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Abstract 
We consider a uniform finite difference method for nonlinear singularly perturbed multi-point 
boundary value problem on Shishkin mesh. The problem is discretized using integral identities, 
interpolating quadrature rules, exponential basis functions and remainder terms in integral form. 
We show that this method is the first order convergent in the discrete maximum norm for original 
problem (independent of the perturbation parameter ε). To illustrate the theoretical results, we solve 
test problem and we also give the error distributions in the solution in Table 1 and Figures 1-3. 
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1. Introduction 
In this paper we shall consider singularly perturbed multi-point nonlinear problem 
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where, 0 1ε<   is small perturbation parameter. The solution u(x) has boundary layers at 0, 1x x= = . 
Singularly perturbed differential equations arise many applications such as, fluid mechanics, chemical-reactor 

theory, the Navier-Stokes equations of fluid flow at high Reynolds number, control theory, electrical networks, 
and other physical models. In recent years, singularly perturbed differential equations were studied by many au-
thors in various fields of applied mathematics and engineering. For examples, Cziegis [1] studied the numerical 
solution of singularly pertürbed nonlocal problem. Cziegis [2] analyzed the difference schemes for problems 
with nonlocal conditions. Bakhvalov [3] investigated on optimization of methods for solving boundary-value 
problems in the presence of a boundary layer. Amiraliyev and Çakır [4] applied the difference method on a 
Shishkin mesh to the singularly perturbed three-point boundary value problem. Amiraliyev and Çakır [5] re-
searched a uniformily convergent difference scheme for singularly perturbed problem with convective term end 
zeroth order reduced equation. Amiraliyev and Çakır [6] studied numerical solution of the singularly perturbed 
problem with nonlocal boundary condition. Amiraliyev and Duru [7] estimated a note on a parameterized singu-
lar perturbation problem. Amiraliyev and Erdoğan [8] studied uniform method for singularly perturbed delay 
differential equations. Amiraliyeva, Erdoğan and Amiraliyev [9] applied a uniform numerical method for deal-
ing with a singularly perturbed delay initial value problem. Adzic and Ovcin [10] studied nonlinear spp with 
nonlocal boundary conditions and spectral approximation. Amiraliyev, Amiraliyeva and Kudu [11] applied a 
numerical treatment for singularly perturbed differential equations with integral boundary condition. Herceg [12] 
studied the numerical solution of a singularly perturbed nonlocal problem. Herceg [13] researched solving a 
nonlocal singularly perturbed problem by splines in tension. Çakır [14] studied uniform second-order difference 
method for a singularly perturbed three-point boundary value problem. Geng [15] applied a numerical algorithm 
for nonlinear multi-point boundary value problems. 

In this study we present uniformly convergent difference scheme on an equidistant mesh for the numerical 
solution of the problem (1)-(3). The difference scheme is constructed by the method integral identities with the 
use exponential basis functions and interpolating quadrature rules with the weight and remainder terms in 
integral form [5]-[7]. In Section 2, the asymptotic estimations of the problem (1)-(3) are established. The differ-
ence scheme constructed on Shishkin mesh for numerical solution (1)-(3) is presented in Section 3 and in Sec-
tion 4. We prove that the method is first-order convergent in the discrete maximum norm. In Section 5, a nu-
merical example is considered. The results show that the uniform finite difference method on Shishkin mesh is 
more powerful method than other methods for nonlinear singularly perturbed multi-point boundary value prob-
lem. 

2. The Continuous Problem 
In this section, we describe some properties of the solution of (1) with Lemma 2.1. we use g

∞
 for the conti-

nuous maximum norm on the [0, 1], where ( )g x  is any continuous function. 
Lemma 2.1. 

Let ( ) [ ]( )1, 0,1f x u C xR∈  and ( ),f x u
u
∂
∂

 is uniformly bounded in ( )u x . We assume that 

( ) ( )1

00 1 0
1

d
m

i i m
i

k w s k u x x k+
=

+ <∑ ∫                                 (4) 

where ( ) ( )0w x w x≥ , 
( ) ( )2 0w a x w xε ′′− + =                                    (5) 

( ) ( )0 0, 1 1w w= =                                      (6) 
solution of this problem. 

So, the solution of the Equation (1) satisfies the inequalities 

( ) [ ] 00,1C
u x C≤                                       (7) 

and 

( )
( )111 e e , 0 1

xx

u x C x
αα

ε ε

ε

− −−   ′  ≤ + + < < 
    

                        (8) 
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where, C0 and C are constants independent of ε. 
Proof. We rewrite the Equation (1). Hence, we use intermediate value theorem for ( ),f x u , 

( ) ( ) ( ), , 0
, , , 0 1

0
f x u f x f x u

u u
ϑ ϑ γ γ

− ∂
= = < <

− ∂
 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , 0 ,ff x u f x u x x F x a x u x
u

ϑ∂
= + = − +

∂
 

where ( ) ( ),a x F x  are sufficiently smooth on [ ] [ ]0,1 , 0,1 xR  and 

( ) ( ), 0, -intermediate value.f x a x
u

ϑ α ϑ∂
= ≥ >

∂
 

Consequently, we obtain the following linear equation, 

( ) ( ) ( )2 .u a x u x F xε ′′− + =                                (9) 

Now, let ( )1u λ=  according to the Equation (3).  
We can write the solution of the Equation (9) as follows 

( ) ( ) ( )u x v x w xλ= +                                  (10) 

( ) ( ) ( )2v a x v x F xε ′′− + =                                (11) 

( ) ( )0 0, 1 0v v= =                                   (12) 

where ( )v x  is solution of the Equations (11), (12). 
First, we prove the estimate ( )v x , 

( ) ( ) ( ) 1
10 1 .v x v v F Cα−

∞
≤ + + ≤                           (13) 

Second, we prove the estimate ( )w x , 

( ) ( ) ( ) 10 1 0 1.w x w w α−
∞

≤ + + ≤                           (14) 

According to the Equation (4), λ is a finite number. Then, from the Equations (13), (14) we have the following 
inequality 

( ) ( ) ( ) 1u x v x w x Cλ λ≤ + ≤ +  

( ) 0u x C≤                                      (15) 

we now prove the estimate the Equation (8). 
If ( )u x′′  is pulled from the Equation (9), we obtain 

( ) ( ) ( ) ( )2
1u x F x a x u x

ε
−′′ = −                                (16) 

and from the Equation (16) 

( ) ( ) ( ) ( )2 2
1 .Cu x F x a x u x
ε ε

′′ ≤ − ≤                             (17) 

Now, we take derivative of the Equation (9) and if it called ( ) ( )0u x v x′ = , the Equation (9) takes the form with 
boundary condition 

( ) ( ) ( )2
0 0v a x v x xε ′′− + = ∅                                (18) 

( ) ( ) ( ) ( )0 00 0 0, 1 1 1.u v u v′ ′= = = =                             (19) 

Now, we proceed with the estimation of ( ) ( ) ( ), 0 , 1x u u′ ′∅ , respectively, from the Equation (7) 

( ) ( ) ( ) ( ) 1.x F x a x u x C′ ′∅ = − ≤                              (20) 
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We use the following relation for [ ]2 0,1g C∈ , 

( ) ( ) ( ) ( ) ( )0 d , ,
g g tg x T x t g t t x

β

α

β α β α β α β
β α β α
−  −′ ′′= − − − < < < − − 

∫             (21) 

where 

( )0

1, 0
0, 0

x t
T x t

x t
− >

− =  − <
 

the Equation (21) with the values ( ) ( ) , 0, , 0g x u x xα β ε= = = =  and from the Equations (7)-(17) 

( ) ( ) ( ) ( )
0

0
0 d .

u u Cu u t t
εε

ε ε
−

′ ′′≤ + ≤∫                          (22) 

In a similar manner, the Equation (21) with the values ( ) ( ) , 1 , 1, 1g x u x xα ε β= = − = =  and from the Equa-
tions (7)-(17) 

( ) ( ) ( ) ( )1

1

1 1
1 d .

u u Cu u t t
ε

ε
ε ε−

− −
′ ′′≤ + ≤∫                         (23) 

We write the solution of the Equations (18), (19) in the form, 

( ) ( ) ( )0 1 2v x v x v x= +  

where ( ) ( )1 2,v x v x  are respectively the solution of the following problems, 

( ) ( ) ( ) ( )2
1 1v x a x v x xε ′′− + = ∅                               (24) 

( ) ( ) ( )1 10 0, 1 1 0v u v′= = =                                (25) 

( ) ( ) ( )2
2 2 0v x a x v xε ′′− + =                                (26) 

( ) ( ) ( ) ( )2 0 2 00 (0) , 1 1 1 .v v u v v′= = =  

According to the maximum principle in the Equations (24), (25), we can the following Barrier function, 

( ) ( ) ( )1
1 1 .x v x xψ α−

∞
= + ∅  

This Barrier function provides the conditions of the maximum principle and 

( )1 .v x C≤  

In a similar manner, according to the maximum principle in the Equation (26), we can write 

( ) ( )2v x xθ≤  

where ( )xθ  is the solution of the following problem with constant coefficient, 

( ) ( )2 0x xε αθ θ− +′ =′                                 (27) 

( ) ( ) ( ) ( )0 00 0 , 1 1C Cv vθ θ
ε ε

= ≤ = ≤                           (28) 

where ( ) 0a x α≥ >  and the solution of ( )xθ  as follows, 

( )
( )

( ) ( )

( )
1 1

0 00 e e 1 e e

e e

x x x x

v v

x

α α α α
ε ε ε ε

α α
ε ε

θ

− − − −

−

   
 − + − 
     =

 
− + 
  

                    (29) 

after some arragement, we can obtain, 
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( )
( )1

e e .
xxCx

αα
ε εθ

ε

− −
− 

 ≤ +
  

                               (30) 

Finally, from ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 0 1 2, , ,u x v x v x C x v x v x v x v xθ′ = ≤ ≤ = + , we have the following inequality, 

( ) ( ) ( ) ( )
( )

( )

1

0 1 2

1

e e

11 e e

xx

xx

Cu x v x v x v x C

C

αα
ε ε

αα
ε ε

ε

ε

− −
−

− −
− −

 
′  = ≤ + ≤ + +

  
    ≤ + + 

    

 

which leads to the Equation (8). 

3. Discretizaton and Non-Uniform Mesh 
Let us consider the following any non-uniform mesh on [ ]0,1 , 

0 1 1 10 1, 1, , , .
1i
i

N N N i i i N i i
s Nx x x x i h x x x s Nω − −

 = = < < < < = ≥ = − = = 
 

  

We present some properties of the mesh function ( )g x  defined on Nω , which is needed in this section for 
analysis of the numerical solution. 

( )i ig g x=  

1
,

1

i i
x i

i

g gg
h
+

+

−
= , 1

,
i i

x i
i

g gg
h

−−
=  

1
ˆ,

i i
x i

i

g gg
ћ

+ −
=  

, , 1 1
ˆ,

1

1x i x i i i i i
xx i

i i i i

g g g g g gg
ћ ћ h h

+ −

+

−  − −
= = − 

 
 

1i i ih x x −= − , 1

2
i i

i
h hћ ++

=  

, 0
max .

N ii N
g g g

ω∞ ∞ ≤ ≤
= =  

Now, We will construct the difference scheme for the Equation (1). First, we integrate the Equation (1) over 
( )1 1,i ix x− + , 

( ) ( ) ( ) ( )1 1

1 1

1 2 1d , d 0, 1, 1i i

i i

x x
i i i ix x
ћ u x x x ћ f x u x x i Nε ϕ ϕ+ +

− −

− −′′− + = = −∫ ∫                (31) 

where ( ){ }, 1, 1i x i Nϕ = −  are the linear basis functions and having the form 

( )

( ) ( )

( ) ( )

( )

1 1
1

2 1
1

1

1 1

, ,

, ,

0, ,

i
i i i

i

i
i i i i

i

i i

x xx x x x
h

x xx x x x x
h

x x x

ϕ

ϕ ϕ

−
−

+
+

+

− +

− = < <

 −

= = < <

 ∉



 

( ) ( )1
i xϕ  and ( ) ( )2

i xϕ  are the solutions of the following problems, 
2 0ε ϕ′′− =                                       (32) 
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( ) ( )1 0, 1i ix xϕ ϕ− = =                                  (33) 

2 0ε ϕ′′− =                                       (34) 

( ) ( )11, 0.i ix xϕ ϕ += =                                  (35) 

If we rearrange the Equation (31) it gives 

( ) ( ) ( ) ( )1 1

1 1

2 1 1d , d 0, 1, 1.i i

i i

x x
i i i ix x
ћ u x x x ћ f x u x x i Nε ϕ ϕ+ +

− −

− −′′− + = = −∫ ∫                (36) 

After doing some calculation 

( ) ( ) ( )1

1

2 1 d , 0, 1, 1i

i

x
i i i i ix
ћ u x x x f x u R i Nε ϕ+

−

− ′ ′ + + = = −∫                    (37) 

where 

( ) ( ) ( )1 1

1 1

1 *
0

dd , , d , 1, 1
d

i i

i i

x x
i i ix x

R ћ x x f x u K x i N
x

ϕ ξ ξ+ +

− −

−= = −∫ ∫                  (38) 

and 

( ) ( ) ( ) ( )1 0* 1 1 1 1
0 0 0 1 1 1, .

2 2
i i i i

i i i
x x x xK x T x T x x x xξ ξ ξ ξ−+ − + −

+ − +
− −   = − − − + − − −   

   
 

So, from the Equation (37), the difference scheme is defined by 

( )2
ˆ, , 0, 1, 1.xx i i i iu f x u R i Nε− + + = = −                           (39) 

Now, we define an approximation for the second boundary condition of the Equation (1). We accepted that 
iNx  is 

the mesh point nearest to is . 

( )0 1
1

1
1 1

1

0
d

i

i

m

N i N m
i

m N

i N m i i i
i i

k u k u k u x x d

k u k h u r d

+
=

+
= =

= + +

 
= + + + 

 

∑

∑

∫

∑
                           (40) 

where remainder term 

( ) ( )
1

1
1

d d .
d

i

i

N x
i ix

i
r x u

x
ξ ξ ξ

−
−

=

= −∫∑                               (41) 

By neglecting iR , ir  in the Equation (39) and the Equation (40), we suggest the following difference scheme for 
approximating the Equations (1)-(3) 

( )2
ˆ, , 0, 1,xx i i iy f x y i Nε− + = =                               (42) 

0 0y =                                         (43) 

0 1
1 1

.
i

m N

N i N m i i
i i

k y k y k h y d+
= =

= + +∑ ∑                              (44) 

We will use the Shishkin mesh to be ε-uniform convergent of the difference scheme the Equations (42)-(44). 
So the Shishkin mesh divides each of the interval [ ]0,σ  and [ ],1σ σ−  into 4N  equidistant subintervals 
and [ ]1 ,1σ−  into 2N  equidistant subinterval, where σ  and 1 σ−  are transition points which are defined 
as 

( ) 11min , ln
4

Nσ α ε
− =  

 
 

if ( )1h , ( )2h  and ( )3h , respectively, are the stepsize on [ ]0,σ , [ ],1σ σ−  and [ ]1 ,1σ− . We have as 
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( ) ( ) ( ) ( )1 2 32 1 24 4, , ,h h h
N N N

σσ σ−
= = =  

( ) ( )( ) ( ) ( ) ( )
1 3

1 3 21 1 12 , , 2
2

h h
h h N N h N

N
− − −

+
= = ≤ ≤ ≤  

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 2

2 3 3

4 3, 0, , ; , 1, ,
4 4 4 4

2 1 2 3 3 4; 1 , 1,
4 4

,

N i i

i

N N N Nx ih i h x i h i
N

N Nh x i h i N h
N N

σω σ

σ σσ

  = = = = = + − = +  
 

−  = = − + − = + =  
  

 

where, N is even number, 1σ  . 

4. Error Analysis 
Let z y u= − , Nx w∈ , which is the error function of the difference scheme the Equations (42), (43) and the 
solution of the discrete problem 

( ) ( )2
ˆ, , , , 1, 1xx i i i i i ilz z f x y f x u R i Nε  ≡ − + − = = −                       (45) 

0 0z =                                        (46) 

0 1
1 1

, 1,
i

m N

N i N m i i i
i i

k z k z k h z r i N+
= =

= + = =∑ ∑                           (47) 

where ,i iR r  are defined in the Equation (38) and the Equation (41). 
Lemma 4.2. Let iz  be the solution of the Equations (45)-(47) and approximation error iR  and ir . Then 

there are the following inequalities, 
1

, ln
NwR CN N−

∞
≤                                   (48) 

1
, ln

Nwr CN N−
∞

≤                                    (49) 

Proof. We evaluate the Equation (38) and the Equation (41), respectively 

( ) ( ) ( )1 1

1 1

1 *
0

dd , , d
d

i i

i i

x x
i i ix x

R ћ x x f x u K x
x

ϕ ξ ξ+ +

− −

−= ∫ ∫  

( )
( )( ) ( ) ( )( )1 1 1

1 1 1

1 , d
d d 1 d .

d
i i i

i i i

x x x
i i ix x x

f u ufR ћ x x C u
u

ξ ξ ξ
ϕ ξ ξ ξ

ξ ξ
+ + +

− − −

− ∂ ∂ ′≤ + ≤ +
∂ ∂∫ ∫ ∫  

Consequently, 

( )
1

1

111 e e d .i

i

xx
x

i x
R C x

αα
ε ε

ε
+

−

− −−      ≤ + +       
∫                         (50) 

In the beginning, we consider the case 11
4

σ σ= − =  and so [ ]0,ix σ∈ , 

( ) ( ) ( ) ( )1 1 2 31 1ln ,
4

N h h h h
N

α ε
−

< = = = =  

it then follows from the Equation (50) that 

{ }1

1

1 11 d ln , 1 .i

i

x
i x

R C h x C h h CN N i Nε
ε

+

−

− − ≤ + ≤ + ≤ < < 
 ∫                  (51) 
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Second, we consider the case ( ) 1
ln Nσ α ε

−
= , and so ( ) 11 ln

4
Nα ε

−
> , we estimate Ri on [ ]0,σ , [ ],1σ σ−   

and [ ]1 ,1σ− , respectively. 
In the seperate [ ]0,σ , the Equation (50) reduces to 

( ) ( ) ( )11 1 141 1 ln , 1 1.
4i
NR C h C CN N i

N
σε ε− − −≤ + ≤ + ≤ ≤ < −                 (52) 

In the seperate [ ],1σ σ− , the Equation (50) reduces to 

( ) ( )
( ) ( )

( )

1 11 1 1 1
12

1 1

e e e e

41 ln , 1 1
4

i ii i x xx x

iR C h

NC CN N i
N

α αα α
ε ε ε εα

σε

+ −− + − − − −− −−

− −

        ≤ + − + −           

≤ + ≤ ≤ < −

             (53) 

where for ( ) ( )1 2ln ,
4i
Nx N i hα ε

−  = + − 
 

 

( ) ( ) ( ) ( )1 12 2
1 1ln 1 , ln 1

4 4i i
N Nx N i h x N i hα ε α ε

− −

− +
   = + − − = + + −   
   

 

and so 
1 1

1e e .
i ix x

N
α α
ε ε

− +− −
−− ≤                                  (54) 

Analogously for ( )331
4i
Nx i hσ  = − + − 

 
, 

( ) ( )3 3
1 1

3 31 1 , 1 1
4 4i i
N Nx i h x i hσ σ− +

   = − + − − = − + + −   
   

 

thus 
( ) ( )1 11 1

1e e
i ix x

N
α α

ε ε
+ −− − − −

−− ≤                                (55) 
according to the Equation (54) and the Equation (55), we can rewrite the the Equation (53) 

( ) ( ){ }12 1 1 1.iR C h N N CNα
−

− − − ≤ + + ≤                           (56) 

In the seperate [ ]1 ,1σ− , the Equation (50) reduces to 

( ) ( ) ( )31 1 14 31 1 ln , 1 .
4i
NR C h C CN N i N

N
σε ε− − −≤ + ≤ + ≤ + ≤ ≤                 (57) 

The last estimate is for 4Nx  and 3 4Nx : 

We rewrite the the Equation (50) for 
4
Ni = , 

( )
1

4

4

1

4

11 e e d .
N

N

xx x

N x
R C x

αα
ε ε

ε
+

− −−      ≤ + +       
∫                         (58) 

We take integrate in the Equation (58) and so 

11
4 44 4

1 1

1
4 4 4

1 e e e e

N NN N x xx x

N N NR C x x

α αα α

ε ε ε εε
ε α

++

   
   − − − −− −    
   

+

    
     
     ≤ − − − + −     

               

         (59) 
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where 

1
4 4

1e e

N Nx x

N

α α

ε ε

+
− −

−− ≤                                  (60) 

1
4 4

1 1

1e e

N Nx x

N

α α

ε ε

+

   
   − − − −
   
   

−− ≤                                (61) 
we rewrite the Equation (59) with the Equation (60) and the Equation (61), thus, 

( ){ }21 1 1

1
4 4 4

2 lnN N NR C x x N C h N CN N− − −

+

  ≤ − + ≤ + ≤ 
  

                   (62) 

where ( ) ( ) 12 2 1 ln .h Nα ε
− = − 

 
 

We use in a similar way as above for 3
4
Ni = , and so 

1
3
4

ln .NR CN N−≤                                    (63) 

Next, we use estimate for the remainder term r: 
From the Equation (41) we can write 

( ) ( ) ( )
1 1

1
1 1

d d d
d

i i

i i

N Nx x
i i ix x

i i
r x x u x x h u x x

x− −
−

= =

′≤ − ≤∑ ∑∫ ∫  

from the Equation (8) 

( )

1

1

1

11 e e d , 1i

i

xxN x
i i x

i
r h C x i N

αα
ε ε

ε−

− −−

=

   ≤ +  +  ≤ ≤ 
    

∑ ∫  

( )
( )

( )
( )

( )
( )

( ) ( )

1 1

1

1 14 3 4
1 2

1 4 1

1
3

3 4 1

11 2

0

1 11 e e d 1 e e d

11 e e d

1 11 d 1 d

i i

i i

i

i

x xx xN Nx x
i x x

i i N

xxN x

x
i N

r h x h x

h x

h x h x

α αα α
ε ε ε ε

αα
ε ε

σ σ

σ

ε ε

ε

ε ε

− −

−

− − − −− −

= = +

− −−

= +

−

      
   ≤ +  +  + +  + 
            

  
 + +  + 
    

   = + + +   
   ∫

∑ ∑∫ ∫

∑ ∫

∫ ( ) 13

1

11 dh x
σ ε−

 + + 
 ∫

 

( ) ( )1 2 (3) 1 1 1 12ir C h h h C N N N CN− − − −   ≤ + + ≤ + + ≤                      (64) 

Lemma 4.3. Let zi be solution of the Equations (45)-(47). Then there is the following inequality, 

, , .
N Nw wz C R r

∞ ∞
 ≤ +                                  (65) 

Proof. Rearranging the Equation (45) gives 
2

ˆ, , 1, 1xx i i i ilz z a z R i Nε≡ − + = = −  

where 

( ), , 0 1i i i i
Fa t u z
u

γ γ∂
= + < <
∂

 

according to the proof of Lemma 2.1, we can use the maximum principle, and so it is easy to obtain, 
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( )
( )

( )

1
, ,

1
1 ,

1 1

1
, ,

N N

i N

N N

w N w

m N

i N m i i i w
i i

w w

z z R r

k z k h z d r R r

R r C R r

α

α

α

−
∞ ∞

−
+ ∞

= =

−
∞ ∞

≤ + +

≤ + + − + +

 ≤ + ≤ + 

∑ ∑                    (66) 

Conclusion 4.1. We know that the solution of the Equations (1)-(3) is ( )u x  and the solution of the Equations 
(45)-(47) is iy . Then Lemma (4.2) and Lemma (4.3) give us the following convegence result 

1
, ln .

Nwy u CN N−
∞

− ≤                                 (67) 

5. Numerical Example 
In this section, an example of nonlinear singularly perturbed multi-point boundary value problem is given to 
illustrate the efficiency of the numerical method described above. The example is computed using maple 10. 
Results obtained by the method are compared with the exact solution of example and found to be good agree-
ment with each other. We compute approximate errors Neε , Ne  and the convergence rates Npε  on the Shish-
kin Mesh Nω  for different values of ε, N. 

Example 5.1. 
We solve the difference scheme the Equations (42), (44) using the following iteration technique, 

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

2 2 2
1

1 1
1 1

1 1 1

2 ,

, , , 1, , 1, 1, 2,

n n n n
i i i i i

i i i i i i

n n n
i i i i i i

fy x y y y
ћ h h h y ћ h

ff x f x y y x y i N n
y

ε ε ε−
− +

+ +

− − −

     ∂
− + +     ∂     

∂
= + − = − =

∂
 

             (68) 

( ) ( ) ( ) ( )1 1
0 0 1

1 1
0,

i

m N
n n n n

N i N m i i
i i

y k y k y k h y d− −
+

= =

= = + +∑ ∑                        (69) 

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

2 2 2
1

1 1
1 1

1 1 1

2 ,

, , , 1, , 1,

n n n n
i i i i i

i i i i i i

n n n
i i i i i i

fy x y y y
ћ h h h y ћ h

ff x f x y y x y i N
y

ε ε ε−
− +

+ +

− − −

     ∂
− + +     ∂     

∂
= + − = −

∂


                  (70) 

1 1
2

, 1N n N ny yµ µ− −= = −  

where 
22 2

1, 1, 1, 12 22 2 2
2

, 12 2

1

2

N N Nn n n

n

N n

y y y
h h

y
h

ε ε

µ
ε

− + + −

−

    
+ − +            =
 

+ 
 

 

0 0
2

, 1.N ny Cµ µ= = ≥  

The system of the Equations (68)-(70) is solved by the following procedure, 

( )( )
2 2 2

1

1 1

2, , , ,n
i i i i i

i i i i i i

fA B C x y
ћ h ћ h h h y
ε ε ε −

+ +

∂
= = = +

∂
 

( )( ) ( ) ( )( )1 1 1, ,n n n
i i i i i i

fF f x y y x y
y

− − −∂
= − +

∂
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1 10, 0α β= =  

11 1
2 2

0,N N nα β µ −
+ +
= =  

1 1, , 1, , 1i i i i
i i

i i i i i i

B F A i N
C A C A

βα β
α α+ +

+
= = = −

− −
  

( ) ( ) ( )0
1 1 1, 0.5, 1, , 2,1.n n

i i i i iy y y i Nα β+ + += + = = −   

It is easy to verify that 

0, 0, , 1, , .i i i i iA B C A B i N> > > + =   

For this reason, the described procedure above is stable. Also, the Equations (42)-(44) has only one solution. 
Now, we consider the following test problem, 

( ) ( )2 2 0,u u x f xε ′′− + − =                                (71) 

( )0 0u =                                       (72) 

( ) ( )1 0.5u u d= +                                    (73) 

which has the exact solution, 

( )
( )

1

1

2 1 e e
1

e 1

x x

x
u x

ε ε

ε

− 
− −  

 = +
−

 

In the computations in this section, we will take 2, 1dα = = −  the initial guess in the iteration procedure is 
( )0 0.5iy = . The stopping criterion is taken as 

( ) ( )1 5max 10 .n n
i ii

y y+ −− ≤  

The error estimates are denoted by 

, N

Ne y uε ω∞
= −  

and 

max .N Ne eεε
=  

The convergence rates are 

2 2log .
N

N
N

eP
eε

 
=  

 
 

The numerical results obtained from the problem of the difference scheme by comparison, the error and uni-
form rates of convergence were found and these are shown in Table 1. Consequently, numerical results show 
that the proposed scheme is working very well. 

The results point out that the convergence rate of the established scheme is really in unision with theoretical 
analysis. 

From the graps it is show that the error is maximum near the boundary layer and it is almost zero in outer re-
gion in the Figure 3. Approximate solution compared with exact solution in Figure 2. Approximate solutions 
are given for different values of ε in Figure 1. 
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Table 1. The computed maximum pointwise errors eN and e2N, the numerical rate of convergence pN on the Shishkin mesh Nω  for 
different values of N and ε.  

ε 
N değerleri 

8 16 32 64 128 256 512 1024 

2−10 0.1350816058 
p = 0.826 

0.0761888740 
p = 0.806 

0.00435607918 
p = 0.821 

0.00246466665 
p = 0.884 

0.00133500352 
p = 1.02 

0.0065502193 
p = 1.300 

0.0026594582 
p = 1.72 0.0008027767 

2−12 0.1365365902 
p = 0.811 

0.0778089349 
p = 0.777 

0.0454015276 
p = 0.763 

0.0267503827 
p = 0.768 

0.0157072143 
p = 0.797 

0.0090342052 
p = 0.869 

0.0049452671 
p = 1.016 0.0024447312 

2−14 0.1369028476 
p = 0.807 

0.0782173980 
p = 0.769 

0.0458717849 
p = 0.748 

0.0273010175 
p = 0.739 

0.0163561085 
p = 0.740 

0.0097927781 
p = 0.753 

0.0058067718 
p = 0.789 0.0033601955 

2−16 0.1369926017 
p = 0.806 

0.0783189688 
p = 0.768 

0.0459894145 
p = 0.745 

0.0274402097 
p = 0.731 

0.0165223717 
p = 0.725 

0.0099918880 
p = 0.725 

0.0060447308 
p = 0.731 0.0036407030 

2−18 0.1370138364 
p = 0.806 

0.07834719995 
p = 0.767 

0.0460165306 
p = 0.744 

0.0274742487 
p = 0.730 

0.0165639692 
p = 0.721 

0.0100425784 
p = 0.717 

0.0061060714 
p = 0.717 0.0037143751 

2−20 0.1370841205 
p = 0.806 

0.0783970437 
p = 0.768 

0.0460092097 
p = 0.743 

0.0274772611 
p = 0.729 

0.0165727285 
p = 0.720 

0.0100552118 
p = 0.715 

0.0061220254 
p = 0.713 0.0037341617 

2−22 0.1369241824 
p = 0.802 

0.0784855980 
p = 0.770 

0.0460110587 
p = 0.743 

0.0274794446 
p = 0.727 

0.0165923346 
p = 0.722 

0.0100583725 
p = 0.715 

0.0061258653 
p = 0.712 0.0037388392 

2−24 0.1370859052 
p = 0.806 

0.0783990459 
p = 0.767 

0.0460605903 
p = 743 

0.0275085873 
p = 0.729 

0.0165929886 
p = 0.720 

0.0100693779 
p = 0.715 

0.0061330123 
p = 0.712 0.0037437729 

2−26 0.1370859946 
p = 0.806 

0.0783991464 
p = 0.767 

0.0460607056 
p = 0.743 

0.0275087238 
p = 0.729 

0.0165931517 
p = 0.720 

0.0100695762 
p = 0.715 

0.00613332523 
p = 0.712 0.0037440664 

 

 
Figure 1. Approximate solution distribution for ε = 2−4, 2−6, 2−8, 2−10 using N = 256. 

 

 
Figure 2. Comparison of approximate solution and exact solution for ε = 2−14. 
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Figure 3. Error distribution for ε = 2−2, 2−8, 2−10, 2−12 using N = 256. 

6. Conclusion 
Consequently, the aim of this paper was to give uniform finite difference method for numerical solution of non-
linear singularly perturbed problem with nonlocal boundary conditions. The numerical method was constructed 
on Shishkin mesh. The method was pointed out to be convergent, uniformly in the ε-parameter, of first order in 
the discrete maximum norm. The numerical example illustrated in practice the result of convergence proved 
theoretically. 
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