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Abstract 
Based on the mechanism of vacuum polarization, we here establish a set of new electromagnetic 
field equations (EFEs) in 5-dimensional Minkowski coordinate system, which can be used to con-
sider some physical implications, such as the dispersion, the polarized states and the Hubble red-
shift of massive photon. It shows that, the effective mass of photon is related to the Hubble con-
stant H, and finally determined by its unit spin ħ. Importantly, these obtained equations, working 
as a generalization of Maxwell’s equations (MEs), enable us to develop the special relativity into 
5-dimensional form. In developed relativity, the particle spin will voluntarily go into the motion 
equation, since it plus the linear momentum and energy can just form a 5-dimensional covariant 
vector. Moreover, by reorganizing the conservation laws of generalized electrodynamics, we find 
that the Hamiltonian of massive photon is similar to the Dirac formation. This similarity allows us 
to construct a new Dirac typical equation to study the motion of massive photon from a standpoint 
of Dirac theory. 
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1. Introduction 
A basic implication of Maxwell’s theory is that, all electromagnetic radiations propagate in vacuum at a constant 
velocity c. This conclusion was further raised to the postulate of special relativity, and soon after that described 
successfully as the moving behavior of massless photon by quantum theory. Despite all these, a substantial ex-
perimental effort [1] [2] has been made to measure the mass of photon mγ  (we shall see below that, for being 
determined by unit spin  , mγ  would be treated as the spin (or effective) mass of photon rather than the con-
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ventional one; it is noticed that its conventional mass is still zero). If the effective mass of photon was found to 
be nonzero, it would produce an effect on the contemporary physical theories [3] [4]; for example, the special 
relativity must be modified to suit massive photon [5]. 

Now, it is considered to be almost certainly impossible to do any experiment to confirm the value of mγ . The 
best one can hope to do is to place ever tighter limits on its size, since it might be so small that none of the 
present experimental strategies could detect it. According to the uncertainty principle, the ultimate upper limit 
on mγ  is estimated to be 69

2~ ~ 10  kgtc −∆ , as taking the time uncertainty t∆  of the universe age of about 
1010 years [1]. Although such an infinitesimal mass would be extremely difficult to detect, there are still some 
implications, such as a Yukawa type of potential, a frequent dependence of light speed, to be worth paying at-
tention, and all of these have been studied seriously [6]. All the works in this area have opened a door to useful 
approaches for laboratory experiments or cosmological observations aimed at determining the effective mass of 
photon or, more precisely, setting an upper limit on it. And from the standpoint of testing for a photon mass, the 
key point, as a direct consequence of nonzero photon mass, is one of searching for frequency dispersion of the 
speed of light [1]. For example, The results of several pulsar measurements by Bay and White [7] placed a rough 
upper limit on the photon mass of 4310 kgmγ < . 

In quantum field theory [8], the electromagnetic fields (EFs) have been successfully described as the neutral 
massless photon with unit spin  . However, for massive photon [9] [10], it would require a set of new equa-
tions, which was proposed by Proca at first [11]. In Proca theory, the Lorentz condition is automatically held, 
but gauge invariance would be inevitably lost. So that, once the photon was confirmed to be massless, no matter 
large or small, it would have a bearing on some fundamental physical questions [5] [12]. In Section 2, we will 
establish a set of new equations to describe massive electromagnetic fields (MEFs), whose consequent distinct-
ness compared with purely Maxwell equivalents is presented. In Section 3, the wave solutions of MEFs are giv-
en, which can naturally lead to the Hubble redshift in cosmology. Sections 4 and 5 introduce the developed rela-
tivity and massive electrodynamics; Section 6 presents the Dirac typical equation of massive photon.  

2. Massive Electromagnetic Field Equations 
In Maxwell’s theory, electromagnetic phenomena are always characterized by the electric and magnetic fields 
(E, B), which are thought of as the quantum of light in term of photon. If photon is massive instead of massless, 
its motion equations would become Proca form (in the Heaviside-Lorentz system of units) [13] [14] 

2
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1 1, 0
,

1 10,

c t
m c

c t c
γ

ϕ ρ ∂∇ ⋅ + = ∇× + = ∂ℜ ℜ = ∂∇ ⋅ = ∇× − + =
 ∂ ℜ

BE E
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where, ϕ , A denote the electromagnetic potentials, ℜ  indeed reflects the effective range of electromagnetic 
interaction. After that, Proca equations (PEs) have provided the pathway for almost all approaches to detect the 
photon mass. Specifically, due to ϕ , A being observable, Proca theory would lose its proper gauge invariance. 
Because of the nonzero photon mass, the dispersion produces a frequency dependence [15] 

2
2 2 2

2

cc kω = +
ℜ

                                     (2.2) 

ω  is the angular frequency, k the wave number. This frequent dependence could be used to determine the pho-
ton mass in experiments [16] [17]. 

The quantum theory can provide a basis for massive electromagnetic theory, since according to the theory, 
vacuum is not empty, but filled with a large number of virtual particle-antiparticle pairs flashing in and out of 
existence [18]. Generally, these pairs may not bring any effect, whereas in the presence of external fields, they 
could be pulled away directionally. Such the situation strongly suggests that, the vacuum should be treated as a 
kind of dielectric, and thus, when the external fields applied, the polarization charge pρ  and current pj  are 
produced. To take account of the physical consequence of vacuum polarization, we need to rewrite MEs as 
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These equations can be further expressed in 5-dimensional Minkowski space with an extra-dimension φ  
identified with the spin phase of moving particle (see Figure 1). The whole 5-dimensional manifold is described 
by the space-phase-time coordinates ( ), , , ,x y z ctφℜ , similar to the space-time-mass suggested by Wesson [19]. 
Specifically, the value of φ  should be very small, since the law of causality requires ctφℜ ≤ , and the ex-
amining region also far less than the interaction range, i.e. ct ℜ . 

Now, we introduce a polarized vector field e  and a polarized scalar field b by 

1,p p
c b ρ

φ φ
∂ ∂

= − = −
ℜ ∂ ℜ ∂

e j                                   (2.4) 

and note that, the positive and negative charge elements ( ),e e+ −  may appear deviation, i.e.  
( ) ( ) 0e e eδ = + + − ≠ . Although this kind of relative deviation is quite impressively small, whose currently ac-

cepted upper limit only 2110e eδ −<  [20], as long as not be zero, then every produced pair will bring out an 
extra charge eδ . And hence, there exists the following flow equation  

( )10, , ,p
p p p pj j j

t
ρ

φ
∂ ∂

∇ ⋅ + = ∇ = ∇ + =
∂ ℜ ∂

j
 
 



                   (2.5) 

where ∇


 denotes the gradient operator of 4-dimensional generalized space ( ), , ,x y z φℜ , pj


 the added cur-
rent flowing along φ-axis, responsible for the charge deviation. The equation together with Equation (2.3) gives 
a generalized form of charge conservation 

( )0, , , pj j j j j
t
ρ∂

∇ ⋅ + = = = −
∂

j

 

  

                           (2.6) 

It shows that, the charge is conserved in space ( ), , ,x y z φℜ , but slightly non-conserved in ( ), ,x y z  due to 
1 0t jρ φ−∇ ⋅ + ∂ ∂ = −ℜ ∂ ∂ ≠j


. In view of this, we here develop MEs into 
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                (2.7) 

called generalized Maxwell’s equations (GMEs). The performance of massive electromagnetic induction can be 
summarized as follows: 

1) Varying magnetic and polarized scalar fields generate respectively an electric and a polarized vector fields, 
described by Equations (b) and (e). 

2) Varying electric field generates a magnetic field and a polarized vector field, by Equation (d). 
3) Varying polarized vector field generates a polarized scalar and an electric fields, by Equation (g). 

 

 
Figure 1. The 4th coordinate φ is related 
to particle spin.                          
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GMEs can provide a complete and self-consistent description of electromagnetic phenomena, and help us to 
calculate the stress of current ( ) ( ), , ,j jρ ρ= j




 in MEFs 
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with  
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            (2.9) 

S , S  denote the generalized Poynting vector and mixed energy flow density, ( )w w+++=  the total energy 
density. In the case of 0e b= = , Equation (2.8) reduces smoothly to the classical form 
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Now, by the 5-dimensional potential ( ) ( ), , ,mA A Aϕ ϕ= = A




, we express MEFs as 
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but need to supply a generalized Lorentz condition 

1 0A
c t

ϕ∂
∇ ⋅ + =

∂



                                      (2.12) 

It is easy to verify that, MEFs still have gauge invariance under the generalized transformation of  
m m mA A ε′ ′→ + , namely 

1
A A

c t

ε
εϕ ϕ

 ′ → +∇

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                                      (2.13) 

ε  is an arbitrary scalar function. This practice can help us to write Equation (2.7) in d’Alembert’s form  

( )
2

2
2 2

1, , ,m m mA J J j c
c t

ρ∂
= − = ∇ − =

∂




  □ □                     (2.14) 

which has the following retarded solution 

( ) 2,1 e d ,
4π

m
m r iJ r t r c

A V c c k
r

φ ω− ℜ+′ ′−
′ ′= =∫∫∫                  (2.15) 

for current mJ  in a certain finite region of space
 

V ′ . It shows that, a moving charge and an alternating current 
element create at each point of the surrounding space the same potential which would be created by the fixed 
charge and direct current, the only difference being that such a potential is created at each point after a lapse of 
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the delay time. 

3. Implications of Massive Photon 
3.1. The Yukawa Potential 
The first consequence of MEFs is related to a static electric field, that is, under the static condition of 0t∂ ∂ = , 
Equation (2.14) reduces to 

2
2

2 2

1 ϕϕ ρ
φ
∂

∇ + = −
ℜ ∂

                                      (3.1) 

For a point charge ( ) ( )r q rρ δ= , it yields a Yukawa typical potential 
1 1e e

4π 4π
r i rq q

r r
φϕ − ℜ+ − ℜ= ≈                                (3.2) 

with an exponential decay range of ℜ . The exponential deviation from Coulomb’s law will provide many ap-
proaches to test for the photon mass in laboratory experiments.  

3.2. The Dispersion of Light 
It is important that, the electromagnetic induction described by Equation (2.7) can make MEFs spread in va-
cuum as free wave 

0~ e , , ,
m

mik xm m
m

kA A k
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k
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                            (3.3) 

The most typical aspect of massive photon is its frequent dependence (corresponding to Equation (2.2)) 
2 2

2 2 2
2

2π 2π, , 1c kω c k k k
λ λ

= + = = =
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



                         (3.4) 

k


 is the angular wave number(i.e. spin quantum number) of photon, ( )2πλ =


 the angular wave length. No-
tice that, in general the two possess the quantized values, namely ( )0,1,2,3, 2k =



 , ( )4π ,1,1 2,1 3,λ = ∞


 . 
Following Equation (3.4) is the group velocity differing from the phase velocity  
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c k c kc c
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ω ω

−
   

= = − = = −   
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                 (3.5) 

both tend to c together, only as ω →∞ . 
By generalized wave vector of ( ),k k= ℜk




, we also obtain a 4-velocity  

2 2 22π, ,k kc c κ k kυ
κ κ κ

 
= = = = + ℜ 

ℜ Λ 

k






                        (3.6) 

where, Λ  is the generalized wave length in space ( ), φℜr , κ  the total wave number, by which the genera-
lized group and phase velocities can be define as 

d,
dg pc c
κ

ω ωυ υ
κ

= = = =
                                      (3.7)  

They have the same value of c. However, when projecting to the real space, the two occur immediately diffe-
rentiation, since one is displayed as a direct projection, the other represents the velocity of the intersection point 
of wave surface and z-axis moving along the axis (see Figure 2). 

From the geometric relation above, we find 
2

,g p
k cc c

k
κυ υ υ

κ υ
= = = =                                     (3.8) 

In the case of 0k → , 0gυ →  and pυ →∞ . This means, at present, the photon is rest in real space, but in  
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Figure 2. Physical meaning of the group and phase 
velocities is presented in generalized space ( ), φℜr .  

 
generalized space moving with velocity c. Correspondingly, the two velocities along φ-axis can be given by 
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1 ,
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κ υ

ℜ
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
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                  (3.9) 

Then we have 
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                                  (3.10) 

For nonzero mass ( )0 0m ≠  particle of spin k

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       (3.11) 

with a total wave number κ  
2

2 2 0
C C2

C

2π 2π,
m ckk k kκ

λ
= = + + = =
Λ ℜ





                       (3.12) 

Cλ  denotes the Compton wave length, Ck  the Compton wave number. Now, by introducing the Compton 
group and phase velocities  

C
C C

C

,g p
k

c c
k
κυ υ

κ
= =                                       (3.13) 

we get 

2 2 2 2
C 2 2 2 2

C

1 1 1 1,g g g
p p p

c
c

υ υ υ
υ υ υ

+ + = + + =



                         (3.14) 

Clearly, for the photon of zero Compton wave number ( )C 0 0k m= = , it reduces to (3.10).  

3.3. The Field Structures of MEWs 
Maxwell’s theory points out two polarized directions, both of which are orthogonal to the propagating direction 
of photon. However, MEWs described by PEs would result in a third state of polarization, in which the electric 
field points along the line of motion, corresponding to longitudinal photon [21]. Here, we still approve the third 
polarized state, but emphasize that, there will be three types of electromagnetic oscillations propagating along 
z-axis, those are pure transverse wave (PTW), pure longitudinal wave (PLW) and longitudinal-transverse mixed 
wave (LTMW). These waves possess a general solution 

( )
0 e zi k z k tm mA A φ ω+ −=



                                 (3.15) 
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a) Pure transverse wave. For PTW with generalized potential of ( ),0,0,0,0m
xA A= , we have the following 

fields by Equation (2.7) 

, 0

, 0
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ike A e e b
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= = =
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                            (3.16) 

The determined energy flows can be written as the energy density w multiplied by its traveling velocity 
( )2

zc ω= kυ , namely 
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



 



S n
kn

S n

υ

υ

                (3.17) 

in agreement with Equation (2.9). When the polarized fields ( ze , b) are neglected, the presented will naturally 
reduce to the usual form. The field structure of PTW is shown as Figure 3(a). 

b) Pure longitudinal wave. Correspondingly, the potential of PLW reads ( )0,0, , ,m
zA A A ϕ=


. The potential 
combining with Lorentz condition 

0z z
ik iik A A

c
ωϕ+ − =

ℜ





                                 (3.18) 

gives the following nonzero field components 
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                               (3.19) 

The energy flows come mainly from the polarized fields, namely 

( )
2

2 2 2
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                (3.20) 

It tells us that, as a special radiation involving the polarized fields ( ze , b), PLW (only about 3310−  of usual 
 

 
Figure 3. The field structures of PTW (a) and PLW (b) (dotted arrow and 
black stick denote polarized vector and scalar fields).                        
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radiation) has no classical correspondence, but represents a natural induction process: Varying polarized vector 
field generates the polarized scalar and electric fields, in turn, when the latter two change, the former is induced. 
Figure 3(b) presents the structure of PLW. 

c) Longitudinal-transverse mixed wave. With regard to LTMW of potential ( ),0, , ,m
x zA A A A ϕ=



, it is easy 
to find the nonzero components of MEFs 

( )

( )

( )2

,

,

,

x x z z z

z
y z x z z

x x z z z

i iE A E A ck
c c

i kB ik A b A ck
ck

ik ie A e A ck
c k

ω ω ϕ

ω ϕ

ω ω ϕ


= = −


ℜ = = − −


 ℜ

= − = − −
ℜ







                       (3.22) 

followed by the flows just along the travelling direction of photon (see Figure 4). 
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              (3.23) 

However, in Proca theory, the situation is completely different, since it only gives three field components  

2,

, 0

x x z z

y z x y x z

i icE A E A
c

B ik A E B B

ω
ω

 = = ℜ
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                               (3.24) 

with an energy flow defined by [21] [22] 

2 2 2
xz

x y z z y x
AAcc c E B c E B

ϕϕ
ϕ   = × + = + + −   ℜ ℜ ℜ   

S E B A n n                    (3.25) 

not along the direction of wave vector zk . This means, with continuous transmission, the wave energy would 
break away from its travelling direction, and thus leads to a physically unacceptable result. Notice that, serving 
as a substantial basis of electromagnetic radiation, the energy flow must represent the motion of MEWs. 

3.4. AB and AC Effects of MEFs 
A well-known topological interference effect is called AB effect, which concerns a phase shift for moving elec- 
 

 
Figure 4. Due to containing all the four fields, LTMW 
with E, e in Oxz plane and B parallel to y-axis, pos-
sesses a more complex structure.                         
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trons (mass em ) diffracting around a tube of magnetic flux [23], and it arises from the presence of generalized 
vector potential A



 in the Lagrangian 

( ) 2 2
e e

1 1, e e e
2 2

L x m A m Aυ υ υ υ υ= + ⋅ = + ⋅ +A




   
υ                       (3.26) 

where the vector potential A  for tube system of magnetic flux, can written as ( )e r− ℜ= ×A B r . When an 
electron beam is split and then recombined, there will be a phase shift ABφ  from the interference effect. Now, 
consider 0ikA ℜ = −∇ ⋅ =A



 (Lorentz condition), we have  

( )

0

e e ed d d

e 21 ,

l
AB ll l S

AB AB AB

A r

R

φ

φ φ

= ⋅ = ⋅ = ∇× ⋅

 ≈ − Φ = + ∆ ℜ 

∫ ∫ ∫∫A r A S




  



 

, d
l

AB lS
Φ = ⋅∫∫ B S               (3.27) 

ABΦ  denotes the flow of B  through any surface lS  bounded by the closed curve l, R the distance from the 
solenoid to the observational location. The result contains the standard AB effect in the limit of vanishing pho-
ton mass 0 eAB ABφ = Φ  , and an additional effect predicted from ( )2eAB ABRφ∆ = − Φ ℜ , is a correction for 
massive photon. 

An extension of the AB effect was presented by Aharonov and Casher [24], called AC effect, which empha-
sizes that, a neutral particle possessing a magnetic dipole moment should experience an analogous phase shift 
when diffracted around a line of electric charge. Consider a magnetic dipole with mass 0m  and moment µ  
diffracted around an infinitely long line of linear charge density  , its generalized Lagrangian can be given by  

( ) ( )2
0 5

1,
2

L x m Fυ υ υ= + ⋅ ×


   µ                                (3.28) 

The corresponding phase shift of the split beam at the recombination point reads 

( ) ( ) ( )

( )

5

0
2

1 1d d d d

1 d d
l l

AC l l

l l AC ACS S

F t b

k S

φ υ φ

µ µ ϕ φ φ

= ⋅ × = ⋅ × + ℜ −  

= ∇ ⋅ ⋅ ≈ − = + ∆
ℜ

∫ ∫

∫∫ ∫∫

E r E r

E S





 





  

 

µ µ

µ
                 (3.29) 

The shift for this case is shown to reduce smoothly to that of the standard AC effect in the limit of vanishing 
photon mass, as was observed in the neutron interferometry experiment [25]. An additional effect is predicted 
from 

2

2 2d ln , ln
2π2l

AC LS

R RS
r

µ µφ ϕ ϕ ℜ   ∆ = − = =   ℜℜ ℜ    ∫∫
 

 

                    (3.30) 

where, ϕ  the scalar potential of line charge system. The AC effect in massive electrodynamics was demon-
strated by Fuchs [26], neither the AB nor AC effects would provide a practical approach for bounding the pho-
ton mass in technology until now. 

3.5. Effect of Spectral Shift 
Vacuum polarization field not only can delay movement of photon, but require a generalized form of flow con-
servation, that is , 0m

mS = , ( ), ,mS c S c w= S


. So that, for the plane MEWs, there should be an average steady 
equation 

2
2 2

2 2

1 0
m

m m SS S
φ

∂
∇ = ∇ + =

ℜ ∂



                                (3.31) 

with a damping solution 

0 0e e ,m m r i m r m mS S S S n kφ
γ

− ℜ+ − ℜ= ≈ =                          (3.32) 

nγ  is the mean number density of photon. With the help of this solution, we can write the spectral shift of pho-
ton in unit distance as 
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0 0 0

1 1ln lnS k
S k r

λ
λ

    ∆
∇ = ∇ = − = −    ∆ ℜ   

                        (3.33) 

Such the effect was first discovered by Hubble in astronomical observation [27], that is formulated as Hubble 
law: the recession velocity of celestial body HV  determined by spectral redshift is always proportional to its 
distance r i.e. HV Hr=  with a ratio H called Hubble constant. Taking the observational value [28] of 

18 12.4 10 sH − −= × , we get 261.3 10 mc Hℜ = = × , which has been introduced into GMEs as a natural constant 
like speed c. 

Because of having cosmological meaning, we can use the astronomical observation (i.e. Hubble constant H) 
to affirm the effective mass of photon 

( )
34 18

69
2 28

1.1 10 2.4 10 2.8 10 kg
3.0 10

k Hm
c cγ

− −
−× × ×

= = = = ×
ℜ ×



 

               (3.34) 

just equal to its ultimate upper limit estimated by uncertainty principle. This mass is determined by spin  , and 
so called the spin mass of photon rather than the usual one. 

4. A Generalization of Relativity for Massive Photon 
Special relativity is the theory of how different observers, moving at constant velocity with respect to one 
another, report their experience of the same physical event. And all the descriptions are completely based on the 
following two postulates: 

I. The laws of physics take the same form in every inertial frame; 
II. The speed of light in vacuum is the same in every inertial frame. 
However, in massive electromagnetic theory, the speed of light is dependent of frequency rather than a unique 

constant. Thus, there needs a new postulate to be proposed to restore the features of special relativity, and the 
proposed should be aimed at the existence of a unique limiting speed c, to which speeds of all bodies tend when 
their energy becomes much larger than their mass [5] [12]. Now, by the fact of that MEWs are always propa-
gating at speed c in generalized space ( ), φℜr , we introduce a modified relativistic postulate:  

The generalized speed of light is a constant c. 

4.1. Generalized Lorentz Transformation 
The modified postulate inspires us to discuss motion in 5-dimensional Minkowski space ( )Diag 1,1,1,1, 1mnη = − , 
and write its invariant interval 

2d d dm n
mns x xη=                                       (4.1) 

Here, the invariance means every inertial observer would obtain the same value for this particular combina-
tion. The interval ds  is directly related to the time interval 0dt  in the rest frame of particle with no spatial 
displacement ( )d 0r = , that is 2 2 2 2 2

0d d ds c tφ= ℜ − , or  

( )
2 2

2 2 2 0
2

d dd d , ,
d1 U

U

c t Us c U
c

φτ β
τβ

= − = − = = ℜ
+









                        (4.2) 

The rest-frame time coordinate 0t  is called the proper time. Since there is only one rest-frame, its time in-
terval must be unique: all observers should agree on the value, namely 

( )2 2 2
0

2 2 2
2 2 2

2

d 1 d

d d dd d ,

Ut

x y zt t
c υ

β τ

γ −

= +

+ +
= − =



 
2

1 ,
1 cυ υ

υ

υγ β
β

= =
−

              (4.3) 

gives 
2

1
2

1
d d ,

1
Utυ υ
υ

β
τ γ γ

β
− +

= =
−



                                  (4.4) 

http://dx.doi.org/10.4236/oalib.1101732


Q. K. Yao 
 

OALibJ | DOI:10.4236/oalib.1101732 11 July 2015 | Volume 2 | e1732 
 

where υγ   called generalized Lorentz factor. This is the physical basis for the invariance of the motion equation 
under generalized coordinate transformation. 

In order to contain completely such that, GMEs should keep the same form, and the modified transformation 
for coordinates ( ), , , ,x y z ctφℜ , must necessarily bring about the change of observers from frame S to S ′  
moving with a generalized relative velocity ( ),0,0,0u u=

  along x-axis ( 0u =  due to the frame of reference 
having no spin), that is 

0 0 0
0 1 0 0 0

, 0 0 1 0 0
0 0 0 1 0

0 0 0

u u u

m m n m
n n

u u u

x x

γ β γ

α α

β γ γ

− 
 
 
 ′ = =
 
 
 − 

                        (4.5) 

GMEs have Lorentz symmetry because they are covariant under such the transformation (called generalized 
Lorentz transformation (GLT)), instead of the usual one. 

A further 5-vector is the 5-velocity  

( )d ,
d

m
m xU cυγ υ

τ
= = 

                                      (4.6) 

with an invariant length of 

( )2 2 2 2 2 1d,
d

m n
mnU U c c U

tυ υ
φη γ υ υ υ γ −= + − = − = ℜ = 



                     (4.7) 

Its components transform into each other under GLT in the same manner as ( ), , , ,x y z ctφℜ  transform into 
each other, namely 

m m n
nU Uα′ =                                         (4.8) 

With the help of GLT, we can get the basic formula for velocity addition as follows: 

( )

( ) ( )

2 2

2 2

,
1 1

,
1 1

yx
x y

x u x

z
z

u x u x

u
u c u c

u c u c
φ

φ

υυ
υ υ

υ γ υ

υυ
υ υ

γ υ γ υ

 −′ ′= = − −

 ′ ′= = − −

                        (4.9) 

In particular, if generalized speed
 

2 2
x cφυ υ υ= + ≤



 and 0y yυ υ= = , we find 

( )
( )

( ) ( )
( )

22 2 2 22 2

2 21 1
u x xu x

u x u x

u cu
c

u c u c
φ γ υ υγ υ υ

υ
γ υ γ υ

− + −− +
′ = ≤ =

− −

                      (4.10) 

This is just a restatement of the fact that, if a particle (or light) has cυ ≤
  in one frame of reference, then it 

has the same result of cυ′ ≤  in all frames of reference. To understand physically why this is the case, it is ne-
cessary to turn to consideration of relativistic dynamics. 

4.2. Generalized Relativistic Dynamics 
In order for relativistic mechanics to be Lorentz symmetric, we need to generalize the familiar 4-momentum 

0p m Uµ µ=  to the 5-dimensional form of 0
m mp m U= . For massive photon, it reads  

, ,m kp
c
ω 

=  
ℜ 

k


 

                                     (4.11) 

with an invariant length of 2 2
0 0m

mp p m c= − = , implying the conventional mass of photon is still zero. Corres-
pondingly, for a particle with mass 0m  and spin p k=





  ( )( )0,1,2,3, 2k =


 , we have 
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( )5
0 , , , , ,m p E ap m U U U

c
 = = = ℜ ℜ 

U p


 

                      (4.12) 

( )0a p m=   is the spin to mass ratio. Obviously, for π  meson, a should be zero (due to π 0k =


), and for pho-
ton, infinity (due to 0 0m = ). Thus we see that, the linear momentum p , spin p  and energy E of moving par-
ticle can naturally form a covariant 5-vector, whose components transform in a definite way under GLT: ob-
servers in relative motion will see different generalized momentum ( ),p p= ℜp

  and energy E, or, as we say, 
the generalized momentum and energy can transform into each other. 

Moreover, we also have another 4th component of velocity 

e

2
2

2 2 2 2 30 1e

1 , for photon
1

1 2.8 10 m s , for electron

c
U ac ac a

γυ
υ

υ
υ

β
β

υ
γ β − −

 −
−

= = = 
ℜ +  − ≤ × ⋅

ℜ




         (4.13) 

The first result guarantees 2 2 cγ γ γυ υ υ= + =


  (consistent with our modified postulate), the second implies a  

very small velocity 30 1
e 2.8 10 m sυ − −≤ × ⋅  for electron. Repeatedly for the earth, it reads 

16 19.2 10 m s
a

υ − −⊕
⊕ = = × ⋅

ℜ
                                  (4.14) 

Now, by the invariant length of 2 2
0

m
mp p m c= − , we can also lead to the generalized energy-momentum rela-

tion  
2 2

2 2 2 2 4 2 2 2 4
0 02

p cE p c m c p c m c= + = + +
ℜ



                         (4.15) 

which naturally contains particle spin p k=




 . The presented allows us to formally take the limit of 0 0m → , 
and in this limit it gives 

2
0 0E p c m c m cυ υγ υ γ= = = 

                                 (4.16) 

meaning only zero mass particle can travel at speed c in generalized space, i.e. cυ =
 , and only zero mass par-

ticle with zero spin ( )0k =


 can travel at the limit speed of ( ),0c = c  in real space. 
In 5-dimensional relativity, all the related concepts can be given by analogy with their corresponding relati-

vistic versions. Thus, we define the generalized force by 

d
d
pF
t

=




                                          (4.17) 

In the case of 0p = , it reduces to the usual form. The generalized relativistic work done by F


 during a 
small displacement dr , can be written analogy as 

d dW F r= ⋅


                                        (4.18) 
The rate at which the generalized force does work is then 

( )2
0dd d

d d d
k

m cE pP F
t t t

υγυ υ= = ⋅ = ⋅ =






                             (4.19) 

kE  is the generalized relativistic kinetic energy. So that, integrating with respect to t gives 
2

0 constant kE m cυγ= +                                       (4.20) 

By requiring that 0kE =  for 0υ = , we find 

( )
2

0
2 2 2

0 0
2

0 0

, for 01 21 1
12 , for 0
2

k Uc

p m
cE m c m υ

m m
υ υ

υ
γ β

υ

 = ℜ= − ≈ + = 
 ≠








                 (4.21) 
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As should be the case, the generalized energy tends to the classical form for moving particle with a small ve-
locity υ . 

When particle is force-free ( )0F =


, its generalized momentum and energy conserve 

0
2

0

are time-independent
p m

E m c
υ

υ

γ υ

γ

=


=







                            (4.22) 

of which, the 4th component ( )p k=




  indeed represents the spin conservation. To see the physical meaning of 
the above, we consider the breakup of a body (such as a radioactive nucleus) of rest mass 0m  and spin p  into 
two pieces of rest masses 01m , 02m  and spins 1p , 2p . If suppose the initial body is stationary, and the debris 
flies apart with velocities 1υ  and 2υ , then some of the rest mass of the original body would be converted into 
the kinetic energy of the two masses produced. So by the generalized conservation laws, we have 

( )
1 2

1 2

01 1 02 2

1 2 1 2

2 2 2
0 01 02

0m γ m

p p p k k

E m c m c m c

υ υ

υ υ

γ

γ γ

 = + =
 = + = +


= = +

p  

 

 

  



υ υ

                              (4.23) 

In particularly, for 0π  meson decay 0π γ γ→ + , 2 1γ γ γ= − =p p p , 2 1 1k kγ γ= − =
 

, it gives 

( )
π 1 2

π 1 2

π

0

0

2

p k k

E p c

γ γ

γ γ

γ

 = + =
 = + =


=

p p p
 







                                      (4.24) 

Nevertheless, the truly remarkable aspect of the above conclusions is that it has its fundamental origin in the 
fact that there exists a universal maximum possible speed c and a characteristic length ℜ , which are built into 
the structure of 5-dimensional Minkowski space. This structure ultimately exerts an effect on the properties of 
matter occupying space, phase and time, those are the linear momentum, angular momentum (spin) and energy 
of moving particle. 

4.3. Lagrangian Description 
With 0p mυγ υ= 

  in hand, it is natural to suppose that the dynamic equation for a particle with charge q and 
mass 0m  in MEFs is  

( )0dd ,
d d

mp q b
t t c c

υγ υ υ × + ⋅    = = + − +        

B e eE





υ υ                        (4.25) 

By potential mA , the equation can be transformed into 

( ) ( )d
d

p qA q A
t

υ ϕ+ = ∇ ⋅ −
 

                                    (4.26) 

and further manipulated into the Lagrange’s form 

( ) ( ), ,d 0
d i i

L x x L x x

t x x

 ∂ ∂
  − =
 ∂ ∂
 

   

 



                                  (4.27) 

with the Lagrangian  

( ) ( )( ) ( )2 2 2
0 0, 1 1UL x m c m U q Aυυ β β υ υ ϕ= − + − + + ⋅ −




 
                     (4.28) 

For zero spin particle of 0U =


, it reduces to the usual form 

( ) ( )2 2 2
0, 1L m c c qυ ϕ= − − + ⋅ −x Aυ υ                                 (4.29) 

To derive the Hamiltonian H for charged particle in MEFs, we write the canonical momentum 
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( )
0

,L x
P m qAυ

υ
γ υ

υ
∂

= = +
∂



 







 
                                 (4.30) 

Then, applying Legendre transform to ( ),L xυ   gives  

( ) ( ) ( )2 2
0 0 0, , ,H P x P L x m m U q A L x m c qυ υυ υ γ υ υ υ υ γ ϕ= ⋅ − = + + ⋅ − = + 

 


     
         (4.31) 

Consider the energy-momentum relation 2 2 2 2 4
0 0E m c p c m cυγ= = +



 and p P qA= −


 , we have the finally 
Hamiltonian form 

( ) ( )2 2 2 4
0,H P x P qA c m c qϕ= − + +

 



                              (4.32) 

followed by Hamilton’s equations: 

( ) ( ), ,
,

H P x H P x
x P

xP

∂ ∂
= = −

∂∂

 

 













                                  (4.33) 

These equations are first-order in time in contrast to the second-order Lagrange’s. 

5. Massive Electrodynamics 
It is natural that, the electrodynamics of moving bodies could be in agreement with the developed relativistic 
principles, under which all the related problems could be discussed. In particularly, when we say GMEs are co-
variant, we eventually must specify the transform properties of that, it is not only the space and time coordinates 
that will change, but also MEFs. 

5.1. Covariant Electromagnetic Equations 
The clue we need to construct a transparently covariant comes from GMEs, whose structure guarantees that the 
equations are form-invariant to translations in generalized space. Therefore, to show that massive electrody-
namics is covariant, it is sufficient to show that the fundamental equations can be written entirely in terms of 
Lorentz tensors, whose components change under a Lorentz boost. The path to writing GMEs in covariant form 
begins with the introduction of the MEF tensor 

0
0

0
0

0

z y x x

z x y yn m
mn n,m m,n

y x z z
m n

x y z

x y z

B B e E
B B e E

A A B B e EF A A
x x e e e b

E E E b

− − 
 − − ∂ ∂  − −= − = − =

∂ ∂  
− − − − 
  

                 (5.1) 

Of which, the components transform according to the rule of lk l k mn
m nF Fα α′ = . Tensor (5.1) can help us to 

express the homogeneous and non-homogeneous equations in Equation (2.7) respectively as 
, , ,

,0,mn l nl m lm n mn m
nF F F F J+ + = =                            (5.2) 

including continuity equation , 0m
mJ =  and Lorenz condition , 0m

mA = . If gauge invariance held, the Lagrangian 
density can be given by 

1
4

mn m
mn mL F F A J= − −                                     (5.3) 

The variation of the density with respect to mA  yields ,
mn m
nF J= . 

Now, it is easy to confirm that, the tensor transformation rule applied to mnF  reproduces the field transfor-
mation formulae 

( )
( )

( )
( )

/ / / /

/ / / /

/ / / /

/ /

,

,

,

u

u

u

u

E E E E

B B B B

e e e e b

b b e

γ

γ

γ β

γ β

⊥ ⊥

⊥ ⊥

⊥ ⊥

′ ′= = + ×


′ ′= = − ×
 ′ ′= = −
 ′ = −

B

E

β

β
                           (5.4) 
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Also noteworthy is the Lorentz invariant scalar function 

( ) ( )2 2 2 21 1 1
4 2 2

mn
mnF F w E B b e−+−Π = = = − + −                       (5.5) 

The presented results reflect the transform properties of MEFs. The approach can provide us all the know-
ledge of generalized electrodynamics. 

5.2. Generalized Conservation Laws 
In order to organize the conservation laws of electromagnetism, we write the stress of 5-current ( ),mJ j c ρ=



 
as 

( )5 5, ,m mn
nf f f F J f f υβ= = = ⋅ 

  

                             (5.6) 

and then get 

, ,mn m mn mk nl mn
n klT f T F Fη η= = − Π                             (5.7) 

mnT  denotes the generalized electromagnetic stress-energy tensor. An immediate consequence of Equation (5.7) 
is that a free MEF has a divergence-free stress-energy tensor 

, 0mn
nT =                                                     (5.8) 

To examine the elements of mnT , we find 
44 55,T w T w w−−+ +++= − = − = −                                (5.9) 

The latter just simplifies to the negative of electromagnetic energy density w. The off-diagonal elements 5T µ  
are proportional to the Cartesian components of the corresponding flow density defined in Equation (2.9), 
namely 

( ) ( )( )5 ,ST b
c

µ = − = − × + ⋅E B e E e


                            (5.10) 

A bit of algebra confirms that the space-phase components 4iT  are the mixed flow density 

4iT b
c

= − = × +
S e B E


                                       (5.11) 

Furthermore, the space-space components can be given by 
ij i j i j i j ijT E E B B e e wη ++−= + − −                               (5.12) 

Putting all the presented results together gives the matrix of mnT  as 

mn

c c
T S cT c w S c
S c w c S c w

−−+

 − −   −
= = − − −   
 − −    − − − 

T S S
S
S
















                  (5.13) 

With the representation (5.13) in hand, it is straightforward to confirm that Equation (5.7) contains two con-
servation laws in differential form. The first is a statement of the conservation of generalized momentum 

2

1 Sf T
tc

↔ ∂
= ∇ ⋅ −

∂




 

                                      (5.14) 

The second gives Poynting’s theorem of energy conservation  

wf c b S
t

υ ρ ∂
⋅ = ⋅ + = −∇ ⋅ −

∂
j E

 

                              (5.15) 

Now, with the help of Equation (5.13), it is easy to write out the stress-energy tensor of plane MEWs dis-
cussed in Section 3, that is 
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2

2
2

22
2 2

2

0 0

,
0

z z

z z zmn
z

z

z

c k
cwT c
cc

w E bc c c

φ
φ

φ φ φ

φ

υ ω
υ υ υ υ

υ υ
υ υ υ υ
υ υ

   =   = − = −    = +  

                  (5.16) 

So, we have the following conservation equations  

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2

2

1 0

1 0

1 0

z z z

z

z

w w w
z t

ww w
z t

ww w
z t

φ

φφ φ

φ

υ υ υ υ
φ

υυ υ υ

φ

υυ
φ

∂ ∂ ∂
 + + =

∂ ℜ ∂ ∂


∂∂ ∂
+ + =

∂ ℜ ∂ ∂
 ∂∂ ∂ + + =
 ∂ ℜ ∂ ∂


                            (5.17) 

corresponding to a steady form 

1 0z
z

z
z z

φ φυ υυ
υ

φ φ
∂ ∂ ∂ ∂

+ = + = ∂ ℜ ∂ ∂ ℜ ∂ 
                             (5.18) 

due to z zk kφ φω υ υ= + ℜ . The equation implies a constant velocity, namely 

1 1constant,F z

υ
Hz H φ υυ υ

φ φ
∂ ∂

= + = = =
ℜ ∂ ℜ ∂



                     (5.19) 

Treating H as the Hubble constant gives 0 d dc tυ φ υ φ= + = ℜ  , and then 

( )0
0

1 17
0e 1 , 4.2 10 st T T Hυφ β −= − = = ×                          (5.20) 

with 0T  representing the cosmological time. The small value of 
0υ

β   (e.g. 
0

32~ 10υβ
−

  for a 1510 Hz  photon) 
determines that the spin phase φ  is also a very small quantity. Notice that, Fυ  is nothing but the full velocity 
of light defined explicitly in ref [29], which can naturally lead to Hubble redshift, in agreement with the result of 
Equation (3.33). Importantly, such the agreement enables us to investigate motion in full velocity space, and 
further introduce a modified relativistic postulate:  

The generalized full speed of light is a constant c. 
By the postulate, we can incorporate the presented theoretical form into a more generalized unified frame-

work of spatial relativity [29], the unified framework could give a satisfactory account of the relativistic pheno-
mena.  

5.3. Angular Momentum and Center of Energy 
Now, by force (5.6) we define the generalized Lorentz torque density tensor as 

mn m n n mM x f x f= −                                     (5.21) 

The structure of this anti-symmetric tensor is 

( )

4 5
5

4 5
5

5 5

4 5 5 5 5

0
0 0

, ,

mn r f MM M
M M

f M M f r ct fφ

  ×
  ×  

= = −   −   − − 
 = −ℜ = = −

r f M M
M
M

M r f M



















                       (5.22) 

Analogous to Equation (5.7), it is possible to write the second-rank torque density as the five divergence of a 
generalized third-rank Lorentz tensor: 
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mnl m nl n ml nmlN x T x T N= − = −                                 (5.23) 
The anti-symmetry of mnlN  with respect to its indices ( ),m n  implies that only 50 of its 35 125=  com-

ponents are independent. In detail, we use Equations (5.7), (5.23), and the symmetry of the stress-energy tensor 
( )mn nmT T=  to write (5.21) in the form 

, , , ,δ δmn m nl n ml mnl m nl n ml mnl
l l l l l lM x T x T N T T N= − = + − =                       (5.24) 

or given by 

( ) ( )

( ) ( )
2

2 5
2

1

1

T r S r f
tc

c tT Sr crw ctS ctf rf
tc

∂∇ ⋅ × + × = − × ∂
 ∂∇ ⋅ + + − = −
 ∂

r
 

  

  

  

                           (5.25) 

We focus on the 30 components lN µν  ( )12,13,14,23,24,34µν = , and then find that the twenty-four with 
1,2,3,4l =  are exactly the components of the second rank tensor of generalized angular momentum current 

density, lN T rµν = ×


 . The six components 5N r S cµν = − ×


  are similarly the components of angular momen-
tum flow density. These six independent components can be collected into the continuity-like equation for an-
gular momentum flow, i.e. the first of Equation (5.25). The remainders (with 15,25,35,45mn = ) have been 
collected into the second.  

Now, let us investigate the similarity between an electromagnetic pulse and a relativistic particle. When no 
source exists ( )0mnM = , Equation (5.24) becomes  

, 0mnl
lN =                                          (5.26) 

followed by the conservation equations  

( ) ( ) ( )

( ) ( ) ( )

2

2

d 0
d
d 0
d

r S r S c T
t t

crw ctS crw ctS c tT cSr
t t

∂ × = × +∇ ⋅ × = ∂
 ∂ − = − +∇ ⋅ + =
 ∂

r
   

 

   

  

                        (5.27) 

In which, the conserved quantities are defined as the angular momentum flow densities of massive electro-
magnetic radiations, ( )r S×



  and ( )crw ctS−


 . For a single photon of generalized momentum p , we have 

( )

( )5 5

d 0
d
d 0
d

L L x p x p p p
t t
L L p x ctp cp p
t t

µ ν ν µ µ ν ν µ

µ µ µ µ

υ υ υ υ

υ υ υ

 ∂
= +∇ ⋅ − = − = ∂


′ ′∂ = +∇ ⋅ − = − + = ∂

 



 

 



 

                          (5.28) 

with L r p= ×


  , 5L p r ctp′ = −


  . By dispersion relation (3.4), we can get the Hamiltonian function of moving 
photon, that is  

( ),H x p pω υ= = ⋅
  

                                     (5.29) 

It can help us to write Equation (5.27) in term of Poisson formulation (due to 0L t∂ ∂ =


, L t cpµ′∂ ∂ = −


) 

( ) ( )

( ) ( )

d , , , , 0
d
d , , , , 0
d

L L H x p L H x p L
t t
L L H x p L cp H x p L
t t

µ

 ∂    = + = =     ∂


′ ′∂    ′ ′= + = − + =    ∂

 

 

   

 

 

   

                       (5.30) 

with Poisson brackets defined respectively by 

( )

( ) 5

, , 0

, ,

H L L HH x p L p p
p px x

H L L HH x p L p
p px x

µ ν ν µ
µ µ

µ µ

µ
µ µ

µ µ

υ υ

υ

  ∂ ∂ ∂ ∂  = − = − =    ∂ ∂∂ ∂   


 ′ ′∂ ∂ ∂ ∂ ′ = − =   ∂ ∂∂ ∂  

 



 

 



 

                    (5.31) 
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It suggests that, when the brackets with the Hamiltonian vanish, the generalized angular momentums of mov-
ing photon will be constant. 

6. Toward a Dirac Typical Equation 
In this section, our aim will be try to construct a Dirac typical equation to describe the motion of photon. Along 
the way, we shall encounter some challenges, which ultimately will force us to a recasting of Dirac equation. 

6.1. Generalized Dirac Equation 
To combine relativistic invariance with quantum mechanics, let us to write out the generalized Dirac Hamilto-
nian of 2

0Ĥ c p m cα β= ⋅ +
   and the generalized Dirac equation (GDE) 

2
0i i c m c

t
ψ α ψ β ψ∂

= − ⋅∇ +
∂





                                    (6.1) 

with an explicit representation of Hermitian 4 4×  matrices given by  

0 0 0
, ,

0 0 0

0 1 0 1 0
, ,

1 0 0 0 1

iI I
iI I

i
i

α β
       

= =       − −       


 −       =        −      



σ
σ

σ

                            (6.2) 

in term of the 2 2×  unit I and Pauli σ  matrices, and µα , β  are proposed to be anticommuting matrices of 
square equal to one:  

{ }
{ } 2 2 2 2 2

ˆ ˆ, 0, for

ˆ , 0, 1x y z

µ ν

µ
φ

α α µ ν

α β α α α α β

 = ≠


= = = = = =
                           (6.3) 

To study the interaction of a Dirac particle with an external MEF characterized by potential mA , we need to 
write the covariant from of GDE, that is 

0 0m
mi m cγ ψ ψ∂ − =

                                      (6.4) 
where the γ  matrices are related to α  and β  through 

( )
0 0 0

, , ,
0 0 0

m iI I
I

iI I
γ β α

      
= =       − −      



σ
σ

,                            (6.5) 

with 5γ  Hermitian, µγ  Antihermitian. The relevant coupling can be obtained from the free GDE through the 
coupling prescription ( )em m mi c A∂ → ∂ +  , that is  

( ) 2
0e 0m

m mic A m cγ ψ ψ∂ − − =                                 (6.6) 

Multiplying it by the operator ( ) 2
0em

m mic A m cγ ∂ − −   yields 

( )2 2 4
m 0e e 0mn

m mni A c F m cψ ψ ψ∂ − − Ω − =                            (6.7) 

with a generalized spin tensor defined by 
4 5

4 5

5 5

, 0
4

0

mn m ni γ γ
 ×
  Ω = = − Ω  
 − −Ω 







Ω Ω
Ω
Ω

γ γ
                             (6.8) 

whose components read 

( )

4

5 5

0 0
,

0 02 2

0 0
, ,

0 02 2
i I

i I

 −   
= =    

   


 −     Ω =      − −    

 



 

Ω Ω

Ω

σ σ
σ σ

σ
σ

                           (6.9) 
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The 10 matrices of mnΩ  plusing the 5 components of mγ  and scalar I just constitute a set of 16 linear in-
dependent 4 4×  matrices. Therefore, the spin coupling term can be written as 

( )4 5 5e 2 emn
mnc F c bΩ = ⋅ + ⋅ + ⋅ +ΩB e E



Ω Ω Ω                          (6.10) 

When the polarized fields neglected (i.e. 0→e , 0b → ), it will tend to the usual result [30].  

6.2. Dirac Typical Equation of Free MEW 
It is easy to find the similarity between Hamiltonian (5.29) and the Dirac formation. This similarity would pro-
vide us a very useful analytical device to study the angular momentum of photon from standpoint of Dirac 
theory. Thus, based on the fact that, the 3rd component of photon spin is always parallel to its momentum p  
(i.e. 0x yp p= = ), and no zero spin photon existing, we introduce the following 6 6×  hermitian matrices  

1 0 0
0 0

, , 0 0 0
0 0

0 0 1

0 1 0 0 0 1 0 0
2 21 0 1 , 0 , 0 0 0

2 2
0 1 0 0 0 0 0 1

iI
I

iI

i
i i

i

  
      Λ = =      −       


 −      
       = −             −       

 Σ
Σ

Σ

                     (6.11) 

and write the generalized Hamiltonian operator of photon as 

( )ˆ
z zH c p c p pφ φ= Λ ⋅ = Λ + Λ



                                   (6.12) 

where, 0x yp p= = , and thus only zΛ , φΛ  are required to be anticommuting, namely 

{ } 2 2, 0,z z Iφ φΛ Λ = Λ = Λ =                                    (6.13) 

Now, it is easy to find that, the generalized angular momentum of photon ˆmn m n n mL x p x p= −  is not com-
muting with Ĥ  

( )
1 2

5
5 5 5

ˆd ˆ ˆ ˆ ˆ
d , 0
ˆd ˆ ˆ ˆ ˆ
d

Li L H HL ic p p
t p p

Li L H HL ic p
t

µν
µν µν µ ν ν µ

µ
µ µ µ


= − = − Λ −Λ = =

 = − = − Λ

 

 

              (6.14) 

To meet the requirement, we introduce the Γ  matrices  

( )

{ }

0 0 0
, , , ,

0 0 0

, 2 , , 3, 4,5

0
0

m

m n mn

iI I
I

iI I

m n

I
I

φβ

η

β

       
Γ = Λ =       − −      

Γ Γ = − =


  =   − 

Σ
Λ

Σ

                    (6.15) 

and define the generalized spin tensor of photon by , 2mn m ni  Θ = Γ Γ  , with  

( )

4

5 5

0 0
,

0 0

0 0
, ,

0 0
i I

i I

 −   
= =    

   


 −     Θ =      − −    

 



 

Σ Σ
Θ Θ

Σ Σ

Σ
Θ

Σ

                               (6.16) 

The definition allows us to treat the total angular momentum ˆ ˆmn mn mn
totL L= +Θ  as a conserved quantity rather 

than ˆmnL . This conversed condition requires 
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0 0 0 0
0 0 0 0ˆd d 0

d d 0 0 0
0 0 0

y z

x znm nm

z y z x z z z t

z z t

t z t

p
p

L p p p p pc
t t p p p

p p

φ φ

φ φ φ

φ

Λ 
 −Λ Θ  − Λ Λ Λ − Λ Λ= − =
 

Λ − Λ Λ 
 − Λ − Λ 

        (6.17) 

implying five conserved components, namely  
4 54 5d dd dd

0
d d d d d

y yx xz

t t t t t
Θ ΘΘ ΘΘ

= = = = =                           (6.18) 

Accordingly, MEWs behave like relativistic particles in the sense that their angular momentum transform like 
the energy-momentum vector of a particle. The situation suggests the conversation law of angular momentum 
should be modified as: the nature of MEWs is no longer to keep the generalized mnL , but the total 

mn mn mn
totL L= +Θ  (including photon spin mnΘ ) constant. This means, only the quantities of commuting with 

Hamiltonian Ĥ , will be the electrodynamic constants.  
To study the physical implication of the Hamiltonian (6.12), we introduce a 5-dimensional bispinor 

( )A ,A,m/ / /= Φ/


A  to describe the massive electromagnetic potential, and propose the following Dirac typical equ-
ation (together with a modified Lorentz condition) 

( )
A 0

A 0 0

m
m

m
m x y

i ic
t

 ∂Α/
/+ Λ ⋅∇ = ∂

 /∂ = ∂ = ∂ =

 

                                  (6.19) 

We here emphasize: 1) The components of Am/  must satisfy the Klein-Gordon equation, meaning a plane  

MEW with 2 2 2E p c=
  (i.e. 2 2 2 2 2 2E p c k c= ± + ℜ



 ) is a solution. 2) There exists a 5-current density which  
is conserved and whose firth component is a positive density of photon. So that, in the 5-dimensional represen-
tation (6.15), Am/  may be written as 

A
A

A

m
m

m
+

−

 /
/ =  

/ 
                                       (6.20) 

in terms of two-component spinors Am
+/  and Am

−/ , which satisfy 

A
A A

A
A A

m
m m

m
m m

c iI
t

c iI
t

φ

φ

+
− −

−
+ +

 /∂
/ /= − ⋅∇ − ∂ ∂


/∂ / /= − ⋅∇ + ∂ ∂

Σ

Σ

                               (6.21) 

Solving the equation gives its eigensolutions and the corresponding eigenvalues (shown as Table 1). 
 

Table 1. The eigensolutions of Equation (6.21).                                                                

Eigenvalues Eigensolutions 

Ĥ  p̂  p̂  ĥ  ( )0A A , , , ,m m x y z tχ φ/ /=  

E  zp  ±  ±  
( )

0A A e
zi p z p Et

m m

E

φχ
ϑχ+

+ −
±

±
±

 
/ /=  ± 



  

E−  zp  ±  ±  
( )

0A A e
zi p z p Et

m m

E

φϑχ
χ−

+ +
±

±
±

 
/ /=  

 







 

where, the spin states χ±  and the helicity operator ĥ  read respectively. 
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1 0
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0 1
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χ χ+ −

   
⋅   = = = = Θ   

   
   

pΘ                             (6.22) 

the parameter ϑ  equal to 

( )
( ) 1,

, 0
z z

zz

c k ik k k
i kc k ik

ωϑ
ω

ℜ −  ℜℜ = = = 
ℜ − →ℜ + 









                       (6.23) 

From the above, we find a 4D mixed representation of consisting of the energy symbol (±) and the spin chi-
rality ( )χ± , that is 

1 0 0
0 0 0 0
0 1 0

, , ,
0 1 0

0 0 0 0
0 0 1

a

a
a

a

χ χ χ χ++ +− −+ −−

−       
       
       
       

= = = =       
       
       
              −       

                (6.24) 

Then by Equation (6.19) and its conjugate form 

A 0m
mi ic

t
∂Α/

/+ ∇ ⋅Λ =
∂

 

+
+                                 (6.25) 

we get conservation equation 

0, , A Am m
m m

n
j n j c

t
γ

γ γ γ

∂
/ /+∇ ⋅ = = Α/ Α/ = Λ

∂

 
 + +                         (6.26) 

The number density of photon nγ  is positive, and the density current ( ),mj j c nγ γ γ=


 transforms as a ge-
neralized Lorentz 5-vector.  

It is interesting to notice the equivalence between the covariant form of Equation (6.19) 

A 0n m
ni /Γ ∂ =                                        (6.27) 

and the homogeneous d’Alembert’s, 0n m
n A∂ ∂ = . This equivalence allows us to express formally the MEF ten-

sor as 

( )1F A Amn m n n m

ω
/ // = ∂ − ∂



                             (6.28) 

including the stress-energy one  
1T F F Π, Π F F
4

mn mk nl mn mn
kl mnη η/ = / / − / / = / /                          (6.29) 

For plane MEWs of ( )A A ,0,A ,A,m
x z/ / / /= Φ/



 propagating along z-axis, we have Lorentz condition 

A A 0z z
ik iωik

c
/ /+ − Φ =/

ℜ





                                (6.30) 

and then get the nonzero field components (corresponding to Equation (3.22))  
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                      (6.31) 
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followed by the energy density 

( )1 b b
2

m
m γw nω ω/ /= / ⋅ / + / ⋅ / + + ⋅ = Α/ Α/ =/ /  E E B B e e+ + + + +                       (6.32) 

identical to expressions (3.23) and (6.26). The transverse and longitudinal fields in (6.31) represent respectively 
PTW and PLW, and coexistence of the both will bring us LTMW. 

Up to now, we have transformed GMEs into Dirac form, which practically identical but conceptually different 
with the usual electrodynamics, looks upon MEWs from a viewpoint of quantum physics: MEWs are nothings 
but a collection of a large number of massive photon with unit spin, which can be described by a Dirac typical 
equation. Importantly, we find a new route that can be followed to study the motion of photon in the mathemati-
cal clothes of Dirac theory. 

7. Summary 
In this paper, we have made a special effort to illustrate the physical consequences of vacuum polarization. This 
practice could provide a direct pathway to develop Maxwell’s theory, and the development has leaded to many 
surprising results. To sum up, these results are: 

1) The starting point of our work is to establish a set of new EFEs by the mechanism of vacuum polarization, 
which is expressed in generalized space with an added dimension identified with the spin phase, hence possess-
ing gauge invariance. These equations could give us a complete and self-consistent description of electromag-
netic phenomena. 

2) The effects of massive photon were incorporated into electromagnetism straightforwardly through GMEs, 
which can be used to consider some physical implications, such as deviations in the behavior of static electro-
magnetic fields, the dispersion of light, the polarized states of MEWs and the Hubble redshift. In particularly, 
we emphatically discuss the field structures of three typical MEWs, i.e. the pure transverse, pure longitudinal 
and longitudinal-transverse mixed waves. 

3) By a modified relativistic postulate of that: The generalized speed of light is a constant c, we develop the 
special relativity into a 5-dimensional Lorentz symmetric form; this form contains two natural constants: a ve-
locity constant c and a length constant ℜ . It shows that, all the relativistic problems could be considered in a 
space-phase-time manifold, whose components just correspond to the linear momentum, spin and energy of 
moving particle. In this way, the particle spin goes into the motion equation. 

4) To guarantee electrodynamics to be covariant, we have written entirely the fundamental equations of the 
subject in terms of Lorentz tensors, whose components change under a Lorentz boost, but whose essential tensor 
character does not change. The covariant notation provides a powerful way to organize the conservation laws of 
electromagnetism for the linear momentum, angular momentum and energy, including a further revisiting by 
Lagrangian method. 

5) By reevaluating the similarity between the energy form of photon and the Hamiltonian of Dirac particle, 
we constructed a Dirac typical equation for free massive photon. The plane wave solutions of the equation are 
presented, which could bring a significant change to electrodynamics. 

Finally, let us review the developed electrodynamics. The original equations (i.e. MEs) were not accurate and 
had to be reformulated. The modified equations (i.e. GMEs) were involved in a generalized field formulation. 
This field formulation always gives the same results when applied to the different frameworks, and thus the Lo-
rentz covariance is guaranteed. 
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