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Abstract 
In this paper, we propose a Smooth Quantile Boost Classification (SQBC) algorithm for binary clas-
sification problem. The SQBC algorithm directly uses a smooth function to approximate the “check 
function” of the quantile regression. Compared to other boost-based classification algorithms, the 
proposed algorithm is more accurate, flexible and robust to noisy predictors. Furthermore, the 
SQBC algorithm also can work well in high dimensional space. Extensive numerical experiments 
show that our proposed method has better performance on randomly simulations and real data. 
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1. Introduction 
Boosting [1] is one of the most successful and practical methods that comes from the machine learning commu-
nity. It is well known for its simplicity and good performance. The powerful feature selection mechanism of 
boosting makes it suitable to work in high dimensional space. Friedman et al. [2] developed a general statistical 
framework to estimate function, which is often called a “stage-wise, additive model”. 

Consider the following function estimation problem  

( ) ( )( )* x arg min , x x ,
f

f E l Y f =                                 (1) 

where ( ),l ⋅ ⋅  is a loss function which is typically differentiable and convex with respect to the second argument. 
Estimating ( )*f ⋅  from the given data ( ){ }x , , 1, ,i iY i n=   with predictor vector x p

i ∈R  and iY  which 
is response variable, it can be performed by minimizing the empirical loss ( )( )1

1 , xn
i iin l Y f−

=∑ . To minimize 
the loss function, one employs iterative steepest descent in functional space. This leads to the generic functional 
gradient descent algorithm [3] [4]. 

http://www.scirp.org/journal/apm
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Many boosting algorithms can be understood as functional gradient descent with appropriate loss function. 
For example, if ( ) ( )( ), exp 2 1l Y f Y f= − −  is chosen, it would get AdaBoost [2]; if ( ) ( )2, 2l Y f Y f= −  is 
used, it would reduce to L2_Boost [5]. This idea was also applied to quantile regression and classification mod-
els [6]-[8]. 

Compared to classical least square regression, quantile regression [9] [10] is robust to outliers in observations, 
and can give a more complete view of the relationship between predictor and response. Furthermore, least 
square regression implicitly assumes normally distributed errors, while such an assumption is not necessary in 
quantile regression [10]. In quantile regression, let ( )Q Yτ  be the τth quantile of the random variable Y. Hunter 
et al. [11] proved that 

( ) ( )arg min ,Y
c

Q Y E Y cτ τρ= −                                (2) 

where ( )rτρ  is the “check function” [10] defined by 

( ) ( ) ( )0 1 ,r rI r rτρ τ= ≥ − −                                (3) 

with indicator function ( ) 1,I ⋅ =  if the condition is true, otherwise ( ) 0I ⋅ = . Let ( )f x  be the τth conditional 
quantile of Y for given x, i.e., ( ) ( )x xQ Y fτ = . Given training data ( ){ }x , , 1, ,i iY i n=   with predictor vector 
x p

i R∈  and response iY R∈ , quantile regression aims at estimating the conditional quantiles ( )xf , which 
can be formulated as 

( ) ( )( )*

1

1arg min x .
n

i if i
f Y f

n τρ
=

⋅ = −∑                             (4) 

Motivated by the gradient boosting algorithms [3] [4], Zheng [7] proposed the Quantile Boost (QBoost) algo-
rithms for predicting quantiles of the interested response for regression and binary classification in the frame-
work of functional gradient ascent/descent. In regression problem, Quantile Boost Regression (QBR) algorithm 
[7] performed gradient descent in the functional space to minimize the objective function. However, the QBR 
algorithm applied the gradient boosting algorithm to the “check function” ( )xτρ  without smooth approxima-
tion, and the objective function of QBR is not everywhere differentiable. Therefore the gradient descent algo-
rithm is not directly applicable. In binary classification scenario, Zheng [7] considered the following model 

( ) ( )* *x and 0 ,Y h Y I Yε= + = ≥                              (5) 

where Y* is a continuous hidden variable, ( )xh  is the true model for Y*, ε  is a disturb and { }0,1Y ∈  is the 
binary class label for the observation x. The above model defines the class label Y via a hidden variable Y*. Thus 
the conditional quantile of the class label Y, i.e., ( )xQ Yτ , can then be estimated by fitting the corresponding 
conditional quantile function of the hidden variable Y*, i.e., ( )* xQ Yτ . From the relation ( )* 0Y I Y= ≥  and 
the definition of quantile, the paper got the following relation: 

( )
( )
( )
( )

1 for x, 0
1 x 1 for x, 0

1 for x, 0

f
P Y f

f

τ β
τ β
τ β

> − >
= = − =
< − <

 

which is an inequality of the posterior probability of the binary class label given the predictor vector, where 
( )x,f β  is the τth conditional quantile function of the laten variable Y* with β  as the parameter vector. 
Hence, if we make decision with cut-off posterior probability value 1 τ− , it needs to fit the τ  quantile re-

gression function of the response. Once the model is fitted, i.e., the parameter vector β  is estimated as β̂ , it 
can make prediction by 

( )( )ˆˆ x, 0 ,Y I f β= ≥                                   (6) 

where Ŷ  is the predicted class label for the predictor vector x. An equivalent form of the definition of quantile 
is introduced 
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( ) ( ) ( )( )*

1
arg min x , 0 ,

n

i if i
f L Y I fτβ ρ β

=

  ⋅ = = − ≥   
∑                     (7) 

which can be proved equal to a maximized problem that the Quantile Boost Classification (QBC) algorithm [7] 
was proposed. 

Based on [7] [12], Zheng [8] proposed two smooth regression algorithms: gradient descent smooth quantile 
regression (GDS-QReg) model and boosted smooth quantile regression (BS-QReg) algorithm. The BS-QReg 
algorithm used a smooth function ( ),S xτ α  to approximate the “check function” ( )xτρ  in the qunatile regres-
sion problem. It can also be seen as a smoothed version of QBR algorithm [7]. 

In this paper, we consider the problem of using the smooth function ( ),S xτ α  to approximate the “check 
function” ( )xτρ  in the QBC algorithm [7]. 

Then we propose the Smooth Quantile Boost Classification (SQBC) algorithm, which applies the functional 
gradient descent to minimize the smooth objective function. Compared to QBC algorithm, the SQBC algorithm 
doesn’t need to transform the minimize problem to a maximize problem. And because of the use of smooth 
“check function” ( ),S xτ α , the SQBC algorithm has a model parameter more than QBC algorithm which makes 
our algorithm more flexible in applications. In addition, our SQBC algorithm also can work well in high dimen-
sion spaces problems and more robust to the dataset with noisy predictors. From our experiments on simulation 
studies and real datasets, the SQBC algorithm has a better performance than QBC algorithm and other three 
state-of-the-art boost-based classifiers. 

The rest of this paper is organized as follows: in Section 2, we first present the approximate smooth function 
of the “check function”. Then, we use the smooth operate trick to deal with our problem and give the smooth 
version objective function and loss function. With the application of the smooth loss function, we propose the 
Smooth Quantile Boost Classification (SQBC) algorithm; Section 3 discusses some computational issues in the 
proposed SQBC algorithm and introduces implementation details. In addition, we report the experimental results 
of the proposed SQBC algorithm on simulation datasets and real datasets; in Section 4, the conclusion of the 
paper is given. 

2. Boosting Procedure for Smooth Quantile Classification 
Assume   is the collection of all the weak learners (base procedures), i.e., ( ) ( ){ }1 x , , xdg g=  , where d is 
the total number of weak learners which could possibly be ∞. Denote the space spanned by the weak learners as 

( )
1

x | R, 1, , .
d

i i i
i

c g c i d
=

 = ∈ = 
 
∑                               (8) 

Assume ( )x,f β  be the τth conditional quantile function of the continuous latent variable Y* with β  as the 
parameter vector, which lies in the space spanned by the functions in  , i.e., ( ) ( )x,f β ∈  . Given training 
data ( ){ }x , , 1, ,i iY i n=   with x R p

i ∈  and { }0,1iY ∈ . To estimate the class label ( )( )x , 0iY I f β= ≥  in 
(6) for given the predictor vector xi , we need to estimate the conditional quantile function of the continuous 
latent variable Y*, i.e., ( )x ,if β . 

In this paper, instead of transforming the minimized problem in (7) to a maximized problem, we replace the 
“check function” ( )xτρ  in (7) by its smooth function ( ),S xτ α  with a small α directly. The smoothed function 
as following 

( ), log 1 e ,
x

S x x α
τ α τ α

− 
= + +  

 
                               (9) 

where 0α >  is called the smooth parameter. The properties and proofs of the smooth function ( ),S xτ α  can 
be found in [8]. 

Then, the problem becomes to solve 

( )
( ) ( )

( ) ( )( )*
,

1
arg min x , 0 .

n

s i if i
f L S Y I fτ αβ β

⋅ ∈ =

  ⋅ = = − ≥   
∑

 
                  (10) 

However, the function ( )sL β  in the above minimized problem is still not differentiable at the origin 0x =  
due to the use of the indicator function ( )( )x , 0iI f β ≥ . To apply gradient based optimized methods, we also 
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replace ( )( )x , 0iI f β ≥  by its smooth version [7], and solve 

( )
( ) ( )

( ) ( )( )*
,

1
arg min ,

n

ss i if i
f L S Y K f x hτ αβ β

⋅ ∈ =

  ⋅ = = −   
∑

 
                 (11) 

where ( )K ⋅  is the smooth version of the indicator function ( )0I t ≥  and h is a small positive value. The 
smooth function ( )K ⋅  has following properties [13]: 

( ) ( ) ( )0, , lim 1, lim 0.
t t

K t t R K t K t
→∞ →−∞

> ∀ ∈ = =                        (12) 

In this paper, we also take ( )K ⋅  as the standard normal cumulative distribution function 

( ) ( ) ( )
2

21d with e .
2π

z
z

z t t zφ φ
−

−∞
Φ = =∫                          (13) 

We consider solving the minimized problem in (11) in the general framework of functional gradient descent 
with the loss function 

( ) ( ) ( )( )( )( ), log 1 exp ,l Y f Y K f h Y K f hτ α α= − + + − −                   (14) 

which is differentiable and convex to the second argument. A direct application of the generic functional gra-
dient descent algorithm [3] [4] yields the Smooth Quantile Boost Classification (SQBC) algorithm, which is 
given in Algorithm 1. 

3. Simulation 
In this section, we first give an illustration of the calculation of the SQBC algorithm and the experiments. Then, 
three experiments were conducted to study the performance of the proposed SQBC algorithm. The first experi-
ment is on four simulation datasets with different dimensions, the second one on the German bank credit score 
datasets with and without niose, and the third experiment is conducted on two gene expression datasets. We com- 
pared the SQBC algorithm with QBC [7] and three state-of-the-art boost-based classifiers. Such as L2_Boost 
algorithm [5], AdaBoost algorithm [1] and LogitBoost algorithm [2]. 
 

Algorithm 1. Smooth Quantile Boost Classification algorithm (SQBC). 

0: Given training data set ( ){ }x , , 1, ,i iY i n= 
 with x p

i ∈R , { }0,1iY ∈ , the desired quantile value 

τ , and the total number of iterations M, initialize [ ] ( )0ˆ x 0f ≡ ;  
1: for 1m =  to M do  

2:   Compute the negative gradient ( ),l Y f
f
∂

−
∂

 and evaluate at [ ] ( )1ˆ xm
if − :  

[ ] ( )( ) [ ] ( )( )( )( )( )1 1ˆ ˆx 1 1 exp x , 1, , .m m
i i iU K f h Y K f h i nα τ− − ′= − + − − = 

 
  

3:   Fit the negative gradient vector 1 , , nU U  to 1x , , xn  by the base procedure (weak leaner, e.g., 
linear regression, decision stump)  

( ){ } [ ] ( )base procedure ˆx , , 1, , x .m
i iU i n g= →

 

4:   Update the estimation by  
[ ] ( ) [ ] ( ) [ ] ( )1ˆ ˆ ˆx x x .m m m

mf f gη−= +  

where 0 1mη< ≤  is a step size factor for the mth iteration.  
5: end for  
6: Output the obtained classifier [ ] ( )( )ˆ x 0MI f ≥ . 
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3.1. Calculation 
In Algorithm 1, the third step of SQBC algorithm can be performed by an ordinary least square regression or a 
decision tree etc. Hence the ( )xg  may be regarded as an approximation to the negative gradient by the base 
procedure for SQBC. In this paper, all the boost-based algorithms used the decision stump [14] as the base pro-
cedure because its good performance in boosting algorithms [3]. 

In step 4 of SQBC algorithm, the step size factor can be determined by a line search algorithm. Alternatively, 
for simplicity in each iteration, we could update the fitted function [ ] ( )ˆ mf ⋅  by a fixed, but small, step in the 
negative gradient direction. It is verified that the size of ηm is less important as long as it is sufficiently small. A 
smaller value of fixed step size ηm typically requires a larger number of boosting iterations and thus more com-
puting time, while the predictive accuracy has been empirically found to be good when choosing ηm “sufficiently 
small”, e.g., ηm = 0.1. Thus, in our experiments, the step size parameter is fixed at ηm = 0.1 for all iterations, as 
suggested by Bühlmann [15] and Friedman [3]. 

Similar to reference [7], the standard normal cumulative distribution function in (11) was used as approxima-
tion to the indicator function with h = 0.1. 

In our experiments, we made decision at the cut-off posterior probability 0.5, therefore we fit QBC and SQBC 
with τ = 0.5. 

In the proposed SQBC algorithm, the smooth parameter α of the smooth function ( ),S xα τ  will influence the 
performance of the algorithm. As we know in [16] that the choice of the smooth parameter α should not too 
small. On the other hand, a small value of α ensures that the smooth “check function” and the original “check 
function” are close. In each experiment, we first do the experiment of choosing the smooth parameter α of 
SQBC algorithm on each dataset, then we use the result of the SQBC algorithm with the best α to compare with 
the other boosting classifiers. 

3.2. Numeric Simulation 
In this subsection, four simulation datasets were generated to study the performance of the proposed SQBC al-
gorithm and compare to other four algorithms. 

The simulation datasets generated with two classes from the model 

( ) ( )( )
( )
( )

T

~ 0, , ~ ,

log , 1,2,3,4.
1 i

X Y X x Bernoulli p x

p x
X i

p x
β

 Σ =


 
= + =   −  





                    (15) 

The detail of the four datasets are list as following: 
5-Dimension Data: ( )1 7,0, 4,10,3β = , Σ is a 5 × 5 matrix with the pairwise correlation between xi and xj is 

given by i jr −  with r = 0.5, the error term   follows standard normal distribution. 
10-Dimension Data: ( )2 7,7,5,8,0,6,1,0,6,5β = , Σ is a 10 × 10 matrix with the pairwise correlation be-

tween xi and xj is given by i jr −  with r = 0.5, the error term   follows standard normal distribution. 
20-Dimension Data: ( )3 0,9,10,2,4,7,4,10,5,10,10,2,6,5,9,1,2,6,1,0β = , Σ is a 20 × 20 matrix with the 

pairwise correlation between xi and xj is given by i jr −  with r = 0.5, the error term   follows standard normal 
distribution. 

30-Dimension Data: ( )4 8, 2, 2,3,9, 4, 4,0,8,1,6,1,3,5,6,10,6,1,9,0,6,3,4,6,9,10,9,5,9,0β = , Σ is a 30 × 30 
matrix with the pairwise correlation between xi and xj is given by i jr −  with r = 0.5, the error term   follows 
standard normal distribution. 

We generated 10,000 samples for four datasets respectively. We randomly selected a training set of size 8000 
from each dataset and evaluated the five algorithms on the other 2000 examples. All algorithms were run for 100 
iterations. The splitting-training-testing process was repeated 500 times. 

Firstly, use the principle of the choice of α in Subsection 3.1 as a guide, we demonstrate the choice of α by 
data generated and splitting-training-testing process above for 14 different values of the smooth parameter α. 
Table 1 gives the mean of testing misclassification error rates (%) of the SQBC algorithm with 14 different val-
ues of the smooth parameter α on the four simulation datasets. 

Table 1 shows that the performance of the SQBC algorithm is best when α are 0.2, 0.2, 0.8 and 0.9 on 
5-dimension, 10-dimension, 20-dimension and 30-dimension simulation datasets respectively. 



Z. F. Wang, W. Z. Ye 
 

 
620 

Table 1. The mean of testing misclassification error rates (%) of the SQBC algorithm with 14 different values of the 
smooth parameter α on four different dimension simulation datasets. 

α 0.01 0.05 0.1 0.2 0.3 0.4 0.5 

5-Dim 6.9855 5.5491 5.3646 5.2496 5.3405 5.4502 5.3631 

10-Dim 5.8587 5.7106 5.4763 5.4448 5.5704 5.6947 5.6496 

20-Dim 6.8510 6.4498 6.6491 6.6253 6.6621 6.6362 6.5303 

30-Dim 10.036 8.4472 8.6398 8.5006 8.6252 8.6076 8.4557 

α 0.6 0.7 0.8 0.9 1.0 1.5 2.0 

5-Dim 5.3077 5.2555 5.2643 5.3350 5.3034 5.4470 5.6876 

10-Dim 5.5477 5.5364 5.5167 5.5402 5.5071 5.7830 6.1316 

20-Dim 6.4473 6.4122 6.4010 6.4252 6.4539 6.8155 7.3537 

30-Dim 8.3894 8.3525 8.3491 8.3392 8.3761 8.8494 9.5651 

 
We do the same procedure again use the other four boosting classifiers on the four simulation datasets. Table 

2 shows the mean train and test misclassification error rates. From Table 2 we can see that compared to the al-
ternative methods, SQBC achieves the best performance on all four different dimension simulation datasets. 

3.3. Simulation on German Bank Credit Score Dataset 
In this subsection, we compare the result of SQBC algorithm with the other four classifiers on the German bank 
credit score dataset used in [7] which is available from UIC machine learning repository. The dataset is of size 
1000 with 300 positive examples, each has 20 predictors normalized to be in [ ]1,1− . In addition, similar to [7], 
to test the variable selection ability of SQBC, twenty noisy predictors were generated from the uniform distribu-
tion on [ ]1,1−  and were added to the origin dataset. 

For the two datasets, without preselecting variables, we randomly selected a training set of size 800 from the 
dataset for model training and evaluated the five algorithms on the other 200 examples respectively. All algo-
rithms were run for 100 iterations. The splitting-training-testing process was repeated 500 times. 

Since the smooth parameter α of the smooth function ( ),S xα τ  will influence the performance of the SQBC 
algorithm, we choice α on the clean and noise credit datasets. The above procedure repeated for 14 different 
values of the smooth parameter α. Table 3 gives the mean of testing error rates (%) of the SQBC algorithm on 
clean and noisy credit dataset. 

Table 3 shows that the performance of the SQBC algorithm is best when α = 0.5 on clean dataset and α = 0.9 
on noisy dataset. And this verifies the qualitative analysis, that is, α should be small but not too small. Thus, we 
use α = 0.5 in the following experiments on the clean credit datasets and α = 0.9 on the noisy credit dataset. 

Based on the above result of the best smooth parameter α, we compare the SQBC algorithm to other four al-
gorithms on the credit score dataset with and without noisy predictors using the above procedure. The mean 
testing error rates are listed in Table 4. From Table 4 we can see that compared to the alternative methods, 
SQBC achieves the best performance on both clean and noisy data. Besides, we observe that SQBC deteriorates 
only slightly on the noisy data, verifing its robustness to noisy predictors. 

3.4. Results on Gene Expression Data 
In this subsection, we compare the SQBC algorithm with the alternative methods on two publicly available da-
tasets in bioinformatics: Colon and Leukemia [14]. In these datasets, each predictor is the measure of the gene 
expression level, and the response is a binary variable. The Colon dataset is publicly available at  
http://microarray.princeton.edu/oncology/, and the Leukemia at http://www-genome.wi.mit.edu/cancer/. See 
Table 5 for the sizes and dimensions of these datasets. 

Similar to [7], since all the datasets have small size n, the leave-one-out (LOO) cross validation is carried out 
to estimate the classification accuracy. That is, we put aside the ith observation and trained the classifier on the  

http://microarray.princeton.edu/oncology/
http://www-genome.wi.mit.edu/cancer/
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Table 2. The performance of L2_Boost, AdaBoost, LogitBoost, QBC and the proposed SQBC algorithm on four different 
dimensions simulation datasets. Listed are the mean values of 500 train and test misclassification error rates (%). 

 
5-Dimension 10-Dimension 20-Dimension 30-Dimension 

Train Test Train Test Train Test Train Test 

L2_Boost 6.807 7.414 6.607 7.547 8.017 9.315 11.25 12.97 

AdaBoost 9.031 9.433 14.56 15.19 21.21 21.98 27.37 28.11 

LogitBoost 7.221 7.725 10.36 11.22 13.98 15.04 18.73 20.13 

QBC 13.93 14.45 5.306 6.578 6.661 8.481 16.78 18.50 

SQBC 4.326 5.250 4.040 5.445 4.539 6.401 5.709 8.339 

 
Table 3. The mean of testing misclassification error rates (%) of the SQBC algorithm with 14 different values of the 
smooth parameter α on German bank credit score datasets with and without noise. 

α 0.01 0.05 0.1 0.2 0.3 0.4 0.5 

Clean Data 25.182 24.626 24.486 24.170 24.072 23.951 23.720 

Noisy Data 25.749 25.395 24.981 25.282 25.232 25.055 25.069 

α 0.6 0.7 0.8 0.9 1.0 1.5 2.0 

Clean Data 23.724 23.929 23.752 24.032 23.764 24.233 24.916 

Noisy Data 24.897 24.807 24.844 24.490 24.838 24.852 25.255 

 
Table 4. The performance of L2Boost, AdaBoost, LogitBoost, QBC and the proposed SQBC algorithm on German bank 
credit score datasets with and without noise. Listed are the mean values of 500 testing misclassification error rates (%). 

Data L2_Boost AdaBoost LogitBoost QBC SQBC 

Clean 26.00 29.94 28.70 25.57 23.72 

Noise 27.05 30.10 29.49 26.36 24.49 

 
Table 5. The size and dimension of each dataset. 

Data Size Dim 

Colon 62 2000 

Leukemia 72 3571 

 
remaining (n − 1) data points. We then applied the learned classifier to get îY , the predicted class label of the ith 
observation. This procedure is repeated for all the n observations in the dataset, so that each one is held out and 
predicted exactly once. The LOO error number (NLOO) and rate (ELOO) are determined by 

( )
1

ˆ .
n

LOO i i
i

N I Y Y
=

= ≠∑                                  (16) 

( )
1

1 ˆ .
n

LOO i i
i

E I Y Y
n =

= ≠∑                                 (17) 

In LOO cross validation, the training and testing sets are highly unbalanced, which will affect the evaluation 
result. To provide more thorough results, we also conducted 5-fold cross validation (5-CV) and 10-fold cross 
validation (10-CV), in which each dataset was randomly partitioned into five or ten parts of roughly equal size. 
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In every experiment, one part was used as the testing set, and the other four or nine parts were used as the train-
ing set. 

Like the experiments above, we also choice α in SQBC algorithm on the Colon and Leukemia datasets for the 
three CV methods. Table 6 gives the mean of testing misclassification error rates (%) of the SQBC algorithm on 
each dataset and each method. 

From Table 6, we can see that the SQBC algorithm performs best in the LOO CV method when α = 1.5 on 
Colon dataset and α = 0.7 - 2.0 on Leukemia dataset. In the 5-CV method, SQBC algorithm performs best when 
α = 0.01 or 2.0 on Colon dataset and α = 1.5 or 2.0 on Leukemia dataset. And in the 10-CV method, SQBC al-
gorithm performs best when α = 0.1 on Colon dataset and α = 2.0 on Leukemia dataset. 

Table 7 summarizes the LOO classification error numbers and rates of the considered classifiers on the two 
datasets. From Table 7, it is readily seen that on Colon dataset SQBC perform more accurate than AdaBoost, 
LogitBoost and QBC, but less accurate than L2_Boost. However, the results of SQBC and QBC are very close. 
On the Leukemia dataset, AdaBoost and LogitBoost have the best performance is. Our SQBC is more accurate 
than L2_Boost and QBC, but preforms worse than AdaBoost and LogitBoost. In addition, the results of SQBC 
and the algorithms which have the best performance are also very close. 

Table 8 and Table 9 list the mean of the testing misclassification error rates of the 5-fold CV and 10-fold CV. 
From Table 8 and Table 9 we observe that SQBC algorithm yields the best performance on the two datasets in 
the 5-fold CV and 10-fold CV methods. 
 
Table 6. The mean of testing misclassification error rates (%) of the SQBC algorithm with 14 different values of the 
smooth parameter α on Colon and Leukemia using LOO-CV, 5-fold CV and 10-fold CV methods. 

α 
LOO CV 5-fold CV 10-fold CV 

Colon Leukemia Colon Leukemia Colon Leukemia 

0.01 24.194 22.222 17.821 15.429 21.429 19.286 

0.05 22.581 23.611 22.308 16.762 21.190 16.607 

0.1 22.581 26.389 24.103 16.762 16.429 17.679 

0.2 24.194 22.222 22.564 16.762 18.095 17.679 

0.3 22.581 19.444 26.026 12.571 16.667 13.750 

0.4 20.968 9.7222 27.436 9.7143 20.000 9.4643 

0.5 20.968 8.3333 25.897 9.7143 23.095 8.0357 

0.6 24.194 6.9444 27.308 9.7143 20.000 6.6071 

0.7 20.968 5.5556 24.103 8.2857 21.429 6.6071 

0.8 22.581 5.5556 21.026 6.8571 23.095 6.6071 

0.9 20.968 5.5556 21.026 6.8571 24.524 6.6071 

1.0 20.968 5.5556 19.359 6.8571 21.429 6.6071 

1.5 17.742 5.5556 19.487 5.5238 22.857 6.6071 

2.0 19.355 5.5556 17.821 5.5238 22.857 5.3571 

 
Table 7. The leave-one-out error numbers and rates of the considered algorithms on the two gene expression datasets. For 
each algorithm, the misclassification numbers are provided and the error rates are listed in parentheses. 

Data L2_Boost AdaBoost LogitBoost QBC SQBC 

Colon 10 (16.13%) 14 (22.58%) 13 (20.97%) 15 (24.19%) 11 (17.74%) 

Leukemia 5 (6.944%) 3 (4.167%) 3 (4.167%) 13 (18.06%) 4 (5.556%) 
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Table 8. The 5-folds cross validation mean testing misclassification error rates (%) of the considered algorithms on the two 
gene expression datasets. 

Data L2_Boost AdaBoost LogitBoost QBC SQBC 

Colon 22.69 24.36 22.69 17.82 17.82 

Leukemia 8.286 8.286 9.619 15.43 5.524 

 
Table 9. The 10-folds cross validation mean testing misclassification error rates (%) of the considered algorithms on the 
two gene expression datasets. 

Data L2_Boost AdaBoost LogitBoost QBC SQBC 

Colon 19.29 21.90 21.90 22.86 16.43 

Leukemia 6.607 6.607 6.607 14.11 5.357 

4. Conclusions 
Motivated by Quantile Boost Classification (QBC) algorithm in [7], this paper directly applies the smooth func-
tion ( ),S xτ α  [8] to approximate the “check function” of quantile regression problem, resulting Smooth Quan-
tile Boost Classification (SQBC) algorithm for binary classification. 

Similar to QBC algorithm, SQBC algorithm can also yield local optima, work in high dimensional spaces and 
select informative variables. The SQBC algorithm was tested extensively on four simulation datasets with dif-
ferent dimensions, the German bank credit score dataset with and without noise, and two gene expression data-
sets. On all datasets, compared with the QBC algorithm [7] and other three popular boost-based classifiers: 
AdaBoost [1], L2_Boost [5] and LogitBoost [2], SQBC algorithm has the significantly better results. And the 
comparative result on credit score dataset with and without noise shows that SQBC is robust to noisy predictors. 
Moreover, the result of gene expression datasets shows that the SQBC algorithm can work in high dimensional 
spaces and have a better performance. 

Recently, Chen et al. [17] described a scalable end-to-end tree boosting system called XGBoost, which pro-
posed a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learn-
ing. Motivated by Chen et al. [17], we plan to develop the SQBC algorithm in the framework of XGBoost to 
make the SQBC algorithm more useful. In addition, in [18], the paper applied a quantile-boosting approach to 
forecast gold returns. The current version of SQBC is only for binary classification problem, and we plan to de-
velop the algorithm to do some other predicting tasks like [18] in the economics and finance. 
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