx , RC   1 1A A
RED x  x

  M
A  (Weak efficiency) 

iii) ,x y A  ,   A  A
RCRCx y D y D x  (Weak 

monotinicity). 
iv) A

RCD  is continuous on . A

Proof. With obvious changes, the proofs are similar to 
those of Proposition (3.1). 
 
3.2. The Efficiency Improvement Possibility 

Function 
 
To gauge portfolio efficiency, Briec, Lesourd and Ker-
stens [2] have introduced a variation of the shortage 
function which computes simultaneously risk reduction 
and expected return improvement. For a portfolio x in 
DR, the direction of the shortage function is determined 
by the vector g = (−gV, gE). Formally, this efficiency im-
provement possibility function is defined by: 

       gV DR

 

 1

i

i

R

R

sup ; g , gS x x x    E  (3.5) 

The following quadratic program computes the maxi-
mum percentage improvement of the portfolio yk: 

 

 
1

=1

=1

  max

   . . 

      ( )

,  = 1,  0, =

n

k E i
i

n

k V i
i

i i
i n

s t y g x E

y g x V

Ax b x x i n



 

 



 

 

 










 

For more details of the basic properties about this 
function, see for instance Briec et al. [2]. 
 
3.3. Hyperbolic and McFadden Distance  

Function 
 
We introduce two distance functions defined in the mean- 
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variance graph. We analyze the basic properties and 
establish a duality result. Measuring efficiency in a 
portfolio context accounts the possible return improve- 
ments and/or risk contractions. In the following, we in- 
troduce two specific measures. The first one, called hy- 
perbolic distance function, computes the maximum si- 
multaneous shrinkage and expansion of the risk and ex- 
pected return respectively. It is defined as:  

1
( ) = sup : ( ( ), ( ))A

HD x x x DR  


 


A




   (3.6) 

We also introduce the McFadden gauge that computes 
the maximum proportionate expansion of the risk and 
expected return respectively:  

( ) = sup{ : ( ( ), ( )) }A
MF AG x x x DR       (3.7) 

We propose some of their elementary properties which 
are essentials in portfolio performance gauging. Figure 1 
illustrate the basic ideas behind the definitions above. 
The “hyperbolic distance function” simultaneously invol- 
ves a contraction of the risk and an expansion of the 
expected return. The “McFadden gauge function” is very 
different because it computes simultaneously the maxi- 
mum expansion of the risk and the expected return of 
investors.  

Proposition 3.3. The map A
HD  defined in (3.1) has 

the following properties:  
i)   ( ) <A

Hx D x 
( ) 0xii) if   , then ( ) = 1 ( )A M

H AD x x    (Weak 
efficiency).  

iii) , if ,x y  x y  then  (Weak 
monotonicity).  

( ) ( )A A
H HD y D x

iv) A
HD  is continuous on A .  

Proof. The proofs are very similar to those concerning 
the maximum risk expansion distance function and thus 
it is omitted.  

The mathematical program, one need to solve is the 
following:  

 

Figure 1. Hyperbolic Distance Function and McFadden 
Gauge.  

 
=1

,
, =1

=1

     ( ) = max

. . ( )

1
 ( )

   = 1,  0.

A
H

n

i i
i

n

i j i j
i j

n

i
i

D y

s t y x E R

y

x Ax










 









x x

}

   (PH) 

The next result analyzes the case where the distance 
function involves a risk contraction of portfolios. In the 
following we denote . ( ) = { : <A A

MF A MFG x G 
AProposition 3.4. Let MF  be the map defined in (3.3). 

We have the following properties. 
G

i) If ( ) > 0x  then . ( ) <A
MFG x 
( )Mii) ( ) = 1A

MF x 
, ,x y

AG x    (Weak efficiency)  
iii) A   

( ( ), ( )) ( ( ), ( )) ( ) ( )A A
MF MFy y x x G y G    x  . 

Proof. i) Since A  is a compact set it follows that 
( )A 

A
MFG x

 is a compact subset of . Therefore it is norm 
bounded. Consequently, by definition,  is bounded 
in its return dimension. Thus . ii) Clearly, 
if  then the point ( (

2

A
MFG x

ADR
< 

( ))
( )

),( ) = 1 x x   lies on the 
upper part of the mean-variance frontier. However, all 
these frontier points are efficient which ends the proof. 
The proof of iii) is immediate.  

Notice that, in general, the gauge function is not 
continuous on A . Moreover, it does not characterize 
the weak efficient frontier. The next result offers a 
comparison between all the distance functions introduced 
in the paper. 

Lemma 3.5. For all Ax  and such that ( ) > 0x , 
we have: .  ( ) ( )A A A

H RD x D x( )E x G  MF

Proof. Clearly, we have the inclusion  

1
: ( ), ( ) { : ( ( ), ( )) }A Ax x DR x x DR     


      
  

,  

hence we obtain the first inequality. To prove the second  

one, fix =  . By definition ( )A
RED x ( ( ), ( )) .Ax x DR    

However, by construction . Since = (A ADR DR     )

1  , we then deduce that ( ( ), ( )) Ax x DR   . Thus, 
A
MFG  ( )x   which ends the proof.  

Suppose that ( ) > 0y , the mathematical program 
one should compute is the following:  

 
=1

,
, =1

=1

    ( ) = max

. . ( )

 ( )

   = 1,  0.

A
MF

n

i i
i

n

i j i j
i j

n

i
i

G y

s t y x E R

y x

x Ax









 









x
   (PMF) 
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4. Duality and Graph Distance Functions 
 
Following our earlier results, we establish a link between 
these distance functions and the indirect mean-variance 
utility function, except for the shortage function which 
has already been discussed in [2]. The indirect mean- 
variance utility gives the portfolio which achieves a 
maximal utility of an agent given his (her) risk aversion. 
Thus, fixing some parameters  ,  , it is well known 
that an efficient portfolio maximizing the utility can be 
calculated using standard procedures of quadratic optimi- 
zation. The mean-variance indirect utility function is 
defined by  by:  2:AV   

x( , ) = sup{ ( ) ( ) : }A
AV x x        (4.1) 

This function associates to the pair ( , )  , which 
stands for the risk aversion, the maximal utility level a 
fund manager can expect. 
 
4.1. Morey and Morey Fractional Duality 
 
Morey and Morey’s approach allows to distinguish two 
dual relations with the indirect mean-variance utility 
functions. They are expressed in term of return expansion 
and risk contraction respectively. We show that the 
distance functions we have introduced can be related to 
the maximisation of this utility functions with an optimal 
degree of risk aversion. Following Briec, Kerstens and 
Lesourd [2], duality results allows a decomposition of 
efficiency measures. This is done paralleling an earlier 
concept due to Farrell [13] in a production theory context. 
However, in view of the nature of the tools they used, 
these duality results have an additive structure, while the 
measure proposed by Morey and Morey has a multiplica- 
tive one. In this subsection, we shall prove that the 
distance functions proposed by Morey and Morey also 
have a dual interpretation based upon the indirect mean- 
variance utility function. 
 
4.1.1. Efficiency Decompositions 
Given portfolio, the overall return expansion is the ratio 
computed as its maximum return by its return value 
independently of the asset price information. Suppose 
that ( ) > 0x , i.e. A . The overall return expansion x 
( )REO  index is then defined as the quantity:  

                    ( , , )

= sup{ : ( ) ( ) ( , )}.

RE

A

O x

x x V

 

     
   (4.2) 

Hence, one can equivalently write  

( , ) ( )
( , , ) =

( )

A

RE

V
O x

x

   


 x
      (4.3) 

The allocative return expansion REA  index corres- 

ponds to the portfolio reallocation required to achieve the 
maximum of the the indirect mean-variance utility. It is 
defined as follow:  

( , , ) = ( , , ) ( )A
RE RE REA x O x D    x

)

     (4.4) 

The portfolio return expansion ( REP  index t is the 
quantity:  

( ) = ( )A
RE REP x D x .           (4.5) 

The Farrell decomposition is then, by definition:  

( , , ) = ( , , ) ( )RE RE REO x A x P x     .   (4.6) 

Using a symmetrical approach, one can introduce an 
overall risk contraction ( RC ) index, an allocative risk 
contraction (

O

REA ) index and a portfolio risk contraction 
( )RCP  index. The overall risk contraction ( RCO ) index 
defined as follows:  

 
( , , )

= inf : ( ) ( ) ( ) ( , ) .

RC

A

O x

x x V

 

      
 (4.7) 

Equivalently, one has:  

( ) ( , )
( , , ) =

( )

A

RC

x V
O x

x

   



     (4.8) 

The allocative risk contraction index is  

( , , ) = ( , , ) ( )A
RC RC RCA x O x D    x , (4.9) 

and the portfolio risk-contraction index is:  

( ) = ( )A
RC RCP x D x .         (4.10) 

By definition, we have:  

( , , ) = ( , , ) ( )RC RC RCO x A x P x        (4.11) 

If the overall risk contraction RC RC  then we 
have an efficient portfolio and the allocative risk contrac- 
tion  is certainly equal to one. 

= =O P 1

= 1RCA
 
4.1.2. Implicit Risk Aversion 
Duality between indirect utility functions and Morey and 
Morey’s distance functions involves an implicit risk 
aversion which makes the selected portfolio optimal re- 
garding to the mean-variance utility function. 

Allocative return expansion may change with respect 
to the risks aversion parameter. Given portfolio, one can 
calculate by how much the level of = /    needs to 
be increased to optimize overall portfolio efficiency. The 
earlier decompositions show that Allocative return ex- 
pansion is greater than zero excepted whenever the 
selected portfolio lies on the indifference curve of the 
mean-variance utility function at its optimal level. Hence, 
if *=MREO  , we have:  

( , ) = ( ) ( )AV x      x       (4.12) 
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It follows that:  

( , ) ( )
=

( )

AV

x

  


  x
         (4.13) 

It follows that . Hence, we have:  * ( )A
RED x 

( , ) ( )
( )

( )

A
A
RE

V
D x

x

  





x
.      (4.14) 

Proposition 4.1. For all portfolio  such that Ax
( ) > 0x , we have  

( , ) ( )
( ) = inf : ( , ) 0

( )

A

RE

V x
D x

x

    


 
 

 



)}

. 

Proof. From its definition, the representation set that is 
convex, then it is the intersection of all its supporting 
hyperplanes (see [2]). Hence, we have:  

2

( , ) 0

= {( , ) : ( ,A
ADR v e e v V

 
  



    . 

We can equivalently write  

( ) = inf{ : ( ( ), ( )) }A
RED x x x DR    A . 

Let us denote 2( , ) = {( , ) : AH v e e v V       
( , )}   for all ( , ) 0   . It follows that  

2

( , ) 0

( ) = inf : ( ( ), ( )) \ ( , )A
RED x x x H

 
    



 


  



. 

Since  

( , ) ( )
inf{ : ( ( ), ( )) ( , )} =

( )

AV
x x H

b x

      




x

, 

we immediately deduce the result. 
Paralleling the approach above, one can consider the 

situation where the risk of a given portfolio is contracted 
while fixing the returns at an arbitrary level. Following, 
Farrell decompositions, Allocative risk contraction is 
equal to one if a portfolio maximizes the mean variance- 
utility function. In such a case the Overall risk contraction 
is equal to one. Hence, in general, if we have * = RCO , 
we have  

*

*

( , ) = ( ) ( )

( ) ( , )
              = .

( )

A

A

V x x

x V

x

    

 







    (4.15) 

Therefore, we deduce that  

( ) ( , )
( )

( )

A
A
RC

x V
D x

x

  



       (4.16) 

In the next result, we show that one can go a bit 
further by establishing the following duality result: 

Proposition 4.2. For all portfolio , we have Ax
( ) ( , )

( ) = sup : ( , ) 0
( )

A
A
RC

x V
D x

x

    


 
 

 

)}

. 

Proof. From the definition of the representation set we 
have: 

( , ) 0

2= {( , ) : ( ,A
ADR v e e v V

 
  


    . 

We can equivalently write  

( ) = sup{ : ( ( ), ( )) }A
RC AD x x x DR    . 

It follows that  

2

( , ) 0

( ) = sup : ( ( ), ( )) \ ( , )A
RCD x x x H

 
    



   
  

  , 

where 2( , ) = {( , ) : ( , )}AH v e e v V     
) 0

   for 
all ( ,   . Since  

( ) ( , )
sup{ : ( ( ), ( )) ( , )} =

( )

Ax V
x x H

x

      



 , 

we immediately deduce the result.  
 
4.1.3. Computing the Implicit Risk Aversion Degree 
In this subsection we show how to compute the implicit 
risk aversion. First, we define the mathematical programs 
one should deal with to compute the distance functions. 
Notice that though these programs have some analogies 
to those proposed in [16] and its subsequent development, 
they are not non-parametric [17,18]. In fact the frontier 
has a quadratic functional representation and, conse- 
quently the model is parametric. An illustration is pro- 
posed in [19,20], where a stochastic frontier approach is 
proposed. However, the piecewise approximation ob- 
tained from the projection onto the frontier is a non- 
parametric estimation of the disposal representation set 
(see [2]). The following programs where first proposed 
by [1]. In the risk-oriented case we have, for all portfolio 

:  y

 
=1

,
, =1

=1

    ( ) = min

. . ( )

 ( )

 = 1,  0.

A
RC

n

i i
i

n

i j i j
i j

n

i
i

D y

s t y x E R

y x

x Ax

x









 









   (PRC) 

In the return-oriented case, if ( ) > 0y , we have:  

 
=1

,
, =1

=1

     ( ) = max

. . ( )

  ( )

  = 1,  0.

A
RE

n

i i
i

n

i j i j
i j

n

i
i

D y

s t y x E R

y x x

x Ax









 









   (PRE) 

It will be proven in the remainder that the implicit risk 
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aversion can be deduced from the Kuhn-Tucker multi- 
pliers of the above programs. Two set valued maps taking 
into account either a risk-contraction or a return-expan- 
sion distance function are now introduced.  

Definition 4.3. The set-valued map 
2

: 2A     
defined by  

( ) ( , )
( ) = argmax : ( , ) 0

( )

A

RC

x V
x

x

  


 



  


 

is called the adjusted risk-contraction function. The set- 
valued map  defined by  

2
: 2A    

( , ) ( )
( ) = argmin : ( , ) 0

( )

A

RE

V x
x

x

    


 
 

 
 

is called the adjusted return-expansion function.  
Notice that, in the return oriented case, we have 

limited our definition to A  that is a portfolio subset of 
. These definitions allow to provide a formal definition 

of the implicit risk aversion.  




Definition 4.4. Suppose that the maps RC  and RE  
are single-valued at x . The implicit risk-aversion degree 
in the risk oriented and return oriented case are defined 
respectively by:  

,1

,2

( )
( ) =

( )
RC

RC
RC

x
RA x

x




 and ,1

,2

( )
( ) =

( )
RE

RE
RE

x
RA x

x




. 

In the case where RC  and RE  are not single- 
valued at x , we say the the risk aversion is undefined.  

The next result shows that the Kunh-Tucker Multi- 
pliers of the mathematical programs above can be used to 
find the implicit risk aversion.  

Proposition 4.5. Suppose that the maps RC  is single- 
valued at x . Let ( , )RC RC   denotes the Kuhn-Tucker 
multipliers of the first and second constraints of 
Program ( )RCP , respectively. We have  

( ) = ( , )RC RCx RC    and ( ) = RC
RC

RC

RA x



. 

Proof. To prove this result, we use an earlier result due 
to Briec et al. [2] who used the shortage function A

gS  
that is defined for a given portfolio x  by:  

( ) = sup{ : ( ( ) , ( ) ) }A
g v eS x x g x g DR       A  

Setting, = ( )vg x  and , we obtain:  = 0eg

( ) = 1 ( )A A
g RS x D x C . 

However, from [2], we have:  

( , ) 0

( , ) ( ) ( )
( ) = inf

A
A
g

v e

V x
S x

g g 

   
 

  
 

 

x
. 

Since = ( )vg x  and , we have  = 0eg

( , ) 0

( , ) ( ) ( )
( ) = inf

( )

A
A
g

V x
S x

x 

   


x  
 
 

.  (4.17) 

Making an elementary transformation, we obtain:  

( ) ( , )
( ) = 1 sup : ( , ) 0

( )

A
A
g

x V
S x

x

    


 
  

 
. 

Hence, from Proposition 4.2 the solution of the dual 
optimization program in (4.17) is identical to ( )RC x . 
However, from [2], this solution coïncides with the Kuhn 
and Tucker multiplier. If the dual solution is unique the 
result follows.  

Proposition 4.6. Suppose that the maps RE  is single- 
valued at Ax  . Let ( , )RE RE   denotes the Kuhn- 
Tucker multipliers of the first and second constraints of 
Program ( )REP , respectively. We have  

( ) = ( , )RE REx RE   , and ( ) = RE
RE

RE

RA x



. 

Proof. The proof is similar to that of Proposition using 
[2] and setting,  and = 0vg = ( )eg x .  
 
4.2. Hyperbolic and McFadden Distance  

Functions and Duality Result 
 
We can also establish duality between these distance 
functions and the indirect mean-variance utility function. 

Proposition 4.7. For all portfolio  such that Ax
( ) > 0x , we have  

2 1/2

( , ) 0

 ( ) =

[ ( , ) 4 ( ) ( )]] ( , )
.inf

2 ( )

A
H

A A

D x

V x x V

x 

     


  
 
 

 

Proof. From the definition of the representation set we 
have:  

2

( , ) 0

= {( , ) : ( , )A
A

v e

DR v e e v V }   


   . 

We can equivalently write  

1
( ) = inf : ( ( ), ( ))A

H AD x x x DR  


  
 

. 

Let us denote 2( , ) = {( , ) : AH v e e v V       
( , )}   for all ( , ) 0   . It follows that  

2

( , ) 0

1
( ) = inf : ( ( ), ( )) \ ( , )A

HD x x x H
 

    
 

   
  

  . 

Solving a second order equation yields:  

2

2 1/2

1
   inf : ( ( ), ( )) \ ( , )

[ ( , ) 4 ( ) ( )] ( , )
= .

2 ( )

A A

x x H

V x x V

x

    


     


  
 

 


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2 , )HSince 2

( , ) 0 ( , ) 0
\ ( , ) = \ (H

   
 

 
     , we 

immediately deduce the result.  
A simpler duality result can be established regarding 

to the McFadden Gauge function [4]. 
Proposition 4.8. For all portfolio x  such that ( )x  

, we have  > 0

( , ) 0
,

( , )
( ) = inf

( )

A
A
MF A

V
G x

U x   

 


. 

Proof. The result is immediate using the fact that, if 
( A )MFx dom G , there is at least some halfspace ( ,H   

)  such that  

2

,

( , )
inf{ : ( ( ), ( )) \ ( , )} =

( )

A

A

V
x x H

U x 

      . 

 
5. Impact of Managerial Constraints on 

Portfolio Selection and Short Sales 
 
This section analyzes how performance measurement 
varies regarding to the managerial constraints summa- 
rized by the constraint . First, notice that if 

 for all , then the set of portfolio is 
defined by  

0Ax 
= 0Ax nx

0
1

= :
n

n
i

i

x x


  
 

 1

 .        (5.1) 

Since in such a case the map A  is identically null, 
we replace the subscript “ A ”, with “ ”. Suppose  is 
an affine map defined on . Let  be the set of all 
the affine maps defined on A . In the following, for all 

, we denote 

0


B
n




,A B A B  if Ax  Bx  for all x  
. Next, we introduce a specific measure inspired from 

the Thomson metric that has some similarities to the well 
known Hilbert projective metric. 

n

Definition 5.1. The map  de- 
fined by  

: [1,RC      ]

( , ) = ( , )supRC x
x A B

A B d
 

 A B  where  

( ) ( )
( , ) = max ,

( ) ( )

A B
RC RC

x B A
RC RC

D x D x
d A B

D x D x

  
 
  

 

is called the risk oriented distance between A  and .  B
Typically, xd  is inspired from the Thomson metric, 

because it computes from a radial projection the maxi- 
mum difference at a  between A  and . The main 
difference comes from the fact that the Thomson metric 
computes the distance between two points. Hence, 

B

xd  
allows to define the map  that measures some kind 
of distance between two sets of managerial constraints. 
By virtue of its nature, this index takes values greater 
than one for portfolios whose the efficiency score is 

affected by the managerial constraints. If the metric is 
equal to one for each portfolio of a sample, then the 
efficiency scores are not affected by the managerial 
constraints. However, this does not mean that the effi- 
cient frontiers respectively obtained from 



A  and  is 
identical. An interesting case arise in the situation where 

B

A  is the identity map (that is =A I



) and  is 
identically null. In such a case this measure allows to 
compare the situations with and without short sale and 
we not . The following properties are trivial: 

B

= 0B

B A
Lemma 5.2. Suppose that .  =A B  
i) If  then  

( )

( )

D x

D x

  
 
  

( , ) = mainf
x A B

A B
 

x
A
RC
B
RC

RC

=

 

ii) If A B


 then .  ( , ) =RC A B
> 1 =

1
iii) If  then ( , )A BRC A B . 
Figure 2 depicts the idea the measure is based on. In 

line with [14,15], the efficient frontier is modified ac- 
cording to the managerial constraints an investor is 
dealing with. Hence, the performance of portfolios is 
also modified by shift of the frontier. In particular, this 
measure is useful to test the impact of short sales impact 
on the performance of a given portfolio x . In such a 
case, we have:  

0

, RC
I
RC

0

( )
( ,0) = max

( )

I
RC

RC

D x
d I

D x

( )

( )

D x

D xx

  
 
  

)

,    (5.2) 

and  

0

( ,0) = infRC
x I

( ,0xI d I
 

 .       (5.3) 

Since, 0I   , we have  

( ,0) = supRC x
x I

( ,0)I d I




 .        (5.4) 

If there exists some portfolio 0  such that y ( )y  
= ( )x  and ( ) < ( ) (I

RC )y D x
) > 1

x  then it is easy to see 
that RC . Hence, in this situation, the possibi- 
lity of short sales enables decision makers to find a risk-  

( ,0I

 

Figure 2. Impact of Managerial Constraints.  
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]

less portfolio. A similar approach is possible when one 
looks for possible improvement of the return. 

Definition 5.3. The map  de- 
fined by  

: [1,RC     

( , ) = ( , )supRE x
x A B

A B A B
  

  where 

( ) ( )
( , ) = max ,

( ) ( )

A B
RE RE

x B A
RE RE

D x D x
A B

D x D x




 


     (5.5) 

is called the risk oriented distance between A  and .  B
Lemma 5.4. The following properties are also trivial. 

Suppose that =A B
    

A
.  

i) If  then  B 

( )
( , ) = maxsup

( )

B
RE

RE A
x REA B

D x
A B

D x 

 
 
 

  

ii) If =A B


 then .  ( , ) = 1RE A B
> 1 =iii) If  then ( , )A BRE A B .  

This measure is useful to test whether or not the short 
sales impact the return expansion given some portfolio 
x . In such a case, we have:  

0

0

( ) ( )
( ,0) = max ,

( ) ( )

I
RE RE

x I
RE RE

D x D x
I

D x D x


 
 
 

,      (5.6) 

and since, , we have  0I  

( ,0) = ( ,0)supRE x
x I

I I


 .         (5.7) 

If there exists some portfolio 0  such that y ( )y  
= ( )x  and , then it is easy to see 
that RC . Hence, in this situation, the possibi- 
lity of short sales enables decision makers to find a 
riskless portfolio. 

( ) ( ) < (I
RED x x

0) > 1
)y

( ,I

In general, it is difficult to compute the map ( ,RE A  
 and )B ( , )RC A B . However, one can compute an 

approximation based upon each specific asset. By 
construction, we have i , for  where 

=1, ,n  is the canonical basis of . This we do by 
defining  

( ) =iR e R = 1,i 
n

, n
{ }i ie 

1, ,
( ,0) max ( ,0)

iRC e
i n

I d I





  and      (5.8) 

1, ,
( ,0) max ( ,0)

iRE e
i n

I I





 .       (5.9) 

To analyse the case where there are short sales, an 
approach based upon quadratic programming may be 
used. However, since the optimization constraints are 
binding, it is possible to give a solution in closed form 
for * , *  and *x .  
 
6. Empirical Illustration 
 
This section presents a numerical example. It is shown 

that some key contributions of this paper can be easily 
implemented using standard methods of quadratic pro- 
gramming. The data are obtained from the CAC 40 
monthly stocks over a period running from January 1984 
to December 2008. For each of the 38 stocks, we have 
calculated monthly expected returns, covariances, varian- 
ces with a monthly percentage return. After computing 
the efficient frontier, we set parameters = 1  and =  

. Below, Tables 1 and 2 respectively summarize in the 
risk oriented and return oriented cases the decompo- 
sition of monthly performances for each asset. Remember 
that overall efficiency looks for a global improvement of 
a title following a chosen direction. Hence, it can be 
decomposed in two parts reflecting portfolio efficiency 
and allocative efficiency.  

2

As it is shown in Table 1, asset 1 (Accor) has a low 
return and therefore it is too risky. The investor can  

Table 1. Decomposition of “CAC 40” performance (Risk 
Oriented).  

Asset RCO  RCD  RCA  RC  

Accor 2.9767 0.0358 2.9409 0.0000 
Air france 0.8191 0.0291 0.7900 0.0140 
Air liquide 9.6218 0.0935 9.5283 0.0000 

Alcaltel –0.1972 0.2086 –0.4058 0.0133 
Alstom –0.6221 1.0000 –1.6221 0.0196 

Arcelor mittal 3.6585 0.0438 3.6147 0.0000 
Axa 1.8391 0.0225 1.8166 0.0000 
Bnp 2.5783 0.0336 2.5447 0.0000 

Bouygues 2.6120 0.0269 2.5851 0.0000 
Cap gemini 0.5518 0.0147 0.5372 0.0230 
Carrefour 5.0090 0.0489 4.9601 0.0000 

Credit agricole 2.1384 0.1024 2.0360 0.0097 
Danone 6.1840 0.0623 6.1218 0.0000 
Dexia –0.1622 0.3111 –0.4733 0.0128 
Eads 1.2664 0.0392 1.2272 0.0175 
Edf 17.4122 0.1721 17.2401 0.0000 

Essilor intl 9.2642 0.0716 9.1925 0.0000 
France telecom 0.1872 0.0333 0.1539 0.0107 

Gdf suez 41.1744 0.3918 40.7825 0.0000 
Lafarge 2.5799 0.0362 2.5437 0.0000 

Lagardere 2.3142 0.0272 2.2869 0.0000 
Loreal 6.2259 0.0522 6.1737 0.0000 
Lvmh 2.4824 0.0286 2.4539 0.0000 

Michelin 2.6201 0.0354 2.5847 0.0000 
Pernod ricard 6.5931 0.0642 6.5289 0.0000 

Peugeot 1.8569 0.0284 1.8285 0.0000 
Ppr 2.1359 0.0258 2.1101 0.0000 

Renault 0.9004 0.0209 0.8794 0.0319 
Saint gobain 2.7787 0.0324 2.7463 0.0000 

Sanofi aventis 9.4330 0.1144 9.3185 0.0000 
Schneider 3.0940 0.0356 3.0584 0.0000 

Societe generale 2.2684 0.0269 2.2415 0.0000 
Stmicroelec-

tronics 
0.9322 0.0161 0.9161 0.1430 

Suez E. 15.3026 0.9597 14.3429 0.0071 
Total 7.2215 0.0662 7.1553 0.0000 

Unibail 5.4427 0.0559 5.3868 0.0000 
Vallourec 2.1729 0.0181 2.1548 0.0000 

Veolia environ 2.1113 0.0484 2.0628 0.0337 
Vinci 3.9696 0.0393 3.9303 0.0000 

Vivendi 1.8895 0.0288 1.8607 0.0000 
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Table 2. Decomposition of “CAC 40” performance (Return 
Oriented).  

Asset REO  RED  REA  RE  

Accor 33.6665 33.6640 0.0025 0.0133 
Air france 2.5886 2.5561 0.0325 0.0135 
Air liquide –5.8125 –5.5131 –0.2994 0.0128 

Alcaltel 1.8827 1.5611 0.3215 0.0170 
Alstom 1.3252 1.0000 0.3252 0.0196 

Arcelor mittal 37.7219 37.5822 0.1397 0.0132 
Axa 27.2942 26.9360 0.3582 0.0135 
Bnp 11.8982 11.8983 –0.0001 0.0133 

Bouygues –11.7382 –11.6888 –0.0494 0.0134 
Cap gemini 3.7739 3.4874 0.2865 0.0142 
Carrefour –6.6492 –6.5984 –0.0508 0.0132 

Credit agricole 1.7816 1.7288 0.0528 0.0130 
Danone –7.8429 –7.6831 –0.1599 0.0131 
Dexia 1.3169 1.3140 0.0030 0.0134 
Eads 2.4821 2.4815 0.0005 0.0134 
Edf –6.1239 –5.4436 –0.6804 0.0122 

Essilor intl –2.3266 –2.2569 –0.0697 0.0130 
France telecom 2.3786 2.1740 0.2046 0.0147 

Gdf suez –4.6683 –3.7145 –0.9538 0.0103 
Lafarge 7.5510 7.5500 0.0010 0.0133 

Lagardere 77.9918 77.6968 0.2950 0.0134 
Loreal –3.2041 –3.1702 –0.0339 0.0132 
Lvmh –307.6488 –306.9223 –0.7265 0.0134 

Michelin 9.2097 9.2095 0.0001 0.0133 
Pernod ricard –6.2128 –6.0738 –0.1390 0.0130 

Peugeot 5.7738 5.7592 0.0146 0.0134 
Ppr 33.6970 33.4996 0.1974 0.0134 

Renault 3.4948 3.4060 0.0888 0.0135 
Saint gobain 162.9716 162.9394 0.0322 0.0134 

Sanofi aventis 25.2989 23.5278 1.7711 0.0126 
Schneider –252.3979 –252.3878 –0.0100 0.0133 

Societe  
generale 

56.2202 55.9829 0.2373 0.0134 

Stmicroelec-
tronics 

5.2064 4.9761 0.2303 0.0136 

Suez  
environnement 

1.4416 1.0284 0.4132 0.0037 

Total –4.4442 –4.3357 –0.1085 0.0130 
Unibail –9.4252 –9.2927 –0.1325 0.0131 

Vallourec –4.2453 –4.1137 –0.1315 0.0135 
Veolia environ 2.7819 2.7700 0.0119 0.0132 

Vinci –7.6228 –7.6144 –0.0085 0.0133 
Vivendi 5.8051 5.7926 0.0125 0.0134 

 
choose an efficient portfolio that is  less risky 
and does not require risk-taking (

0,036%
= 0RC ). Considering 

only risk aversion, it is possible to pursue reduction of 
risk to maximize the utility of a portfolio but, due to the 
market imperfections, this result cannot be achieved 
without short sales. 

In the return expansion case, the first asset is less 
efficient (Table 2) than is the risk oriented case. Given 
the same level of risk, it should be 50 times more 
profitable ( ). However, technically, we 
can only select a portfolio that produces 33 times more 
important return ( ). The market imperfec- 
tions again limits this return improvement ( ). 
Here, the investor must take 6 units of risk to increase his 
(or her) return of a one unit amount (

= 33.6665REO

= 3RED 3.6641
= 0.0025REA

= 0.0133RE ). 
Table 3 details implicit risk aversion of risk reduction  

Table 3. Implicit Risk Aversion. 

Asset Risk Oriented Return Oriented 

 RC RC RC  RE  RE  RE  

Accor 0.000 1.000 0.000 0.006 0.482 0.013
Air france 0.000 0.011 0.014 0.008 0.613 0.013
Air liquide 0.000 1.000 0.000 0.003 0.284 0.012

Alcaltel 0.006 0.462 0.013 0.020 1.197 0.017
Alstom 0.030 1.534 0.019 0.030 1.534 0.019

Arcelor mittal 0.000 1.000 0.000 0.005 0.433 0.013
Axa 0.000 1.000 0.000 0.008 0.616 0.013
Bnp 0.000 1.000 0.000 0.006 0.499 0.013

Bouygues 0.000 1.000 0.000 0.007 0.561 0.013
Cap gemini 0.000 0.008 0.023 0.012 0.846 0.014
Carrefour 0.000 1.000 0.000 0.005 0.408 0.013

Credit agricole 0.000 0.014 0.009 0.004 0.332 0.013
Danone 0.000 1.000 0.000 0.004 0.358 0.013
Dexia 0.003 0.287 0.012 0.007 0.542 0.013
Eads 0.000 0.010 0.017 0.006 0.509 0.013
Edf 0.000 1.000 0.000 0.002 0.195 0.012

Essilor intl 0.000 1.000 0.000 0.004 0.331 0.013
France  
telecom 

0.001 0.105 0.010 0.013 0.890 0.014

Gdf suez 0.000 1.000 0.000 0.001 0.095 0.010
Lafarge 0.000 1.000 0.000 0.006 0.480 0.013

Lagardere 0.000 1.000 0.000 0.007 0.557 0.013
Loreal 0.000 1.000 0.000 0.005 0.394 0.013
Lvmh 0.000 1.000 0.000 0.007 0.543 0.013

Michelin 0.000 1.000 0.000 0.006 0.485 0.013
Pernod ricard 0.000 1.000 0.000 0.004 0.352 0.013

Peugeot 0.000 1.000 0.000 0.007 0.545 0.013
Ppr 0.000 1.000 0.000 0.007 0.573 0.013

Renault 0.000 0.006 0.031 0.009 0.668 0.013
Saint gobain 0.000 1.000 0.000 0.006 0.509 0.013

Sanofi aventis 0.000 1.000 0.000 0.003 0.252 0.012
Schneider 0.000 1.000 0.000 0.006 0.484 0.013

Societe  
generale 

0.000 1.000 0.000 0.007 0.561 0.013

Stmicroelec-
tronics 

0.000 0.001 0.143 0.009 0.733 0.013

Suez E. 0.000 0.017 0.007 0.000 0.021 0.003
Total 0.000 1.000 0.000 0.004 0.346 0.013

Unibail 0.000 1.000 0.000 0.005 0.380 0.013
Vallourec 0.000 1.000 0.000 0.009 0.689 0.013

Veolia environ 0.000 0.006 0.033 0.005 0.429 0.013
Vinci 0.000 1.000 0.000 0.006 0.459 0.013

Vivendi 0.000 1.000 0.000 0.007 0.541 0.013

 
and return expansion for each asset. Note that some 
assets have a negative performance indicator. This can be 
explained by the fact that they have a negative return. 
The portfolio may have a greater risk than their expected 
returns and their respective utility functions measures the 
potential loss of each invested euro. This is not consistent 
with the objective of maximizing behaviour the investors 
have and, in such a case, allocative efficiency makes no 
sense. 

Improvements both based on increasing expected 
returns and risk contraction are presented in Table 4. In 
general, the shortage function and the hyperbolic function 
give almost the same improvement of performance 
(0.008 for asset 1). The Hyperbolic functions provide a 
seven times greater improvement than those obtained 
from these two functions. Hence, much more return, but  
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Table 4. “CAC 40” Efficiencies. 

Asset gS  RCD  RED  HD  MFG  

Accor 0.001 0.036 33.664 17.796 55.920 
Air france 0.006 0.029 2.556 2.109 3.759 
Air liquide 0.001 0.093 –5.513 10.691  

Alcaltel 0.007 0.208 1.561 1.410 1.695 
Alstom 0.000 1.000 1.000 1.000 1.000 

Arcelor mittal 0.001 0.044 37.582 17.622 65.610 
Axa 0.001 0.022 26.936 15.078 39.517 
Bnp 0.002 0.033 11.898 7.769 19.444 

Bouygues 0.002 0.026 –11.688 37.171  
Cap gemini 0.008 0.014 3.487 2.646 4.330 
Carrefour 0.002 0.048 –6.598 20.440  

Credit agricole 0.001 0.102 1.728 1.574 2.045 
Danone 0.002 0.062 –7.683 16.060  
Dexia 0.001 0.311 1.314 1.242 1.458 
Eads 0.004 0.039 2.481 2.082 3.583 
Edf 0.001 0.172 –5.443 5.809  

Essilor intl 0.002 0.071 –2.256 13.958  
France telecom 0.008 0.033 2.174 1.820 2.652 

Gdf suez 0.000 0.391 –3.714 2.552  
Lafarge 0.003 0.036 7.550 5.304 12.570 

Lagardere 0.000 0.027 77.696 30.111 120.149
Loreal 0.003 0.052 –3.170 19.150  
Lvmh 0.000 0.028 –306.922 35.013  

Michelin 0.002 0.035 9.209 6.271 15.251 
Pernod ricard 0.002 0.064 –6.073 15.570  

Peugeot 0.004 0.028 5.759 4.160 9.004 
Ppr 0.001 0.025 33.499 18.262 51.040 

Renault 0.007 0.021 3.406 2.643 4.776 
Saint gobain 0.000 0.032 162.939 30.859 263.763

Sanofi aventis 0.001 0.114 23.527 8.552 50.616 
Schneider 0.000 0.035 –252.387 28.082  

Societe  
generale 

0.001 0.027 55.983 25.723 86.276 

Stmicroelec-
tronics 

0.006 0.016 4.976 3.564 6.620 

Suez E. 0.000 0.959 1.028 1.017 1.057 
Total 0.003 0.066 –4.335 15.103  

Unibail 0.002 0.056 –9.293 17.886  
Vallourec 0.007 0.018 –4.114 55.354  

Veolia environ 0.004 0.048 2.770 2.306 4.102 
Vinci 0.003 0.039 –7.614 25.461  

Vivendi 0.004 0.029 5.793 4.184 9.091 

 
also much more risk (56 more times for asset 1) are 
involved with the McFadden Gauge [4]. 

Intuitively, this last measure may be use for a risk- 
lover manager. The mean return expansion function is 
suitable for risk-neutral investor. Risk averse manager 
may be appreciate by risk contraction, hyperbolic or 
shortage functions. 

Finally, regarding to all the results calculated in Table 
4, il clearly appears that the efficient frontier is entirely 
characterized by two funds: Asset 5 (Alsthom) and Asset 
34 (Suez environment). This is an illustration, of the two 
funds theorem. 
 
7. Conclusions 
 
This paper has analyzed duality relations between the 
indirect mean-variance utility function and a broad class 

of portfolio efficiency measures. It has been shown that 
such approaches are useful to measure the impact of 
managerial constraints on the performance. In addition, 
the implicit risk aversion of an optimal solution can be 
deduced from the Kuhn-Tucker optimality conditions. 
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Appendix: The Short Sale Case 
Computations 1= 1 [n ]x E R

  
 


 

 
Ω          (7.4) 

Since the constraints are binding. 

 
It is possible to give a solution of the case where there 
are short sales with an approach based upon quadratic 
programming.  

#[ ( )] [ ( )]E R x E R x  
Hence, substituting in the first order conditions, we have 
a three-dimensional system to solve, with:  

Computation of Risk Oriented Measure [ ] 1 [ ] = 0t
n pE R E R E R

  
 
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In the following, we assume that #( ) ( )x x 

))x

 where 
. Under such an assumption, 

we know that RC  lies on the curve 
representing the hyperbola relating the expected returns 
and the variance. We first write the Lagrangian of the 
optimization problem we need to solve. It is defined by  

#
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The last equation yields:  
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Substituting in 7.5, we obtain:  
* * * * *( , , , , )x      
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Following (7.2); we have  Hence, we obtain the optimal values:  
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and *  
ce 

is then obtained from equation 46. From 52, we 
dedu *x . The distance function is given by *   
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Computation of Return Oriented Measure 

 The 
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Suppose that 
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