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Abstract 
In this work, a one-step method of Euler-Maruyama (EMM) type has been developed for the solu-
tion of general first order stochastic differential equations (SDEs) using Itô integral equation as 
basis tool. The effect of varying stepsizes on the numerical solution is also examined for the SDEs. 
Two problems of first order SDEs are solved. Absolute errors for the problems are obtained from 
which the mean absolute errors (MAEs) are calculated. Comparison of variation in stepsizes is 
achieved using the MAEs. The results show that the MAEs decrease as the stepsize decreases. The 
strong orders of convergence and the residuals for the problems are respectively obtained using 
Least Square Fit. This work produces numerical values for the solution to the problems at discri-
tised points in a given interval which differ from the existing methods of EMM type where results 
are obtained by simulation. 
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1. Introduction 
Modeling of physical systems by ordinary differential equations (ODEs) ignores stochastic effects. Addition of 
random elements into the differential equations leads to what is called stochastic differential equations (SDEs), 
and the term stochastic is called noise [1]. Many researchers have worked extensively on a first and higher order 
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ordinary differential equations of the form 
( ) ( ) ( ) ( ) ( )

0 0
1, , , , , ,  , 0,1, ,n r rnX f t X X X X t X t T r−′= = ∈ =                      (1) 

where [ ]: 0, n nf T × →  . These researchers include [2]-[19]. 
Equation (1) is a deterministic state model which can be turned to a stochastic state model by including noise 

term. For one dimensional noise term, consider a general first order stochastic differential Equation (SDE) of the 
form 

( )( ) ( )( ) ( )0 0, d , ,X f t X t t g t X t X t Xγ′ = + ⋅ =                          (2) 

where [ ]: 0, n nf T × →   and [ ]: 0, n n mg T ×× →   drift function and diffusion function respectively. The 

noise ( )γ  in Equation (2) is generally called Gaussian white noise. It is expressed as ( )d
d

W t
t

γ = , where 

( )W t  is the Wiener process.  
Equation (2) can be written as  

( )( ) ( )( ) ( ) ( )0 0d , d , d ,X f t X t t g t X t W t X t X= + ⋅ =                       (3) 

Integrating (3) from 0 to t, we have Itô integral equation   

( ) ( )( ) ( )( )0 0 0
, d , d

t t
X t X f s X s s g s X s Ws= + +∫ ∫                         (4) 

The first integral at the right hand side of Equation (4) is called Riemman integral while the second integral is 
called Itô or stochastic integral. Many researchers have also worked on SDEs of the form (3). Amongst these are 
[20]-[29].  

The aim of this paper is to develop numerical method for solution of first order stochastic differential Equa-
tion (3). Our objectives are to develop one-step Euler-Maruyama method (EMM) for solution of SDE (3) and 
apply it to solve two problems in the form of first order SDEs. Absolute errors (AEs) will be determined at var-
ious point in the interval [ ]0,T , where 1T = . The AEs will be determined by finding the absolute value of the 
difference between the exact solution and numerical solution of Equation (3) for various values of [ ]0,t T∈  
using one-step Euler-Maruyama method. These values will allow us to obtain mean absolute error (MAE). 

The strong order of convergence (SOC) of the method will be determined from the results of the mean abso-
lute errors obtained. [25] considered the effect of using single stepsize for solution of SDE (3). The first section 
of this paper introduces the content of the paper. The second section discusses the research methodology. Under 
this section, Itô integral form of stochastic differential Equation (3) stated in Equation (4) is used as the basis for 
the derivation of one-step Euler-Maruyama method. The method is implemented with two problems in the form 
of SDE in Equation (3). In section three, the effect of varying the stepsizes in determining the solution of SDE in 
Equation (3) is considered. The stepsizes used are 4 5 6 7 8 92 , 2 , 2 , 2 , 2 , 2− − − − − − . Numerical solution and absolute 
error are then obtained using each of the stepsize. Using ten values of [ ]0,1t∈ , mean absolute errors are deter-
mined for each of the stepsizes. The SOC is calculated for each problem using the least square fit in [26]. 
MATLAB program is used as a supporting tool. 

2. Research Methodology 
There are many methods for determining the solution of SDE (3), they include, Euler-Maruyama method, Eu-
ler-Maruyama method, Runge-Kutta method, Heun method and so on. For more information about the list of 
methods or schemes for solution of first order SDEs (see [30]). To determine the solution of SDE (3), one-step 
method of Euler-Maruyama type will be used. Euler-Maruyama method was used by [26] for considering an 
autonomous system of stochastic differential equations. Here, we shall consider the derivation of the method 
using Itô integral Equation (4) obtained from a general form of the SDE stated in Equation (3).  

2.1. Derivation of One Step Euler-Maruyama Method  
One-step Euler-Maruyama method will be derived by setting , 0,1j rt rτ += =  in the integral 

( ) ( )( ) ( )( ) ( )0 0
, d , d

t t

o
X t X f s X s s g s X s W s= + +∫ ∫                       (4) 
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This gives 

( ) ( )( ) ( )( ) ( )0 0 0
, d , dj j

jX X f s X s s g s X s W s
τ τ

τ = + +∫ ∫                     (5) 

( ) ( )( ) ( )( ) ( )1 1
1 0 0 0

, d , dj j
jX X f s X s s g s X s W s

τ τ
τ + +

+ = + +∫ ∫                   (6) 

(6) - (5) ( ) ( ) ( )( ) ( )( ) ( )1 1
1 , d , dj j

j j
j jX X f s X s s g s X s W s

τ τ

τ τ
τ τ + +

+⇒ − = +∫ ∫  

( ) ( ) ( )( ) ( )( ) ( )1 1
1 , d , dj j

j j
j jX X f s X s s g s X s W s

τ τ

τ τ
τ τ + +

+⇒ = + +∫ ∫                 (7) 

Using a conventional deterministic quadrature, the two integral terms at the right hand side can be approx-
imated as follows: 

( )( ) ( )( ) ( )( )
( )( )

1 1 1

1

, d , d , d

, d

j j j

j j j

j

j

j j j j

j j

f s X s s f X s f X s

f X s

τ τ τ

τ τ τ

τ

τ

τ τ τ τ

τ τ

+ + +

+

≈ =

=

∫ ∫ ∫

∫
                (8) 

( )( ) ( ) ( )( ) ( ) ( )( )1
1, d ,j

j
j j j jg s X s W s g X W W

τ

τ
τ τ τ τ+

+≈ −∫                   (9) 

Substituting (8) and (9) in (7), we have  

( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )( )1 1 1, ,j j j j j j j j j jX X f X g X W Wτ τ τ τ τ τ τ τ τ τ+ + += + − + −         (10) 

Define ( ) :j r j rX Xτ + += , 0,1r = ; ( ) ( )( )1:j j r j rW W Wδ τ τ+ + −= − , 1r = . 

Equation (10) becomes 

( ) ( )1 , , , 0,1, 2, ,j j j j j j jX X t f X g X W j Lδ τ τ δ+ = + + =                   (11) 

2.2. Implementation of the Method 
The method in Equation (11) was considered by [26] using backward difference. In this paper, we shall apply 

this method to the SDE (3) using discritised interval [ ]0,T  as 0 1 10 j j Tτ τ τ τ +< < < < < = . Let Tt
N

δ =  be 

the stepsize defined as 1: j jtδ τ τ+= − , where N are some integer and j j tτ δ= . The tδ -space path increment 

1:j j jdW W W −= −  will be approximated by summing the underlying dt -space increments as established by [26] 
using 

( )( )( )* 1 1: *Winc sum dW R j R j= − +                         (12) 

Wiener increment dW  will be generated in MATLAB over the space intervals by using  
( ) ( ): * 1,dW sqrt dt rand N= . For computational purpose, we shall assume that 1R = , *Dt R dt=  and 

L N R= . In this paper, we shall investigate the effect of varying stepsizes in determining the numerical solu-
tion of SDE (3) using one-step method of EMM type in Equation (11). This is provided in section 3.0. The ab-
solute errors will be obtained. From this, the mean absolute errors will be determined. Strong order of conver-
gence and the residual for one-step method of EMM type will be determined from mean absolute error by mak-
ing least square fit using the MALAB commands.  

3. Effect of Varying Stepsizes in Determining Numerical Solution of Stochastic  
Differential Equations Using One-Step Euler-Maruyama Method 

In this section, we will consider two problems in the form of first order stochastic differential Equation (3) to 
investigate the effect of varying stepsizes when finding the solution of SDEs using one step method of EMM 
type in Equation (11). 
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Problem 1.  

( ) ( ) ( ) ( ) ( )0 0d d d ,X t X t t X t W t X t tµ σ= + =                          (13) 

where 0.0002µ =  and 0.0001σ =  are arbitrary values. 
The exact solution of the SDE (13) is  

( ) ( ) ( )( )2
0 exp 0.5X t X t W tµ σ σ= − +                             (14) 

Problem 1 is the Black Scholes option price model with a drift function ( )( ) ( ),f t X t X tµ= , drift coeffi-
cient µ , diffusion function ( )( ) ( ),g t X t X tσ=  and diffusion coefficient σ . The model was also used by 
[26] and [29]. 

The following stepsizes will be used to carry out our investigation, 4 5 6 7 8 92 , 2 , 2 , 2 , 2 , 2− − − − − − . 

3.1. Results Showing the Effect of Using Varying Stepsizes When Euler-Maruyama  
Method Is Applied to Problem 1 

See Figure 1 for the graph of the result on Table 1. 
 

 
Figure 1. Shows the graph of the result on Table 1.                     

 
Table 1. Result of Problem 1 showing the effect of using stepsize 2−4.                                              

t-value Error Exact Solution Numerical Solution Absolute 

0.062500 1.000035213412162 1.000035213104684 3.07477599e−10 

0.125000 0.999992194240297 0.999992193320025 9.20271970e−10 

0.187500 0.999998717493128 0.999998716864071 6.29056918e−10 

0.250000 1.000012935644641 1.000012935226998 4.17643475e−10 

0.312500 0.999974930990167 0.999974930162858 8.27309221e−10 

0.375000 0.999978328502518 0.999978327981927 5.20591348e−10 

0.437500 0.999988796767910 0.999988796505013 2.62896704e−10 

0.500000 0.999951804297058 0.999951803662421 6.34636454e−10 

0.562500 0.999984007130832 0.999984006290135 8.40697068e−10 

0.625000 1.000014922754158 1.000014921748044 1.00611364e−9 

The mean absolute error is 6.366694393911132e−10. 
 

Table 1 shows the exact solution, numerical solution and absolute error for the effect of using stepsize 2−4. 
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See Figure 2 for the graph of the result on Table 2. 
 

 
Figure 2. Shows the graph of the result on Table 2.                     

 
Table 2. Result of Problem 1 showing the effect of using stepsize 2−5.                                             

t-value Error Exact Solution Numerical Solution Absolute 
0.062500 0.999989302989965 0.999989302508838 4.81126805e−10 
0.125000 0.999998791743439 0.999998791544895 1.98543737e−10 
0.187500 0.999969143626926 0.999969143306858 3.20068305e−10 
0.250000 0.999945211010976 0.999945210578632 4.32343716e−10 
0.312500 0.999984664319081 0.999984663809844 5.09236209e−10 
0.375000 1.000048162051462 1.000048160772574 1.27888855e−9 
0.437500 1.000031603910325 1.000031602873598 1.03672670e−9 
0.500000 0.999985898306111 0.999985896243317 2.06279349e−9 
0.562500 1.000027707908093 1.000027705706180 2.20191265e−9 
0.625000 1.000029576187069 1.000029574216571 1.97049865e−9 

The mean absolute error is 1.049213882442501e−9. 
 

Table 2 shows the exact solution, numerical solution and absolute error for the effect of using stepsize 2−5. 
 

See Figure 3 for the graph of the result on Table 3. 
 

 
Figure 3. Shows the graph of the result on Table 3.                   
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Table 3. Result of Problem 1 showing the effect of using stepsize 2−6.                                               

t-value Exact Solution Numerical Solution Absolute Error 
0.062500 0.999993968111180 0.999993968007453 1.03727471e−10 
0.125000 0.999950903398081 0.999950903125062 2.73019052e−10 
0.187500 1.000018522444389 1.000018521838989 6.05399730e−10 
0.250000 0.999969318836642 0.999969317778954 1.05768760e−9 
0.312500 0.999995025525107 0.999995024550208 9.74898495e−10 
0.375000 0.999971494315777 0.999971493473134 8.42642955e−10 
0.437500 1.000023470014742 1.000023468767193 1.24754895e−9 
0.500000 1.000006560271671 1.000006558980626 1.29104549e−9 
0.562500 1.000016550151243 1.000016548430911 1.72033232e−9 
0.625000 1.000050801848815 1.000050800269305 1.57950941e−9 

The mean absolute error is 9.695811487020478e−10. 
 

Table 3 shows the exact solution, numerical solution and absolute error for the effect of using stepsize 2−6.  
 

See Figure 4 for the graph of the result on Table 4. 
 

 
Figure 4. Shows the graph of the result on Table 4.                          

 
Table 4. Result of Problem 1 showing the effect of using stepsize 2−7.                                              

t-value Exact Solution Numerical Solution Absolute Error 
0.062500 0.999960105863295 0.999960105702641 1.60653491e−10 
0.125000 0.999967950241945 0.999967949695712 5.46233170e−10 
0.187500 0.999964311166688 0.999964310727299 4.39388304e−10 
0.250000 0.999983928766161 0.999983928116954 6.49207244e−10 
0.312500 1.000010033769263 1.000010032994412 7.74851072e−10 
0.375000 1.000060677640722 1.000060676842953 7.97768518e−10 
0.437500 1.000067288106194 1.000067287456036 6.50158150e−10 
0.500000 1.000122399331946 1.000122398556290 7.75655762e−10 
0.562500 1.000162783152388 1.000162782441429 7.10958847e−10 
0.625000 1.000180536086851 1.000180535284656 8.02195865e−10 

The mean absolute error is 6.307070421485150e−10. 
 

Table 4 shows the exact solution, numerical solution and absolute error for the effect of using stepsize 2−7.  
 

See Figure 5 for the graph of the result on Table 5. 
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Figure 5. Shows the graph of the result on Table 5.                          

 
Table 5. Result of Problem 1 showing the effect of using stepsize 2−8.                                                

t-value Exact Solution Numerical Solution Absolute Error 
0.062500 0.999972159883026 0.999972159601738 2.81287882e−10 
0.125000 0.999978280985938 0.999978280655984 3.29953620e−10 
0.187500 1.000027372023912 1.000027371636413 3.87499366e−10 
0.250000 1.000065836108020 1.000065835744871 3.63149066e−10 
0.312500 1.000101764246374 1.000101763882430 3.63944430e−10 
0.375000 1.000108726423491 1.000108726193473 2.30018227e−10 
0.437500 1.000148957998176 1.000148957704878 2.93298275e−10 
0.500000 1.000172569073211 1.000172568980299 9.29125665e−11 
0.562500 1.000206392121796 1.000206391996795 1.25001121e−10 
0.625000 1.000193604241676 1.000193604296249 5.45721246e−11 

The mean absolute error is 2.521636677244032e−10. 
 

Table 5 shows the exact solution, numerical solution and absolute error for the effect of using stepsize 2−8. 
 

See Figure 6 for the graph of the result on Table 6. 
 

 
Figure 6. Shows the graph of the result on Table 6.                              
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Table 6. Result of Problem 1 showing the effect of using stepsize 2−9.                                              

t-value Exact Solution Numerical Solution Absolute Error 

0.062500 0.999979464841858 0.999979464673978 1.67880376e−10 

0.125000 1.000036197200983 1.000036197026108 1.74874559e−10 

0.187500 1.000061346273481 1.000061346169660 1.03820508e−10 

0.250000 1.000101309205331 1.000101309176948 2.83835178e−11 

0.312500 1.000111004081822 1.000111004129163 4.73403539e−11 

0.375000 1.000054041052400 1.000054040994347 5.80526738e−11 

0.437500 1.000068042560500 1.000068042466253 9.42474987e−11 

0.500000 1.000067650976551 1.000067650858876 1.17674315e−10 

0.562500 1.000133899286137 1.000133899093955 1.92182270e−10 

0.625000 1.000143970608418 1.000143970444947 1.63471015e−10 

The mean absolute error is 1.147927086719847e−10. 
 

Table 6 shows the exact solution, numerical solution and absolute error for the effect of using stepsize 2−9.  
 

Problem 2. 

( ) ( )( ) ( )( ) ( )( )( ) ( )2 2 2d 1 d 1 dX t a b X t X t t b X t W t= − + − + −                 (15) 

where [ ]0.0002, 0.0001, 0,1a b t= = ∈  and 0 2X = −  are arbitrary values. They are used for better accuracy. 
The true solution is  

( ) ( ) ( )( )

( ) ( )( )( )
2 2

0 0
2 2

0 0

1 e 1

1 e 1

at bW t

at bW t

X X
X t

X X

− +

− +

+ + −
=

+ − +
                          (16) 

Problem 2 was used by [25] with constants 1a = , 2b =  and 0 0X = . 

3.2. Results Showing the Effect of Using Varying Stepsizes When Euler-Maruyama  
Method Is Applied to Problem 2 

See Figure 7 for the graph of the result on Table 7. 
 

 
Figure 7. Shows the graph of the result on Table 7.                                                               
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Table 7. Result of Problem 2 showing the effect of using stepsize 2−4.                                              

t-value Exact Solution Numerical Solution Absolute Error 

0.062500 −2.000030639939910 −2.000030643064053 3.12414317e−9 
0.125000 −1.999826604550993 −1.999826583667489 2.08835040e−8 
0.187500 −1.999771190197802 −1.999771171017104 1.91806975e−8 

0.250000 −1.999738855905664 −1.999738839777066 1.61285976e−8 

0.312500 −1.999549931800135 −1.999549895620500 3.61796346e−8 

0.375000 −1.999485167195670 −1.999485131968585 3.52270857e−8 

0.437500 −1.999441604632085 −1.999441571887793 3.27442917e−8 

0.500000 −1.999255786341376 −1.999255734318596 5.20227794e−8 

0.562500 −1.999277377750062 −1.999277329159688 4.85903735e−8 

0.625000 −1.999295108719981 −1.999295063663776 4.50562045e−8 

The mean absolute error is 3.091373117491969e−8. 
 

Table 7 shows the exact solution, numerical solution and absolute error for the effect of using stepsize 2−4.  
 

See Figure 8 for the graph of the result on Table 8. 
 

 
Figure 8. Shows the graph of the result on Table 8.                                                            

 
Table 8. Result of Problem 2 showing the effect of using stepsize 2−5.                                               

t-value Exact Solution Numerical Solution Absolute Error 
0.062500 −1.999892917380804 −1.999892908128028 9.25277566e−9 
0.125000 −1.999846392834979 −1.999846386521514 6.31346508e−9 
0.187500 −1.999682499484875 −1.999682485395495 1.40893797e−8 
0.250000 −1.999535775997482 −1.999535755103327 2.08941555e−8 
0.312500 −1.999579115423757 −1.999579097646508 1.77772492e−8 
0.375000 −1.999694550513440 −1.999694531148642 1.93647987e−8 
0.437500 −1.999569940134597 −1.999569919321205 2.08133912e−8 
0.500000 −1.999357977043176 −1.999357935211449 4.18317270e−8 
0.562500 −1.999408364465035 −1.999408325355391 3.91096437e−8 
0.625000 −1.999339028019188 −1.999338990093991 3.79251974e−8 

The mean absolute error is 2.273717831791089e−8. 
 

Table 8 shows the exact solution, numerical solution and absolute error for the effect of using stepsize 2−5. 
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See Figure 9 for the graph of the result on Table 9. 
 

 
Figure 9. Shows the graph of the result on Table 9.                        

 
Table 9. Result of Problem 2 showing the effect of using stepsize 2−6.                                               

t-value Exact Solution Numerical Solution Absolute Error 
0.062500 −1.999906910993895 −1.999906908359276 2.63461808e−9 
0.125000 −1.999702767364218 −1.999702758533899 8.83031892e−9 
0.187500 −1.999830588766838 −1.999830580080542 8.68629546e−9 
0.250000 −1.999608061287530 −1.999608042553839 1.87336919e−8 
0.312500 −1.999610182559322 −1.999610165808479 1.67508436e−8 
0.375000 −1.999464678473431 −1.999464660611312 1.78621189e−8 
0.437500 −1.999545553506756 −1.999545533746613 1.97601426e−8 
0.500000 −1.999419912678686 −1.999419890196399 2.24822863e−8 
0.562500 −1.999374919082127 −1.999374891267540 2.78145871e−8 
0.625000 −1.999402649038457 −1.999402624540933 2.44975247e−8 

The mean absolute error is 1.680524275293749e−8. 
 

Table 9 shows the exact solution, numerical solution and absolute error for the effect of using stepsize 2−6. 
 

See Figure 10 for the graph of the result on Table 10. 
 

 
Figure 10. Shows the graph of the result on Table 10.                                                           
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Table 10. Result of Problem 2 showing the effect of using stepsize 2−7.                                              

t-value Exact Solution Numerical Solution Absolute Error 
0.062500 −1.999805341404871 −1.999805337513111 3.89176003e−9 
0.125000 −1.999753891446814 −1.999753882755321 8.69149241e−9 
0.187500 −1.999668007898771 −1.999667999884824 8.01394706e−9 
0.250000 −1.999651870477482 −1.999651860214105 1.02633777e−8 
0.312500 −1.999655185128882 −1.999655173868698 1.12601839e−8 
0.375000 −1.999732080887753 −1.999732070781591 1.01061621e−8 
0.437500 −1.999676933687320 −1.999676925131407 8.55591287e−9 
0.500000 −1.999767219155966 −1.999767210691419 8.46454751e−9 
0.562500 −1.999813341382202 −1.999813334738500 6.64370181e−9 
0.625000 −1.999791597710221 −1.999791590169479 7.54074203e−9 

The mean absolute error is 8.343182744674494e−9. 
 

Table 10 shows the exact solution, numerical solution and absolute error for the effect of using stepsize 2−7. 
 

See Figure 11 for the graph of the result on Table 11. 
 

 
Figure 11. Shows the graph of the result on Table 11.                      

 
Table 11. Result of Problem 2 showing the effect of using stepsize 2−8.                                              

t-value Exact Solution Numerical Solution Absolute Error 
0.062500 −1.999841496174841 −1.999841492043785 4.13105594e−9 
0.125000 −1.999784874982539 −1.999784870148436 4.83410290e−9 
0.187500 −1.999857131369450 −1.999857126530599 4.83885132e−9 
0.250000 −1.999897512575721 −1.999897508515622 4.06009937e−9 
0.312500 −1.999930285134005 −1.999930281503511 3.63049413e−9 
0.375000 −1.999876177386879 −1.999876175259421 2.12745799e−9 
0.437500 −1.999921851349309 −1.999921848982462 2.36684672e−9 
0.500000 −1.999917674573231 −1.999917674818573 2.45341969e−10 
0.562500 −1.999944122996693 −1.999944123256830 2.60136801e−10 
0.625000 −1.999830784974864 −1.999830786914828 1.93996397e−9 

The mean absolute error is 2.843435109589621e−9. 
 

Table 11 shows the exact solution, numerical solution and absolute error for the effect of using stepsize 2−7.  
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See Figure 12 for the graph of the result on Table 12. 
 

 
Figure 12. shows the graph of the result on Table 12.                                                           

 
Table 12. Result of problem 2 showing the effect of using stepsize 2−9.                                               

t-value Exact Solution Numerical Solution Absolute Error 

0.062500 −1.999863407270136 −1.999863404946251 2.32388553e−9 

0.125000 −1.999958592655718 −1.999958590662368 1.99335082e−9 

0.187500 −1.999959037106798 −1.999959036084589 1.02220876e−9 

0.250000 −2.000003915981924 −2.000003916122282 1.40357947e−10 

0.312500 −1.999957999627532 −1.999958000650131 1.02259934e−9 

0.375000 −1.999712179640226 −1.999712178747598 8.92628638e−10 

0.437500 −1.999679195925699 −1.999679194613133 1.31256606e−9 

0.500000 −1.999603058636733 −1.999603056922618 1.71411507e−9 

0.562500 −1.999726729199231 −1.999726727095061 2.10416973e−9 

0.625000 −1.999681957561421 −1.999681955778895 1.78252613e−9 

The mean absolute error is 1.430840801397437e−9. 
 

Table 12 shows the exact solution, numerical solution and absolute error for the effect of using stepsize 2−9.  

4. Determination of Strong Order of Convergence of the Method 
In this section, it will be wise to determine the strong order of convergence (SOC) and the residual of the me-
thod as this property is important to examine how good or how accurate our approximations are. SOC is a prop-
erty of solution that is indispensable in examining the accuracy of any numerical method for solution of SDEs. 

The issues of convergence and SOC of SDEs have also been examined by [20] [23] [25]-[27] [29] [31] for 
one step Method. The papers and book gives the theoretical background of SDEs and SOC. [27] examined the 
SOC for one step method of Milstein (MLSTM) type. The vital tool in the determination of SOC is the mean 
absolute error (MAE) or strong error. MAE is the mean of the absolute value of difference between the exact 
solution and numerical solution of a given stochastic differential equation. It serves as a tool for assessing the 
effect of varying step sizes. MAE will be determined for one-step method of EMM type just developed using 
varying stepsizes. The SOC of the method will be obtained using the MAE. 
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Table 13. Results of the MAE of one step method of EMM type for Problem 1.                                      

Stepsize 
Problem 1 

MAE of One Step Method EMM Type 

2−4 6.36669439e−10 

2−5 1.04921388e−9 

2−6 9.69581149e−10 

2−7 6.30707042e−10 

2−8 2.52163668e−10 

2−9 1.14792709e−10 

 
Table 13 shows the results of mean absolute error of one-step method of EMM type applied to Problem 1 

with varying stepsizes. 
 

Table 14. Results of the MAE of one-step method of EMM type for Problem 2.                                      

Stepsize 
Problem 2 

MAE of One Step Method EMM Type 

2−4 3.09137312e−8 

2−5 2.27371783e−8 

2−6 1.68052428e−8 

2−7 8.34318274e−9 

2−8 2.84343511e−9 

2−9 1.43084080e−9 

 
Table 14 shows the results of mean absolute error of one-step method of EMM type applied to Problem 2 

with varying stepsizes. 
 

Table 15. Results of the strong order of convergence of one-step method of Euler-Maruyama type for Problems 1 and 2.       

One-step Method of EMM Type 

 Problem 1 Problem 2 

SOC 0.5471 0.9193 

RESIDUAL 1.0975 0.6067 

 
Table 15 shows the strong order of convergence of one-step method of EMM type for Problems 1 and 2. 

5. Discussion 
In this paper effort has been made to discuss the derivation of one-step method of Euler-Maruyama type. This 
method was applied to two problems in the form of first order SDEs. The method was used to determine the 
numerical solution of the two problems. Absolute errors were calculated using the numerical approximation and 
the corresponding exact solution. Mean absolute errors were also determined. To determine the accuracy of the 
method, strong order of convergence and residuals were obtained for each problem. 

6. Conclusion 
In this paper, two problems in the form of first order SDEs have been considered. One-step method of Euler- 
Maruyama type for solution of general first order SDEs has been derived. The absolute errors between the exact 
solution and numerical solution can be observed. The mean absolute error for varying stepsizes has been deter-
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mined. The result shows that the mean absolute error generally decreases as the stepsizes decreases. The accu-
racy of the method is determined by finding the strong order of convergence of the method. The result shows 
that the strong order of convergence is 0.5471 and the residual is 1.0975 for Problem 1 while the strong  
order of convergence is 0.9193 and the residual is 0.6067 for Problem 2. The effect of the varying stepsizes can 
also be seen by observing the behaviour of the exact solution and numerical solution using graphical method as 
indicated in Figures 1-12. The results are obtained using MATLAB as supporting tool. 
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