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Abstract 
The motion of a lazy Pearson walker is studied with different probability (p) of jump in two and 
three dimensions. The probability of exit ( eP ) from a zone of radius er  is studied as a function of 

er  with different values of jump probability p. The exit probability eP  is found to scale as 

( )e eP p F r pα β= , which is obtained by method of data collapse. The first passage time ( t1 ) i.e., the 

time required for first exit from a zone is studied. The probability distribution ( )( )P t1  of first 
passage time was studied for different values of jump probability (p). The probability distribution 
of first passage time was found to scale as ( ) ( )P t p G t p1 1

γ δ= . Where, F and G are two scaling func-

tions and α, β, γ and δ are some exponents. In both the dimensions, it is found that, 0α = , 
1 2β = − , 1γ = −  and 1δ = . 
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1. Introduction 
The random walk is a problem, studied widely in mathematics, statistics and physics to analyze various natural 
phenomena. As an example, in statistical physics, process of polymerization [1] [2], diffusion [3] of micropar-
ticles etc. are some classic phenomena, which have drawn much attention of the researcher in last few decades. 
The basic mechanism of such phenomena is explained by random walk [4] in various forms. Different kinds of 
random walks are studied on the lattice in different dimensions by computer simulation. A few of them may be 
mentioned here. The absorbing phase transition in a conserved lattice gas with random neighbour particle hop-
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ping is studied [5]. Quenched averages for self avoiding walks on random lattices [6], asymptotic shape of the 
region visited by an Eulerian walker [7], linear and branched avalanches are studied in self avoiding random 
walks [8]. Effect of quenching is studied in quantum random walk [9]. The drift and the trapping in biased dif-
fusion on disordered lattices are also studied [10]. 

Recently, some more interesting results on random walk are reported. The average number of distinct sites is 
visited by a random walker on the random graph [11]. Statistics of first passage time of the Browian motion 
conditioned by maximum value of the area [12] is studied recently. It may be mentioned here that the first pas-
sage time in complex scale invariant media was studied very recently [13]. The theory of mean first passage 
time for jump processes is developed [14] and verified by applying in Levy flights and fractional Brownian mo-
tion. The statistics of the gap and time interval between the highest positions of a Markovian one dimensional 
random walker [15], the universal statistics of longest lasting records random walks and Levy flights are also 
studied [16] recently. 

In real life, the random walk problem has been generalized in continuum. The exact solution of a Brownian 
inchworm model and self-propulsion was also studied [17]. Theory of continuum random walks and application 
in chemotaxis was developed [18]. Random walks in continuum were also studied for diffusion and reaction in 
catalyst [19]. 

The Pearson walk [20] is a variant of random walk which shows many interesting results. This is defined as 
the walker that may choose any direction randomly, instead of taking specified direction in lattices. This Pearson 
random walk was studied [21] [22] with shrinking step size. Very recently, the Pearson walk [20] is studied with 
uniformly distributed random size of flight [23]. The statistics of a tired Pearson walker was also studied recent-
ly [24] to analyze the exit probability and first passage time [25]. 

In the literature of mathematics [26] [27], the lazy random walk is defined as the walker having 50% chance 
to move from any site and studied extensively on the lattice. The lazy random walk is not merely a pedagogical 
concept. It is already used to study the superpixel segmentation [28]. What will happen if a Pearson walker 
becomes lazy where it’s moves are probabilistic? In this article, the motion of a lazy Pearson walker is studied 
by computer simulation and the numerical results are reported. In the next section (Section 2), the model of lazy 
Pearson walker is described and the numerical results are given. The paper ends with a summary in Section 3. 

2. Model and Results 
The lazy random walk [26] [27] is usually described on the lattice where the walker has 50% chance to move 
from any given site. In this paper, the lazy Pearson random walk is described with various values of probability 
(p) of jump from the present position, instead of 1 2p =  as defined on the lattice. In two dimension, a lazy 
Pearson walker starts its journey from the origin and jumps (unit distance) with probability p in any direction (θ ) 
chosen randomly (unformly distributed) between 0 and 2π . In two dimensions, the rule of the jump of the lazy 
Pearson walker may be expressed by following Markovian evolution: 

( ) ( )
( ) ( )

1 cos

1 sin

x t x t

y t y t

θ

θ

+ = +

+ = +
 

The exit probability ( eP ) of a lazy walker is defined as the probability of exit (first time) of a walker from a 
circular/spherical (in 2D/3D respectively) zone specified by its radius er , in a given time of observation tN . 
This probability is calculated here over sN  number of different random samples. 

Figure 1(a) shows such a plot of exit probability ( eP ) as a function of radius ( er ) of exit zone for different 
values of probability (p) of jump of a lazy Pearson walker in two dimensions. For a given value of p, the exit 
probability ( eP ) decreases as the radius ( er ) of exit zone increases, in a given time of observation ( 410tN =  
here). As the probability of jump (p) decreases, the exit probability ( eP ) falls in a faster rate as er  increases. A 
careful inspection shows that for a fixed value of p, the eP  is almost constant upto a certain value of er  and 
then decreases monotonically. Further, it may be noted that for a given value of er , the exit probability eP  
decreases as p decreases. These observation promted to assume a scaling like ( )e eP p F r pα β= , where α , β  
are some numbers and F is a function. The curves represented by the different symbols (different values of p) in 
Figure 1(a) falls in a single curve (shown in Figure 1(b)) if one choose, 0α =  and 1 2β = − . It may be 
mentioned here that the statistics is based on 55 10sN = ×  number of different random samples in two dimen- 
sions. 
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Figure 1. The exit probability ( eP ) versus exit radius ( er ) (a) and its scaling (b). Different symbol correspond 

to different values of jump probability (p) in two dimensions. p = 0.2 (), p = 0.4 (•), p = 0.6 () and p = 0.8 

(). Here, 55 10sN = ×  and 410tN = .                                                             

 
The time required by a lazy walker to exit first from the specified zone, is called first passage time ( 1t ). The 

probability distribution ( )( )1P t  of the first passage time is studied for various values of probability (p) of jump 
of a lazy walker. Figure 2(a) shows the probability distribution of first passage time for different values of p. It 
is an unimodal function. Here, it may be noted that as p increases, the mode of the distribution shifts towards the 
lower values of 1t  and the distribution gets sharper and sharper. Here also, one may think of a scaling be- 
haviour of ( )1P t  as: ( ) ( )1 1P t p G t pγ δ= . Using 1γ = −  and 1δ =  the data for various values of p collapse 
supporting the proposed scaling behavior. This is shown in Figure 2(b). It may be mentioned here that this 
scaling behaviour is independent of the choice of er . 

Lazy Pearson walk in three dimensions is also studied. Here, the dynamical equations (or the algorithm of 
movement) may be expressed as: 

( ) ( )
( ) ( )
( ) ( )

1 sin cos

1 sin sin

1 cos

x t x t

y t y t

z t z t

θ φ

θ φ

θ

+ = +

+ = +

+ = +

 

Here, θ  is chosen randomly (uniformly distributed) between 0 and π . φ  is chosen randomly (uniformly 
distributed) between 0 and 2π . In this case, the exit probability ( eP ) is studied as a function of the radius ( er ) 
of the spherical zone for different values of probability (p) of jump of a lazy walker. In three dimensions, the 
time of observation is 510tN =  and the statistics is based on 510sN =  number of different random samples. 
This is shown in Figure 3(a). The behavious are quite similar to that observed in two dimensions (shown in 
Figure 1(a)). Here also, one may think of a scaling behaviour like: ( )e eP p F r pα β= . By choosing 0α =  and 

1 2β = −  a fair data collapse is obtained which supports the assumed scaling behaviour. This is shown in 
Figure 3(b). 

The probability distribution ( )( )1P t  of first passage time ( 1t ) of a lazy Pearson walker is also studied in 
three dimensions for different values of probability (p) of jump and shown in Figure 4(a). The variations are 
quite similar to that observed in two dimensional lazy walker. A scaling like, ( ) ( )1 1P t p G t pγ δ= , is proposed 
here. Choosing 1γ = −  and 1δ = , this scaling behaviour of the probability distribution of first passage time 
was established numerically by the method of data collapse. This is shown in Figure 4(b). Here also, it is 
observed that this scaling behaviour is independent of the choice of er . 

3. Summary 
In this paper, the motion of a lazy Pearson walker is studied with different probability (p) of jump in two and 
three dimensions, by computer simulation. The exit probability and the probability distribution of first passage 
time are studied. The probability of exit ( eP ) from a zone of radius er , is studied as a function of er  with  
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Figure 2. The distribution (a) of first passage time (t1) and its scaling (b). Different symbol correspond to 
different values of jump probability (p) in two dimensions. p = 0.3 (), p = 0.5 (•), p = 0.7 () and p = 0.9 (). 

Here, 55 10sN = × , 410tN =  and 25er = .                                                           
 

 
Figure 3. The exit probability ( eP ) versus exit radius ( er ) (a) and its scaling (b). Different symbol correspond 

to different values of jump probability (p) in three dimensions. p = 0.2 (), p = 0.4 (•), p = 0.6 () and p = 0.8 

(). Here, 510sN =  and 510tN = .                                                                  

 

 
Figure 4. The distribution (a) of first passage time ( 1t ) and its scaling (b). Different symbol correspond to 

different values of jump probability (p) in three dimensions. p = 0.2 (), p = 0.4 (•), p = 0.6 () and p = 0.8 

(). Here, 510sN = , 510tN =  and 30er = .                                                            
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different values of jump probability p. Here, p can take any value between 0 and 1, unlike the case of 
conventional lazy walker. For a given value of p, the exit probability was found to fall as er  grows. The exit 
probability eP  is found to scale as ( )e eP p F r pα β= , which is obtained by method of data collapse. 

The first passage time ( 1t ) i.e., the time required for first exit from a zone is studied. The probability 
distribution ( )( )1P t  of first passage time was studied for different values of jump probability (p). The 
probability distribution of first passage time, is a nonmonotonic unimodal function. The mode serves the role of 
the scale of time of exit from the zone of radius er . This time scale decreases as the probability p (of jump) 
increase, which is quite natural. The probability distribution of first passage time was found to scale as 
( ) ( )1 1P t p G t pγ δ= . Where, F and G are two scaling functions and α , β , γ  and δ  are some exponents. 

In both the dimensions, it is found that, 0α = , 1 2β = − , 1γ = −  and 1δ = . Interestingly, it is observed 
that this scaling behaviour (and the exponents also) is independent of the choice of er . 
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