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Abstract 
We discuss an alternative version of non-relativistic Newtonian mechanics in terms of real Hilbert 
space mathematical framework. It is demonstrated that the physics of this scheme is in accor-
dance with the standard formulation. Heisenberg-Schrödinger non-relativistic quantum mechan-
ics is considered adequate and complete. Since the suggested theory is dispersion free, linear su-
perposition principle is not violated but cannot affect results of measurements due to spectral 
decomposition theorem for self-adjoint operators (the collapse of wave function). 
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1. Introduction 
The debates about the interconnection between the hidden laws of nature and our ability to extract the informa-
tion necessary to formulate them have perhaps a history as long as study of physics itself. The content of our 
paper is not related to the philosophical or metaphysical aspects of those discussions. Instead, we choose certain 
point of view without intention to defend it or to convince the reader that it is the only possible approach. We 
simply present how the process of knowledge acquisition is realized within that approach. We explore the anal-
ogy with the structure of field theories (classical electrodynamics, general relativity and non-relativistic quantum 
mechanics) and make distinction between the unobservable kinematical quantities which characterize the physi-
cal system and the measurable variables which define its dynamics. Since the main distinction between the clas-
sical and the quantum physics is in presence of new kinematical quantities—phases, one should learn how to 
measure the corresponding phase differences. We demonstrate that the required measurement may be performed 
using special experimental arrangement which we call the quantum reference frames. The use of these reference 
frames allows communicating the hidden unobservable information into the instruments of the observer. Simul-
taneously it explains why the elementary unit of the communication is given in terms of indivisible bit. 
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In order to achieve our goal we establish for classical mechanics the structural framework similar to the one 
used in quantum theory. We restrict ourselves to description of single particle states and prefer here to avoid 
complications introduced by special relativity. In order to make clear the mathematical and correspondent phys-
ical content for successive discussion, I will quote the following statement [1]: 

If ˆ ˆA A+ =  and 1 0Ψ Ψ = , we can always decompose 

1Â α βΨ = Ψ + Ψ  

with β  real and non-negative. 

Â Aα = ≡  

( )
1 22

2ˆ ˆ .A A Aβ  = − ≡ ∆  
 

This theorem appears several times [2] in different contexts, but in form presented, its content takes a clear 
view of the situation: it is enough that wave function of the system will contain two linearly independent (or-
thogonal) components in order that the correspondent observable will have non-zero dispersion. The non-zero 
dispersion leads to practically instant spread of wave packet. 

Now, let us consider famous E. Schrödinger cat example [3]. The essential assumptions are: 
1) The cat may be presented as a quantum mechanical system and not as a classical measurement instrument; 
2) The system state is described by the following linear superposition of pure states: 

( )cat alive dead
1
2

Ψ = Ψ + Ψ . 

E. Schrödinger did not continue discussion after that point. But since a cat is in the superposition state, this 
will lead to the spread of wave packet within time uncertainty predicted by W. Heisenberg. The curious experi-
menter would find cat “blurred” over entire volume of the chamber and disappeared (from classical point of 
view) together with his smile (notice that if it was correct, then the quantum mechanics would provide proper 
unification between L. Carroll and E. Schrödinger fantasies). It was remarkable that E. Schrödinger concluded 
discussion of cat paradox by the following statement: 

“It is typical of these cases that an indeterminacy originally restricted to the atomic domain becomes trans-
formed into macroscopic indeterminacy, which can then be resolved by direct observation”. 

That statement is in contradiction with the J. von Neumann conjecture [2] that the macroscopic physics is 
dispersion free. 

2. Real Hilbert Space Formulation of Classical Mechanics 
First of all it should be defined what we mean by real Hilbert space. We should maintain the connection with 
quantum theory as close as possible and assure the proper extension to relativistic version. 

In addition, a scheme should incorporate classical electrodynamics through application of principle of local 
gauge invariance. Therefore we will use the following definitions: 
 

Real Hilbert space Complex Hilbert space 
System state: complex wave function 
Dynamical variable: complex linear operator 
Observable: self-adjoint (hermitian) operator 
Measurement of observable value(*): 

3
clas

ˆ ˆ dA tr A xψ ψ ψ ψ= ∫  

System state: complex wave function 
Dynamical variable: complex linear operator 
Observable: self-adjoint (hermitian) operator 
Value of observable: 

3
quant

ˆ ˆ dA A xψ ψ ψ ψ= ∫  
 

(*)Scalar product in this framework is defined by: 
3d ,Rf g tr f g x= ∫  

with underlined numerical basis of dimension two (complex numbers). This implies that 
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( ) ( )2 1 0x tr x x N x− + = , complexx∀ = , ( ) real,tr x =  

( ) realN x = , ( ) ( ) ( )1, 1.x x tr x xx xx N x+ ≡ = ≡  

In particular, 

( )
0 1

0.
1 0

tr i tr
− 

= = 
 

 

Notice that in quantum theory the relevant scalar products associated with observable quantities are always 
real. Since in classical mechanics every dynamical variable is observable, we will further discuss only self-adjoint 
operators. They satisfy the following algebra: 

1) ˆ ˆ ˆC A B≡ + , ˆ ˆC C+=  ˆ ˆ,A B∀  ˆ ˆ ˆ ˆ, .A A B B+ += =  
This statement will be justified after introduction of a product of two self-adjoint operators. 
2) ˆ ˆ ˆC AB≡ , ˆ ˆC C+=  ˆ ˆ,A B∀  ˆ ˆ ˆ ˆ, .A A B B+ += =  
Proof: 

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ
2 2 2

AB BA AB BA AB BAAB iD+ − +
= + = +  

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆˆ ˆ
2 2 2

AB BA BA AB AB BABA iD+ − +
= + = −  

Obviously, ˆ ˆD D+= . 
Then 

ˆ ˆˆ ˆˆ ˆˆ ˆ
2R C

R

AB BAAB tr AB+
= =  

ˆ ˆˆ ˆˆ ˆˆ ˆ
2R C

R

AB BABA tr BA+
= =  

Therefore 

( )ˆ ˆˆ ˆ 0

ˆ ˆˆ ˆ
R

AB BA

AB BA

− =

=
 

with respect to real scalar product defined above. 
Since the product of any pair of self-adjoint operators is a self-adjoint operator, the product of an arbitrary 

number of self-adjoint operators is a self-adjoint operator. 
Now let us examine properties of self-adjoint operators in these schemes. 
1) Spectral Decomposition Theorem: For every self-adjoint (hermitian) operator Â  that is suitable for de-

scription of the observable dynamical variable (has all necessary properties required by functional analysis), 
there exists the complete orthonormal basis in Hilbert space uniquely defined by the requirement 

( )
1 22

2ˆ ˆ 0A A Aβ  = − ≡ ∆ =  
                              (1) 

The components of this basis are the solutions of the equation 
ˆ

k k kAf fλ=                                       (2) 

which is a consequence of Equation (1). kf  are called eigenfunctions of the operator Â . Sets of real numbers 
kλ  are called eigenvalues of the operator Â , are defined simultaneously with kf  and form a spectrum of Â . 

The spectrum of hermitian operator may contain several discrete numbers, a countable set of discrete numbers 
or/and continuous interval (finite or infinite). 

The careful reader may verify line by line that there is no difference between complex and real Hilbert spaces 
as defined above with respect to spectral decomposition theorem. There exists vast literature on the topic but the 
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books of R. Courant and D. Hilbert [4] and J. von Neumann [2] still remain useful. 
Here perhaps I should add the important remark. When we write 

ˆ ,k k kAf fλ=  

we usually say that it provides physical value(s) of the observable Â . It does not. Wave function f  is not an 
observable quantity. Wave function ˆg Af=  is also an unobservable quantity. The value of an observable 
should be a real number. Only the expression 

3
quant

ˆ ˆ dA A xψ ψ ψ ψ= ∫  

provides the values of the observable in quantum theory. Therefore, an additional relation is required in order to 
associate them with the results of measurements. 

2) The necessary and sufficient condition for two or any number of hermitian operators to have a common set 
of eigenfuctions which form a complete orthonormal basis in Hilbert space is that they are mutually commuted. 
Since the product of two or any number of mutually commuting hermitian operators is again a hermitian opera-
tor (and commutes with each of its components), it has the same set of eigenfunctions. Indeed, every one of 
them in that basis is dispersion free. 

Hence, the real Hilbert space as defined above provides realization of dispersion free physical theory. 
Moreover, since the coordinate x̂  has a purely continuous spectrum, every observable in this theory has a 

continuous spectrum. An additional feature, which distinguishes it from the complex Hilbert space framework, 
is uniqueness of its basis. The theory remains linear and does not exclude validity of linear superpositions for the 
system states; however, only precise values of hermitian operators are measured. That phenomenon is known as 
collapse of wave function. 

3) Another mathematical statement that may have interesting physical realization (we will discuss it later) is 
valid in real Hilbert space: for an arbitrary set of mutually commuting hermitian operators ˆ ˆˆ, , ,A B C   there ex-
ists hermitian operator R̂  such that each one of ˆ ˆˆ, , ,A B C   is a function of R̂  [5]. 

Now it become manifestly obvious that real Hilbert space provides a convenient arena for Newtonian me-
chanics. Finally, let us demonstrate that the equation 

clas quant
ˆ ˆB Bϕ ϕ ψ ψ=                                (3) 

is equivalent to the Heisenberg quantization condition. 
It is well known that the classical equations of motion 

,i i
i i

H Hq p
p q
∂ ∂

= = −
∂ ∂

   

have the following form in terms of hermitian operators [6]: 
ˆ ˆ ˆ ˆˆ ˆd
ˆ ˆ ˆ ˆ ˆ ˆd i i i i i

A A A H A H
t t q p p q

 ∂ ∂ ∂ ∂ ∂
= + −  ∂ ∂ ∂ ∂ ∂ 

∑  

if we choose 

clas

ˆ ˆˆ ˆˆ
ˆ ˆ ˆ ˆi i i i i

A H A HB
q p p q

 ∂ ∂ ∂ ∂
= −  ∂ ∂ ∂ ∂ 
∑  

and 

( )quant
ˆ ˆˆ ˆ ˆiB HA AH= −



 

then using Equation (3) we obtain 

( )
ˆ ˆd ˆ ˆˆ ˆ

d
A A i HA AH
t t

∂
= + −
∂ 

 

which are the quantum equations of motion written in the Heisenberg representation. 
The Equation (3) is the fundamental relation that defines the results of measurements. For the model example 

http://dx.doi.org/10.4236/oalib.1101554


D. Sepunaru 
 

OALibJ | DOI:10.4236/oalib.1101554 5 May 2015 | Volume 2 | e1554 
 

of a particle in an infinite spherical well, only discrete solutions of right hand side embedded into continuous 
spectrum of left hand side will be revealed. 

3. Theory of Measurements 
In the previous section the formulation of Newtonian dynamics was achieved and was even demonstrated that 
the same dynamical law still governs time evolution of the system in quantum physics. It was discovered by E. 
Schrödinger [7] that the alternative equivalent form of equations of motion exists in non-relativistic version of 
the theory. However, what is mentioned by the notion “physical law” still remains undefined. 

We may say that for the mathematical structure it is sufficient to be legal and legitimate if its foundation is 
based on mutually consistent set of assumptions. It is not sufficient for physics: physics is an empirical science. 
The realization of that requirement is performed through introduction of properly defined measurement instru-
ments and procedures. The structure of Newtonian mechanics represents the basic ingredients needed to achieve 
that. In addition to the formulation of the time evolution of the system (dynamics), the equations of motion 
should earn status of physical law. The latter requirement is satisfied by introduction of the reference frames and 
rules as how they are connected with each other. It is meaningless to discuss any law or relation without its un-
iversality with respect to a chosen and well defined infinite set of reference frames. In the classical mechanics, it 
turns out that the definition of the suitable reference frame (inertial systems) occurs through the idealization of 
the free moving body isolated from its environment. Then the connection between those frames is given in terms 
of the motion of such a body. This is the content of the first law of the Newtonian mechanics (Galileo law of in-
ertia), which is indeed consistent with the fundamental equations of motion. We associate that body, located at 
the origin of a given reference frame, with an appropriate set of measurement instruments. Therefore the origin 
of the reference frame should be defined with certainty and the measurement instruments should obey laws of 
classical physics. 

In the scheme suggested here, both requirements are met and Equation (3) assures that all relevant informa-
tion about properties of investigated quantum mechanical system is available. Equation (3) plays a role analog-
ous to the third Newton law. 

A single isolated sample of the experimental data has no meaning in classical physics. Only repetitions of the 
sample will confirm that the obtained result represents the objective reality. The requirement that the system 
state remains unchanged during the experiment was never fulfilled; even the system invariants (for example in 
collisions) may change. What is essential is that if the consecutive (in time) measurements on the same system 
are not legal, the repetition of the measurement should be assured by possibility to prepare a system identical to 
the original one. As pointed out by E. Schrödinger [3] the measurements of quantum mechanical systems allow 
unprecedented precision as well as preparation of the identical experiments (feature inherent to objective prop-
erty of the quantum systems—the identical particles are undistinguishable; a situation which is not available 
within the classical world). 

The collection of the obtained results is now the subject of the standard techniques for the data processing. In 
case the system under test is a classically defined material point (coordinate and momentum are mutually com-
muted hermitian operators), one will obtain a picture sharply concentrated around a single isolated point. In case 
when the system obeys the laws of quantum physics, one will get a picture of a spatially extended object; the 
number of required samples is determined by the classical methods of image and/or signal processing [8]. There 
is no any importance to our subject that the sequence of samplings emerged in random fashion; no doubt that the 
obtained result reconstructs the objective reality exactly in the same manner as the image of the classical materi-
al point was obtained. 

4. Eigenschaften Operators 
The notion of eigenschaften operator was introduced by J. von Neumann [2] as the necessary ingredient of the 
theory of measurements. He suggested assigning that role to the projection operators. However, projection oper-
ators define the space of quantum mechanical states, they define the structure of that space and its orthonormal 
and complete basis. It is logically inconsistent to describe the alternatives by the tool that annihilates the alterna-
tive possibilities; rather it seems natural to use the operators that keep all possibilities open. Therefore, the ei-
genschaften operators must be closely related to projection operators but act on whole space without distortion, 
that is, eigenschaften operators must be unitary. 
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Together with the requirement of being observable ( ˆ ˆH H+ = ) that leads to the following statement: 
Theorem. 
If 1ˆ ˆH H+ −=  (unitary) and ˆ ˆH H+ =  (self-adjoint), 
Then 

2ˆ ˆ.H I=                                        (4) 
Proof: 
1) Suppose 

1ˆ ˆ ˆ ,H H H+ −= =  

then 
1ˆ ˆ ˆ ˆ ˆ.H H H H I−⋅ = ⋅ =  

2) Suppose 
2 1ˆ ˆ ˆ ˆand ,H I H H+ −= =  

then 
ˆ ˆ .H H+ =  

From 2ˆ ˆH I=  we have 

( ) ( )ˆ ˆ ˆ ˆ 0H I H I− ⋅ + =                                   (5) 

Let us consider first the two-dimensional case. From the Equation (5) 

1 21; 1λ λ= = −                                      (6) 

and due to the spectral decomposition theorem, we have 

2 1 2
ˆ ˆ ˆ .H P P= −                                       (7) 

Since 

1 2
ˆ ˆ ˆ,P P I+ =                                        (8) 

finally we obtain 

2
1

2
2

ˆ ˆ
ˆ

2
ˆ ˆ

ˆ
2

I HP

I HP

+
=

−
=

                                      (9) 

Now in terms of matrix mechanics we have 

2 1 1 1 2 3
ˆ eiH ϕα β ∆Ψ = Ψ + Ψ ≡ Ψ  

2 2 1 2 2 4
ˆ e iH ϕβ α− ∆Ψ = Ψ + Ψ ≡ Ψ                           (10) 

with 
1 1 2 2 3 3 4 4 1Ψ Ψ = Ψ Ψ = Ψ Ψ = Ψ Ψ =  

1 2 3 4 0Ψ Ψ = Ψ Ψ =                                 (11) 

Then 
( )1 2

2 2
1
2 2
2

0

1

1

β α α

α β

α β

⋅ + =

+ =

+ =

                                   (12) 

Since here we discuss the measurements of relevant parameters of the quantum mechanical systems with 
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non-vanishing dispersion, we will consider only 0β ≠  case. Then 

1 2α α α= − ≡                                      (13) 
or 

( )2
ˆ 0tr H =                                       (14) 

The matrix elements 

1 2 1 2 2 2
ˆ ˆH H αΨ Ψ = − Ψ Ψ =                              (15) 

and 

2 2 1
ˆ eiH ϕβ ⋅∆Ψ Ψ =                                   (16) 

are all we need to know about the quantum state. Both are measurable, ( )2 11
Ĥ  define the spectrum and  

( )2 12
Ĥ  define the dispersion. The basis introduced above 3Ψ  and 4Ψ  is distinguished by the fact that it 

allows measurement both of them simultaneously. Perhaps the example of two level systems makes that even 
more clear: 

( )
( )

1 1 2

2 1 2

2 1 1 1 2

2 2 1 2

ˆ e e e

ˆ e e e

i t i t i t

i t i t i t

H

H

ω ω ω

ω ω ω

α β

β α

− ⋅ − ⋅ − ⋅

− ⋅ − ⋅ − ⋅

Ψ = Ψ + Ψ

Ψ = Ψ − Ψ
                         (17) 

Then dropping the overall phase factor, we obtain 
( )

( )

1 2

1 2

2 1 1 2

2 2 1 2

ˆ e
ˆ e

i t

i t

H

H

ω ω

ω ω

α β

β α

⋅ −

− ⋅ −

Ψ = Ψ + Ψ

Ψ = Ψ − Ψ
                             (18) 

Using the relations (12) we obtain the following most general solution 

2
cos e sinˆ

e sin cos

i

iH
ϕ

ϕ

γ γ
γ γ

− ⋅∆

⋅∆

 ⋅
=  

⋅ − 
                               (19) 

In particular, for 0ϕ∆ =  and 45γ =   we obtain the Hadamard matrix of lowest order (N = 2) 

2

1 11ˆ
1 12

H  
=  − 

                                     (20) 

well known in image processing applications. 

5. Holographic Detection: Quantum Reference Frames 
The remarkable feature of the measurement process is that the measurement devices are macroscopic, obeying 
the laws of classical physics, whereas the systems under test belong to the microscopic world and behave quan-
tum mechanically. Indeed, the measurement setup should assure that the obtained results represent the objective 
properties of the investigated physical system and not a free subjective imagination of the observer. That task is 
performed in classical physics by introduction of reference frames such that the detector location defines the 
frame origin and the set of auxiliary macroscopic devices allows establishing the connection and the communi-
cation between the frames separated by the finite space-time interval (the comparison of the obtained empirical 
data must always be performed by the same observer). Similarly, in order to perform the measurement of the re-
levant quantum dynamical variable one should include in the classical setup a set of auxiliary macroscopic de-
vices which produce the necessary beam-splitting. Then the required phase differences are measured in the usual 
way. This setup and recording procedure may be viewed as the general holographic detection. But in contrast to 
the classical physics, measurements in quantum mechanics should provide simultaneous information about all 
relevant relative amplitudes (pure states and the transitions between them) and all relevant relative phases. Si-
multaneity is needed since in general the measurement changes the state of the system (in quantum physics and 
in classical physics as well). We illustrate that by explicit examples and describe general features of the corres-
ponding experimental setup which we identify as the quantum reference frame. 
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We address the following questions: 
1) What is the difference between “on-off” and “or-and” switches in terms of quantum mechanical self-adjoint 

operators (observables)? 
2) How the transition amplitudes between the stationary (pure) states are incorporated naturally and symmetr-

ically together with the amplitudes of these states? 

3) Is it possible to measure Â  and Â∆  simultaneously and how to arrange the required setup? 
4) If it is possible, may that measurement be performed using only macroscopic devices? 
It is well known [9] that the product of two noncommuting self-adjoint operators is not a self-adjoint operator 

and that the dispersion of their product is not a self-adjoint operator also. Therefore, there is no way to assign the 
physical meaning to its numerical value. The HDR has outstanding theoretical importance telling us that quan-
tum physics is the physics of extended objects and not of the Newtonian material points. The results of mea-
surements are “pictures” and could not be treated as an image of a single space-time point, in principle. The 
projection operators intensively used by J. von Neumann in formulation theory of measurements obviously play 
a role of “on-off” switches defining the basis of the state vectors in the Hilbert space. Therefore, it is reasonable 
to expect that the “or-and” operators should be connected to them but different. The particular example of the 
suitable candidates is the Hadamard transformations [10] which already find their applications in image process- 
ing and in the quantum information theory. In addition, the notions of bits and qubits appear naturally as two 
component wave packets. Finally, in order to provide the laboratory realization of the simultaneous measure-
ment of the relevant amplitudes (relative generalized coordinates) and phase differences one should assure that 
the wave packet will arrive to each point of the detector screen. 

Let us expose the content of our discussion viewed from the eyes of Schrödinger’s cat totally confused by 
endless debates about his destiny. The usual justification of apparent uncertainty in it refers to HDR. But the 
empirical evidence clearly tells us that the initial assumption that the cat may be considered as quantum me-
chanical system containing an inherent indeterminacy which “becomes transformed into macroscopic indeter-
minacy” [3] is erroneous. If the state of the system (“cat”) is defined, one can measure its dispersion. Now, if in 
that given state the dispersion is not zero, we deal with an extended object and the expected result of the mea-
surements should be represented by a picture of poor cat “mixed or smeared out in equal parts”; if not, the cat 
was and will remain in the pure (definite) state, hopefully alive. Now, let us remember what we are doing in the 
classical case, when only measurements of amplitudes are required. In that case, nobody doubts that the “moon 
is there” and in addition it is the same for all inertial reference frames, for example (Figure 1) [11]: 

The lossless beam splitter here is the macroscopic device which participates actively in the detection proce-
dure ( 2 2

ˆ ˆH H+ = ). 
In contrast, in microscopic quantum mechanical world (quantum optics) we are required to measure also the 

phase differences in order to obtain all existent and necessary information about the original object. This may be 
done using similar setup, for example (Figure 2), but in both cases the mirror and the lossless beam splitter par-
ticipate in detection only passively; they do not cause the wave function collapse, but allow extracting the phase 
difference information, since the reference component of the wave packet arrives to each point of the detector 
screen together with the tested wave packet (within inherent dispersion of the quantum mechanical space-time 
continuum). Then there is no reason to expect that the obtained picture would not provide the adequate image of 
the original object. 
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Figure 1. Classical optics measurement systems. 
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Figure 2. Quantum optics measurement systems. 

6. Conclusion 
It was demonstrated that non-relativistic classical mechanics might be reformulated in terms of real Hilbert 
space, with an underlined numerical system of complex numbers. It is worthwhile to mention that similar struc-
tures based on real quaternions and real octonions exist. The presence of rich phase structure in the definition of 
wave functions (system states) should allow the axiomatic introduction of electromagnetic and gravitational in-
teractions by means of application of the principle of the local gauge invariance. The relativistic version of the 
theory is expected to emerge naturally in suggested frameworks. The present paper is devoted mainly to the 
problems related to the measurement theory. Within a classical world we are working in Heisenberg representa-
tion. Hilbert space appears to be uniquely defined and rigid and plays a role of passive arena for the events asso-
ciated with the dynamics of the physical system. The space-time continuum plays a similar role in the standard 
formulation of Newtonian mechanics. It seems reasonable to expect that these arenas are actually identical and 
the J. von Neumann theorem mentioned above (statement 3) may assign to it the dynamical content. 
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