
Open Journal of Inorganic Chemistry, 2016, 6, 205-218 
Published Online July 2016 in SciRes. http://www.scirp.org/journal/ojic 
http://dx.doi.org/10.4236/ojic.2016.63016   

How to cite this paper: Binda, P., Rivers, K. and Padgett, C. (2016) Zinc Complexes of New Chiral Aminophenolate Ligands: 
Synthesis, Characterization and Reactivity toward Lactide. Open Journal of Inorganic Chemistry, 6, 205-218.  
http://dx.doi.org/10.4236/ojic.2016.63016  

 
 

Zinc Complexes of New Chiral  
Aminophenolate Ligands: Synthesis,  
Characterization and Reactivity toward  
Lactide 
Pascal Binda1*, Kimberly Rivers1, Clifford Padgett2 
1Department of Chemistry and Forensic Science, Savannah State University, Savannah, GA, USA 
2Department of Chemistry and Physics, Armstrong State University, Savannah, GA, USA 

  
 
Received 16 May 2016; accepted 26 July 2016; published 29 July 2016 

 
Copyright © 2016 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
The syntheses of a library of new chiral aminophenolate bidentate O,N-type ligands HOC6H4(2-R- 
4-R′)CH2N(Me)CH(Me)C6H5 [R = R′ = But, 1; R = R′ = Pent, 2; R = But, R′ = Me, 3; R = Me, R′ = But, 4; R = R′ 
= Me, 5] and tridentate O,N,O-type ligands HOC6H4(2,4-But)CH = NCH(R′′)C6H5 [R′′ = Me, 6; R′′ = 
CH2OMe, 7] are reported. These ligands were characterized by elemental analysis, nuclear magnetic 
resonance spectroscopy (1H & 13C), and single crystal X-ray diffraction. These ligands serve as chiral 
auxiliaries for inorganic chemists to design chiral metal-based complexes for asymmetric catalysis 
and stereoselective polymerization reactions. Three new heteroleptic zinc complexes based on these 
ligands have been synthesized in moderate yields via a ligand-exchange transamination reaction 
between homoleptic [Zn(N(SiMe3)2)2] and one equivalent of corresponding ligands to afford [L3ZnN- 
(SiMe3)2] (3a), [L4ZnN(SiMe3)2] (4a), and [L7ZnN(SiMe3)2] (7a). Solvent-free polymerization of rac- 
lactide at 130˚C using these zinc compounds yielded atactic polylactides with Mw 10,000 g/mol and 
narrow polydispersity of 1.3. 

 
Keywords 
Chiral Ligands, Aminophenolate, Zinc, Lactide, Polymerization 

 
 

1. Introduction 
Due to the problems associated with conventional olefinic polymeric materials, the production of biodegradable 
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plastics from renewable resources has been a large focus in chemistry and chemical engineering research within 
the last two decades [1]-[16]. Aliphatic polylactides (PLAs) and polycaprolactones (PCLs) are polyesters that 
have been studied intensively due to their biodegradable and bioassimilable properties and have found interest-
ing applications in packaging, drug delivery and medical implantation devices [17]-[42]. In order to obtain well- 
defined polyester PLA and PCL materials with predetermined microstructure, the ring-opening polymerization 
(ROP) of cyclic monomers (lactide and caprolactone) initiated by single-site metal complexes has been em-
ployed for chain-growth polymerization through coordination-insertion mechanism [1]-[11]. This allows for a 
much higher polymerization control compared to step-growth direct condensation of lactic acid. 

Well-defined metal complexes of the form LMX (L = multidentate ancillary ligand; M = central metal; X = 
initiating group) have been studied extensively to investigate the electronic and steric properties of the central 
metal and ancillary ligand and their effects on the polymerization process [4], [43]-[70]. Metal-based initiators 
of aluminum, magnesium, zinc, tin, iron, titanium, zirconium, yttrium, and lanthanide metals have been em-
ployed with reactivity increasing with metal size due to increase in electropositivity, while polymerization con-
trol decreases in the same order. As the reactivity and selectivity of a metal catalyst are largely determined by 
the auxiliary ligands [71]-[74], ligand design has been a central focus in ROP of cyclic esters, with aminophe-
nolate ligands receiving great attention due to the potential to fine tune the steric and electronic properties by 
varying the substituent groups and pendant side-arms to afford different donor atoms, as well as their inexpen-
sive synthetic strategies [67]-[70], [75]-[80]. Given their widespread application, it is somewhat surprising that 
the chiral variants of aminophenolate ligands are relatively lacking in the literature. The physical, mechanical, 
and thermal properties of PLA depend to a great extent on the polymer’s tacticity (isotactic, syndiotactic, hete-
rotactic and atactic). It is believed that isotactic and heterotactic PLAs produced from rac-LA will produce ma-
terials with superior properties. Thus controlling the microstructure of PLA produced from rac-LA has received 
great attention [6], [81]-[87] and chiral catalysts can provide a better stereo-control. 

Zinc complexes are efficient catalysts for ROP of lactides with moderate reactivities compared to the highly 
electropositive lanthanide metals and have recently received much attention due to its flexible coordination 
chemistry, substitutional lability, Lewis acidity and non-toxicity [88]-[101]. With moderate reactivity of zinc al-
lowing for more polymerization control, attaching chiral aminophenolate ancillary ligands with varying substi-
tuents and pendant arms may induce high isotactic/heterotactic selectivity in the ROP of rac-lactide. To the best 
of our knowledge, only Wang and Ma have reported the diastereoselective synthesis of chiral aminophenolate 
zinc complexes with multiple stereogenic centers and their isoselective polymerization of rac-lactide [101]. 
Herein we report the synthesis and characterization of new chiral aminophenolate zinc complexes with varying 
substituents and pendant donor arms containing one stereogenic center, and their reactivity toward racemic lac-
tide. 

2. Experimental Procedure 
2.1. Materials and Measurements 
All air- or moisture-sensitive reactions were carried out under a dry nitrogen atmosphere, employing standard 
Schlenk line and glovebox techniques. Solvents were dried over sodium/benzophenone and distilled under ni-
trogen. Racemic lactide was purchased from Aldrich, stored under an inert atmosphere, and used as received. 
Deuterated solvents were purchased from Alfa Aesar and used as received. 2,4-Di-tert-butylphenol, 2,4-dime- 
thylphenol, 2,4-di-tert-pentylphenol, 37 wt% formaldehyde, and D(+)-alpha-methylbenzylamine were purchased 
from Acros Organic and used as received. 3,5-Di-tert-butyl-2-hydroxybenzaladehyde was purchased from Alfa 
Aesar and used as received. (R)-(+)-N-α-dimethylbenzylamine, (R)-(–)-2-methoxy-1-phenylethylamine, and 2- 
tert-butyl-4-methylphenol were purchased from Aldrich while 4-tert-butyl-2-methylphenol was purchased from 
Fluka and used as received. All 1H and 13C NMR spectra were recorded on a JEOL-300 NMR spectrometer and 
referenced to CDCl3, C6D6, C7D8, or C4D8O. Elemental analyses (sealed ampoules under inert atmosphere for 
air-sensitive compounds) were performed by Midwest Microlab Incorporated in Indianapolis, IN. Melting points 
were obtained on a Mel-Temp apparatus and are uncorrected. Optical rotations were recorded on a Rudolph 
Autopol III polarimeter with sodium D-line (589 nm) at room temperature. GC-MS analyses were performed on 
Bruker Scion 436-GC systems at 50˚C with electron impact ionization (70 eV). Gel permeation chromatography 
(GPC) analysis was performed using Tosoh EcoSEC HLC-8320 GPC instrument and calibrated to polystyrene 
standards. Single crystals were analyzed at Armstrong State University in Savannah, GA using Rigaku XtaLAB 
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mini X-ray diffractometer. 

2.2. Synthesis of Chiral Ligands 
(R)-(+)-(2,4-Di-tert-butyl-1-hydroxylbenzyl)-N-α-dimethylbenzylamine (L1H) 

2,4-Di-tert-butylphenol (3.054 g, 14.80 mmol), 37 wt% formaldehyde (0.444 g, 14.80 mmol), and (R)-(+)-N- 
α-dimethylbenzylamine (2.000 g, 14.80 mmol) were dissolved in ethanol (5 mL). The resulting solution was 
heated at reflux for 18 h and then cooled to room temperature. Solvent and water were removed using high va-
cuum Schlenk line to obtain pale yellow oily solid. Recrystallization from ethanol at −10˚C (freezer) yielded an 
off-white solid, which was dried under high vacuum at 40˚C (4.858 g, 92.8%). Mp: 73.4˚C - 73.6˚C; [α]D + 
0.301 (c = 0.04, toluene). Elemental analysis: (Found: C 81.55, H 9.94, N 4.07. C24H35NO requires C 81.535, H 
9.98, N 3.96. 1H NMR (300 MHz; CDCl3; 298 K) 1.29 (s, 9H, ArtBu), 1.51 (s, 9H, ArtBu), 1.55 (d, 3H, J = 6.87 Hz, 
ArCH(Me)NMe), 2.23 (s, 3H, ArCH(Me)NMe), 3.77 (br, 2H, ArCH2N), 3.89 (q, 1H, J = 6.87 Hz, ArCH- 
(Me)NMe), 6.90 (s, 1H, ArH), 7.27 (s, 1H, ArH), 7.34 - 7.41 (br, 5H, ArH), 11.32 (br, 1H, ArOH). 13C{H} NMR 
(75 MHz; CDCl3; 298 K) 17.3 (ArCMe3), 29.8 (ArCMe3), 31.9 (ArCMe3), 34.3 (ArCMe3), 35.0 (ArCH(Me)NMe), 
36.7 (ArCH(Me)NMe), 59.1 (ArCH(Me)NMe), 61.6 (ArCH2N), 121.4, 122.8, 123.6, 127.6, 128.4, 128.5, 135.5, 
140.5, 154.7 (all ArC). GC-MS m/z calcd for C24H35NO: 353.55; found 353.4. 

(R)-(+)-(2,4-Di-tert-pentyl-1-hydroxylbenzyl)-N-α-dimethylbenzylamine (L2H) 
2,4-Di-tert-pentylphenol (1.734 g, 7.40 mmol), 37 wt% formaldehyde (0.222 g, 7.40 mmol), and (R)-(+)-N- 

α-dimethylbenzylamine (1.000 g, 7.40 mmol) were dissolved in ethanol (5 mL). The resulting solution was hea- 
ted at reflux for 18 h and then cooled to room temperature. Solvent and water were removed using high vacuum 
Schlenk line to obtain colorless oil. Recrystallization from ethanol at −10˚C (freezer) yielded a white, oily solid 
that was dried under high vacuum at room temperature to afford a colorless oil (2.115 g, 74.9%); [α]D + 0.224 (c 
= 0.04, toluene). Elemental analysis: (Found: C 81.51, H 10.17, N 3.78. C26H39NO requires C 81.84, H 10.30, N 
3.67%). 1H NMR (300 MHz; CDCl3; 298 K) 0.69 (t, 3H × 2, J = 7.56 Hz, ArCMe2CH2Me), 1.27 (s, 6H, 
ArCMe2CH2Me), 1.42 (s, 6H, ArCMe2CH2Me), 1.52 (d, 3H, J = 6.87 Hz, ArCH(Me)NMe), 1.61 (q, 2H, J = 7.56 
Hz, ArCMe2CH2Me), 1.94 (q, 2H, J = 7.56 Hz, ArCMe2CH2Me), 2.18 (s, 3H, ArCH(Me)NMe), 3.73 (br, 2H, 
ArCH2N), 3.85 (q, 1H, J = 6.87 Hz, ArCH(Me)NMe), 6.76 (s, 1H, ArH), 7.09 (s, 1H, ArH), 7.26 - 7.39 (br, 5H, 
ArH), 11.15 (br, 1H, ArOH). 13C{H} NMR (75 MHz; CDCl3; 298 K) 9.3 (ArCMe2CH2Me), 9.7 (ArCMe2- 
CH2Me), 18.7 (ArCMe2CH2Me), 27.7 (ArCMe2CH2Me), 28.7 (ArCMe2CH2Me), 33.0 (ArCMe2CH2Me), 36.5 
(ArCMe2CH2Me), 37.3 (ArCH(Me)NMe), 38.5 (ArCH(Me)NMe), 59.1 (ArCH(Me)NMe), 61.3 (ArCH2N), 
121.1, 124.2, 124.9, 127.6, 128.4, 128.5, 133.7, 138.6, 154.4 (all ArC). 

(R)-(+)-(2-Tert-butyl-4-methyl-1-hydroxylbenzyl)-N-α-dimethylbenzylamine (L3H) 
2-Tert-butyl-4-methylphenol (2.430 g, 14.80 mmol), 37 wt% formaldehyde (0.444 g, 14.80 mmol), and (R)- 

(+)-N-α-dimethylbenzylamine (2.000 g, 14.80 mmol) were dissolved in ethanol (5 mL). The resulting solution 
was heated at reflux for 18 h and then cooled to room temperature. Solvent and water were removed using high 
vacuum Schlenk line to obtain a white solid. Recrystallization from ethanol at −10˚C (freezer) yielded a white 
powder that was dried under high vacuum at room temperature (4.010 g, 92.0%). Yellow single crystals suitable 
for X-ray crystallography were grown from the supernatant solution at room temperature. Mp: 62.9˚C - 63.2˚C; 
[α]D + 0.232 (c = 0.04, toluene). Elemental analysis: (Found: C 81.01, H 9.33, N 4.55. C21H29NO requires C 
80.98, H 9.385, N 4.50%). 1H NMR (300 MHz; CDCl3; 298 K) 1.49 (s, 9H, ArtBu), 1.54 (d, 3H, J = 6.87 Hz, 
ArCH(Me)NMe), 2.19 (s, 3H, ArCH(Me)NMe), 2.30 (s, 3H, ArMe), 3.71 (br, 2H, ArCH2N), 3.89 (q, 1H, J = 
6.87 Hz, ArCH(Me)NMe), 6.70 (s, 1H, ArH), 7.05 (s, 1H, ArH), 7.33 - 7.43 (br, 5H, ArH), 11.31 (br, 1H, 
ArOH). 13C{H} NMR (75 MHz; CDCl3; 298 K) 17.2 (ArCMe3), 20.9 (ArMe), 29.7 (ArCMe3), 34.7 (ArCH- 
(Me)NMe), 36.5 (ArCH(Me)NMe), 58.7 (ArCH(Me)NMe), 61.3 (ArCH2N), 122.2, 126.7, 127.1, 127.6, 128.4, 
128.5, 136.3, 140.4, 154.8 (all ArC). 

(R)-(+)-(4-Tert-butyl-2-methyl-1-hydroxylbenzyl)-N-α-dimethylbenzylamine (L4H) 
4-Tert-butyl-2-methylphenol (1.215 g, 7.40 mmol), 37 wt% formaldehyde (0.222 g, 7.40 mmol), and (R)-(+)- 

N-α-dimethylbenzylamine (1.000 g, 7.40 mmol) were dissolved in ethanol (3 mL). The resulting solution was 
heated at reflux for 18 h and then cooled to room temperature. Solvent and water were removed using high va-
cuum Schlenk line to obtain a white, oily solid. Recrystallization from ethanol was unsuccessful as only a color-
less oil was obtained. Compound was purified by column chromatography (silica gel 100 mesh, hexane/ethyl 
acetate = 9:1) to afford a colorless oil. The oil was dissolved in hot methanol and allowed to cool to room tem-
perature to yield a white powder, that was dried under high vacuum at 60˚C (4.858 g, 92.8%). Mp: 90.4˚C - 
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90.6˚C; [α]D + 0.304 (c = 0.04, toluene). Elemental analysis: (Found: C 80.88, H 9.29, N 4.61. C21H29NO re-
quires C 80.98, H 9.385, N 4.50%). 1H NMR (300 MHz; CDCl3; 298 K) 1.30 (s, 9H, ArtBu), 1.56 (d, 3H, J = 
6.87 Hz, ArCH(Me)NMe), 2.24 (s, 3H, ArCH(Me)NMe), 2.29 (s, 3H, ArMe), 3.65 (br, 2H, ArCH2N), 3.82 (q, 
1H, J = 6.87 Hz, ArCH(Me)NMe), 6.81 (s, 1H, ArH), 7.09 (s, 1H, ArH), 7.32 - 7.40 (br, 5H, ArH), 11.31 (br, 
1H, ArOH). 13C{H} NMR (75 MHz; CDCl3; 298 K) 16.1 (ArMe), 17.9 (ArCMe3), 31.7 (ArCMe3), 34.0 (ArCH- 
(Me)NMe), 37.4 (ArCH(Me)NMe), 58.6 (ArCH(Me)NMe), 63.0 (ArCH2N), 120.7, 123.0, 123.7, 126.7, 127.7, 
128.2, 128.6, 141.1, 141.3, 153.7 (all ArC). 

(R)-(+)-(2,4-Di-methyl-1-hydroxylbenzyl)-N-α-dimethylbenzylamine (L5H) 
2,4-Di-methylphenol (4.52 g, 37 mmol), 37 wt% formaldehyde (1.11 g, 37 mmol), and (R)-(+)-N-α-dime- 

thylbenzylamine (5.00 g, 37 mmol) were dissolved in methanol (20 mL). The resulting solution was heated at 
reflux for 18 h and then cooled to room temperature. Solvent and water were removed using high vacuum 
Schlenk line to obtain a pale yellow, oily solid. Recrystallization from ethanol at −10˚C (freezer) yielded an 
off-white solid, which later became pale yellow oil upon warming to room temperature. The oil was dried under 
high vacuum at room temperature (9.45 g, 94.8%); [α]D + 0.252 (c = 0.04, toluene). Elemental analysis: (Found: 
C 79.65, H 8.38, N 5.09. C18H23NO requires C 80.256, H 8.606, N 5.200. 1H NMR (300 MHz; CDCl3; 298 K) 
1.59 (d, 3H, J = 6.87 Hz, ArCH(Me)NMe), 2.23 (s, 3H, ArMe), 2.29 (s, 3H, ArMe), 2.39 (s, 3H, ArCH(Me)- 
NMe), 3.70 (br, 2H, ArCH2N), 3.87 (q, 1H, J = 6.87 Hz, ArCH(Me)NMe), 6.65 (s, 1H, ArH), 6.97 (s, 1H, ArH), 
7.38 - 7.47 (br, 5H, ArH), 11.02 (s, 1H, ArOH). 13C{H} NMR (75 MHz; CDCl3; 298 K) 15.9 (ArMe), 17.6 
(ArMe), 20.6 (ArCH(Me)NMe), 37.3 (ArCH(Me)NMe), 58.3 (ArCH(Me)NMe), 62.9 (ArCH2N), 114.8, 121.1, 
124.6, 126.7, 127.7, 128.1, 128.7, 130.5, 140.9, 153.8 (all ArC). GC-MS m/z calcd for C18H23NO: 269.39; found 
269.3. 

(R)-(+)-α-Methyl-2-benzyl-imino-methyl-2,4-Di-tert-butyl-phenol (L6H) 
3,5-Di-tert-butyl-2-hydroxybenzaldehyde (5.000 g, 21.340 mmol), and D(+)-alpha-methylbenzylamine (2.586 g, 

21.340 mmol) were dissolved in ethanol (100 mL). The resulting solution was heated at reflux for 18 h and then 
cooled to room temperature. Crystallization from the saturated methanol solution at room temperature yielded 
yellow crystals (6.354 g, 88.2%). Mp: 93.8˚C - 94.1˚C; [α]D + 0.513 (c = 0.02, toluene). Elemental analysis: 
(Found: C 81.92, H 9.16, N 4.24. C23H31NO requires C 81.85, H 9.26, N 4.15%). 1H NMR (500 MHz; CDCl3; 
298 K) 1.34 (s, 9H, ArtBu), 1.50 (s, 9H, ArtBu), 1.69 (d, 3H, J = 6.50 Hz, ArCH(Me)N), 4.59 (q, 1H, J = 6.50 
Hz, ArCH(Me)N), 7.12 (s, 1H, ArH), 7.29 (s, 1H, ArH), 7.38 - 7.44 (br, 5H, ArH), 8.49 (s, 1H, ArCH = N), 
13.88 (s, 1H, ArOH). 13C{H} NMR (125 MHz; CDCl3; 298 K) 24.9 (ArCMe3), 29.5 (ArCMe3), 31.5 (ArCMe3), 
34.1 (ArCMe3), 35.1 (ArCH(Me)N), 68.5 (ArCH(Me)N), 118.0, 126.0, 126.5, 127.2, 128.6, 136.7, 140.1, 144.1, 
158.0 (all ArC), 164.6 (ArCH = N). 

(R)-(‒)-α-Methylene-β-methoxy-2-benzyl-imino-methyl-2,4-Di-tert-butyl-phenol (L7H) 
3, 5-Di-tert-butyl-2-hydroxybenzaldehyde (1.550 g, 6.613 mmol), and (R)-(–)-2-methoxy-1-phenylethylamine 

(1.000 g, 6.613 mmol) were dissolved in ethanol (100 mL). The resulting solution was heated at reflux for 18 h 
and then cooled to room temperature. Solvent and water were removed using high vacuum Schlenk line to ob-
tain a yellow solid. Recrystallization from ethanol at −10˚C (freezer) yielded a yellow solid (2.317 g, 95.3%); 
[α]D −0.298 (c = 0.02, toluene). Yellow single crystals suitable for X-ray crystallography were grown from the 
supernatant solution at room temperature. Mp: 67.1˚C - 67.3˚C. Elemental analysis: (Found: C 78.47, H 8.94, N 
4.00. C24H33NO2 requires C 78.43, H 9.05, N 3.81%). 1H NMR (300 MHz; CDCl3; 298 K) 1.33 (s, 9H, ArtBu), 
1.51 (s, 9H, ArtBu), 3.39 (ArCH(N)CH2OMe), 3.76 (br, 2H, ArCH(N)CH2OMe), 4.56 (br, 1H, ArCH(N)CH2- 
OMe), 7.14 (s, 1H, ArH), 7.29 - 7.44 (br, 6H, ArH), 8.46 (s, 1H, ArCH = N), 11.69 (br, 1H, ArOH). 13C{H} 
NMR (75 MHz; CDCl3; 298 K) 29.6 (ArCMe3), 31.6 (ArCMe3), 34.3 (ArCMe3), 35.2 (ArCMe3), 59.0 (ArCH- 
(N)CH2OMe), 59.4 (ArCH(N)CH2OMe), 73.7 (ArCH(N)CH2OMe), 118.1, 126.5, 127.3, 127.8, 128.8, 136.7, 
140.0, 140.2, 140.6, 158.1 (all ArC), 166.8 (ArCH = N). GC-MS m/z calcd for C24H33NO2: 337.51; found 337.6. 

2.3. Synthesis of Chiral Zinc Complexes 
[L3ZnN(SiMe3)2] (3a) 

To a colorless toluene solution (10 mL) of Zn[N(SiMe3)2]2 (1.545 g, 4.000 mmol) at −20˚C, a colorless hex-
ane solution (20 mL) of ligand L3 (1.246 g, 4.000 mmol) was added drop wise under nitrogen. The resulting 
reaction mixture was stirred gently (4 h) as it warmed to 12˚C to afford a clear pale yellow solution of 3a. Vola-
tiles were removed in vacuo without heating to afford a yellow foam-like oily solid that was washed with hex-
anes and dried under high vacuum to afford 3a (1.15 g, 53.6%); Mp: 97.1˚C - 97.4˚C; [α]D + 0.056 (c = 0.01, 
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toluene). Elemental analysis: (Found: C 60.38, H 8.61, N 5.29. C27H46N2OZnSi2 requires C 60.48, H 8.65, N 
5.22%). 1H NMR (300 MHz; C4D8O; 298 K) 0.02 - 0.008 (br, 18H, N(SiMe3)2), 1.26 (s, 9H, ArtBu), 1.40 (br, 
3H, ArMe), 2.02 (br, 3H, ArCH(Me)NMe), 2.16 (br, 1H, ArCH(Me)NMe), 2.40 (s, 3H, ArCH(Me)NMe), 4.39 
(br, 2H, ArCH2N), 6.21 (s, 1H, ArH), 6.85 (s, 1H, ArH), 7.32 - 7.46 (br, 5H, ArH). 

[L4ZnN(SiMe3)2] (4a) 
To a colorless toluene solution (10 mL) of Zn[N(SiMe3)2]2 (1.545 g, 4.000 mmol) at −20˚C, a colorless hexane 

solution (20 mL) of ligand L4 (1.246 g, 4.000 mmol) was added drop wise under nitrogen. The resulting reaction 
mixture was stirred gently (4 h) as it warmed to 12˚C to afford a clear pale yellow solution of 4a. Volatiles were 
removed in vacuo without heating to afford a pale-yellow (off white) solid which was washed twice with hexanes 
and dried under high vacuum to afford 4a (1.10 g, 51.3%); Mp: 119.8˚C - 120.1˚C; [α]D + 0.068 (c = 0.01, toluene). 
Elemental analysis: (Found: C 60.40, H 8.61, N 5.07. C27H46N2OZnSi2 requires C 60.48, H 8.65, N 5.22%). 1H 
NMR (300 MHz; C4D8O; 298 K) 0.04 (s, 18H, N(SiMe3)2), 1.12 (s, 9H, ArtBu), 1.21 (br, 3H, ArMe), 1.46 (br, 3H, 
ArCH(Me)NMe), 2.20 (br, 1H, ArCH(Me)NMe), 2.29 (s, 3H, ArCH(Me)NMe), 4.51 (br, 2H, ArCH2N), 6.48 (s, 
1H, ArH), 7.00 - 7.16 (br, 5H, ArH), 7.39 (s, 1H, ArH). 

[L7ZnN(SiMe3)2] (7a) 
To a colorless THF solution (10 mL) of Zn[N(SiMe3)2]2 (1.545 g, 4.000 mmol) at −20˚C, a clear yellow THF 

solution (15 mL) of ligand L7 (1.470 g, 4.000 mmol) was added drop wise under nitrogen. The resulting reaction 
mixture was stirred gently (4 h) as it warmed to 12˚C to afford a clear yellow solution of 7a that was put in a 
freezer (−56˚C) to grow crystals. Yellow crystals of 7a were obtained at −56˚C that later dissolved at room 
temperature. Volatiles were removed in vacuo without heating to afford a yellow oily solid that was recrystal-
lized from a THF/hexane mixture at −56˚C and dried under high vacuum to afford 7a (1.40 g, 53.5%); Mp: 
211.9˚C - 212.3˚C, [α]D −0.052 (c = 0.01, toluene). Elemental analysis: (Found: C 62.21, H 8.49, N 4.58. 
C34H48N2O3ZnSi2 requires C 62.41, H 7.39, N 4.28%). 1H NMR (300 MHz; C4D8O; 298 K) 0.04 (s, 18H, 
N(SiMe3)2), 1.30 (s, 9H, ArtBu), 1.45 (s, 9H, ArtBu), 3.09 (ArCH(N)CH2OMe), 4.12 (br, 2H, ArCH(N)- 
CH2OMe), 4.81 (br, 1H, ArCH(N)CH2OMe), 6.84 (s, 1H, ArH), 6.95 (br, 5H, ArH),8.06 (s, 1H, ArCH = N). 

2.4. Polymerization Procedure 
Appropriate amount of zinc compound and racemic lactide were measured and put in an oven-dried Schlenk 
flask. The flask was subjected to heating at 130˚C. After appropriate reaction time, the polymerization reaction 
was quenched with 1 ml of acidified methanol and the polymer was isolated and analyzed. 

3. Results and Discussion 
3.1. Synthesis of Chiral Ancillary Ligands 
The chiral ligands L1H-L5H (Figure 1) were synthesized via Mannich condensation reactions using inexpensive 
substituted phenols, formaldehyde and (R)-(+)-N-α-dimethylbenzylamine in refluxing ethanol (Scheme 1). 
Meanwhile, the chiral Schiff base ligand L6H and L7H were synthesized through condensation reactions of 3, 
5-Di-tert-butyl-2-hydroxybenzaldehyde with the corresponding chiral amine, (R)-(+)-N-α-dimethylbenzylamine 
and (R)-(–)-2-methoxy-1-phenylethylamine, respectively (Scheme 2). The synthesized ligands were characterized  
 

 
Figure 1. New chiral [ON] and [ONO] aminophenolate ligands.                                                                
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using NMR, elemental analysis, and GC-MS to ascertain the structures. X-ray crystallography of single crystals 
of ligands L3H and L7H indeed supported NMR spectra and elemental analysis. 

The use of different phenolic substituents (methyl, butyl and pentyl) will provide a library of compounds 
suitable for metal catalytic investigations in polymerization reactions. Attachment of synthesized ligands to zinc, 
calcium, tin and palladium metals would offer new research opportunities in asymmetric synthesis and metal 
catalyzed ring-opening polymerization of lactones. There is great interest in investigating the effect of one ste-
reogenic center in conjunction with phenolic bulky substituent on catalytic selectivity. The [ON] ligands are ex-
pected to be bidentate with the possibility of having a tridentate coordination via the phenyl pendant arms while 
the [ONO] ligand has an additional coordinating oxygen atom. 

3.2. Synthesis of Zinc Complexes 
Three new zinc compounds 3a, 4a, and 7a have been synthesized in moderate yields, via acid-base transamina-
tion reactions employing one equivalent of the zinc precursor, Zn(N(SiMe3)2)2, and one equivalent of the ligands 
L3H, L4H and L7H in toluene and THF to afford [L3ZnN(SiMe3)2] (3a) [L4ZnN(SiMe3)2] (4a) and 
[L7ZnN(SiMe3)2] (7a) (Scheme 3). Compounds 3a and 4a were synthesized in toluene while 7a was synthesized 
in THF. The synthesized zinc compounds have been fully characterized by NMR spectroscopy, elemental analy-
sis and melting point (see experimental). 1H NMR spectroscopy of compounds 3a and 4a in d8-toluene (C7D8) 
revealed two distinct ligand environments (in approximate equal ratio); likely caused by molecular dimerization 
to satisfy the coordinatively unsaturated zinc metal. The silylamide ligand was represented by two peaks of ap-
proximate equal intensity. However, NMR spectroscopy of 3a and 4a in the presence of a donor solvent such as  
 

 
Scheme 1. Synthesis of ligands L1H-L5H via Mannich condensation reactions.                                                

 

 
Scheme 2. Synthesis of chiral Schiff base ligand L7H via condensation reaction.                                       

 

 
Scheme 3. General synthesis of metal catalysts via ligand exchange reactions.                                                       



P. Binda et al. 
 

 
211 

d8-THF (C4D8O), revealed only one chemical environment consistent with a symmetrical, coordinately saturated 
monomeric zinc center. It is difficult to be certain of the exact nature of the asymmetry without solid state struc-
tural data. However, it was very difficult to isolate good single crystals for X-ray determination due to the ex-
treme solubility of the zinc complexes. Meanwhile, the 1H NMR spectrum of compound 7a demonstrated a 
symmetric arrangement of the ligand in either donor or non-donor solvents; indicative of a monomeric solution 
structure. Undoubtedly, steric constraints and additional oxygen donor atom of the [ONO] ligand imposed a mo- 
nomeric zinc structure to completely fill the coordination sphere about zinc. 

3.3. X-Ray Crystal Structure of Compounds 
The results of the single crystal X-ray structure determination of ligands L3H, and L7H are consistent with the 
formulation proposed by elemental analysis data and NMR spectroscopic analysis. Ligand L7H crystallized in 
the monoclinic space group P21 with two molecules in the asymmetric unit, while L3H crystallized in the or-
thorhombic space group P212121 with a single molecule in the asymmetric unit (see Figure 2 and Table 1). The 
solid state structures also confirmed the configuration of chiral centers for the ligands as indicated in Figure 1. 
Due to the extreme solubility of the zinc complexes in donor (THF) and non-donor solvents (hexane and tolu-
ene), it was very difficult to isolate good single crystals for X-ray determination. 

3.4. Polymerization of Lactide Using Zinc Complexes 
Compounds 3a, 4a, and 7a were treated with rac-lactide under different reaction times and conditions and the re-
sults are summarized in Table 2. Except where noted, all polymerization reactions were performed solvent free at 
130˚C and quantitative conversion (based on 1H NMR spectroscopy) was achieved (see Table 2). Entry 1 is the 
 

 
Figure 2. Molecular representations of ligands L3H and L7H, respectively (hydrogen atoms have been omitted). Thermal 
Displacement ellipsoids are drawn at the 50% probability level.                                                          
 
Table 1. Crystallographic data of ligands L3H and L7H.                                                                      

 L3H L7H 

Chemical structure C21H29NO C24H33NO2 

Space group P212121 P21 

Cell lengths: a, b, c (Å) 8.8192(8), 9.1586(9), 23.020(2) 10.653(6), 9.423(3), 22.096(6) 

Cell volume: V (Å3) 1859.36 2217.09 

Z 4 4 

Cell angles: α, β, γ (˚) 90.000, 90.000, 90.000 90.000, 91.699(13), 90.000 

R-Factor (%) 5.32 5.5 
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Table 2. Polymerization of rac-Lactide using zinc complexes.                                                                       

Entry Initiator Co-initiator [LA]/[I]a Time (h) Conv. (%)b Mn (103)c Mw (103)c PDIc 

1 – – 1000d 24 0 – – – 

2 L3ZnN(SiMe3)2 3a – 1000d 1 0 – – – 

3 L4ZnN(SiMe3)2 4a – 1000d 1 0 – – – 

4 L7ZnN(SiMe3)2 7a – 1000d 1 53 – – – 

5 L3ZnN(SiMe3)2 3a – 1000d 24 100 7.4 9.9 1.34 

6 L4ZnN(SiMe3)2 4a – 1000d 24 100 7.0 8.9 1.27 

7 L7ZnN(SiMe3)2 7a – 1000d 24 100 8.9 11.8 1.29 

8 L7ZnN(SiMe3)2 7a PhCH2OH 100d 24 100 – – – 

aMonomer to initiator ratio. bConversion: determined by 1H NMR (integration of the methyl resonances of LA and PLA). cMn and Mw/Mn (PDI) of 
polymer determined by SEC with calibration to polystyrene standards. dBulk polymerization at 130˚C. 
 
control reaction which shows no polymerization after 24 h. There was no reaction after 1 hour for compounds 3a 
and 4a indicating slow initiation process presumably due to dimeric structure (Table 2, entries 2 - 3). However, the 
monomeric compound 7a gave 53% conversion after 1 hour (Table 2, entry 4). All zinc complexes gave 100% 
conversion after 24 hours to afford low molecular weight polylactide with narrow polydispersity (Table 2, en-
tries 5 - 7). Compound [L7ZnOCH2Ph] was synthesized in-situ from 7a and benzyl alcohol as a co-initiator in 
the solvent-free melt ring-opening polymerization of racemic lactide for 100 monomer-to-initiator ratio (Table 2, 
entry 8). NMR analysis of the polymer obtained shows the initiating group as part of the polylactide without li-
gand L7. All polymerization reactions were quenched with acidified methanol and polylactide was isolated as 
amorphous solids indicative of atactic polymer. 

3.5. Reactivity of Zinc Complexes with Lactide 
We observed moderate catalytic reactivity of rac-LA with the newly synthesized chiral zinc complexes with no 
stereo-control, probably due to the harsh reaction conditions with temperatures of 130˚C. No reactivity was ob-
served with the zinc complexes when polymerization was conducted in either toluene or THF at 80˚C after 24 
hours for 1000:1 lactide-to-initiator ratio. Furthermore, increasing the amount of initiator to 100:1 under the 
same conditions did not yield any polymer. Due to the small size of zinc metal, in order to effectively carryout 
chain-growth polymerization of LA via coordination-insertion mechanism, most researchers have been success-
ful at a temperature of 130˚C [88]-[101]. Even though this is not somewhat surprising, it is hypothesized that at-
taching a larger metal such as calcium or lanthanum to the newly synthesized chiral aminophenolate ligands 
would provide better catalytic reactivity at milder conditions with better polymerization control. 

The new chiral zinc complexes gave polymer molecular weights lower than expected due to extensive tran-
sesterification as a result of extended reaction times beyond complete polymerization reaction. It should be 
noted that transesterification backbiting reactions has been reported as a major cause of obtaining low molecular 
weight polyester chains during active polymerization process that is allowed to run over long periods without 
quenching the reaction [68] [70] [75]. In addition, some rac-lactide molecules were sublimed during the sol-
vent-free bulk polymerization reactions at 130˚C resulting in low Mn. Having the tert-butyl group at the ortho 
(3a) or para (4a) positions of the phenolate did not make any significant difference in reactivity with lactide due 
to small metal size. 

4. Conclusion 
We have reported new heteroleptic zinc amido complexes supported by newly synthesized chiral multidentate 
monoanionic amino phenolate ligands with varying steric and electronic demands. Zinc complexes were found 
to have moderate catalytic activity towards ring-opening polymerization of racemic lactide at 130˚C to afford 
atactic polymers with molecular weight of 10,000 g/mol and a narrow polydispersity index of 1.3. The newly 
synthesized chiral aminophenolate ligands are suitable chiral auxiliaries for inorganic chemists to design met-
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al-based complexes for asymmetric catalysis and stereoselective polymerization reactions. 
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