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Abstract 
On account of the traditional method in hybrid stability analysis being too rough, a new method of 
taking dual or single mode was put forward for 4 typical levers in the hybrid stability analysis re-
spectively and transited to the dynamic analysis smoothly. After verifying the superiority of the 
method through examples, the broad application prospect would be given in the end. 
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1. Introduction 
In the traditional hybrid lever stability analysis, its weight is usually ignored or simply put onto the top and bot-
tom nodes proportionally, then calculates the critical load ignoring the lever weight ([1] p. 107) to simplify the 
calculation. It is not hard to find that the technique is too rough and the error in dynamic stability analysis will 
increase with the acceleration of the more serious as the accurate range of analyzed result only exists in the 2 
extreme states considering either the top loading or the lever weight only (that doesn’t exist objectively). How-
ever, only the space between the 2 extreme ends does be the needs of the reality. Consequently, improving the 
precision of the intermediate state is of great significance. How to make use of both ends of accurate results, 
with a continuous function connecting the two is what will be introduced in this paper. 

Below the concept of length coefficient connecting the two extreme ends, it will be put for word adopting the 
way of dual or single mode to realize the hybrid stability analysis first, then evolves to dynamic stability analysis 
smoothly increasing the accuracy greatly, hoping to provide some improvements to the related industries such as 
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space exploration, seismic structure engineering and high-speed transport etc. having to face high acceleration. 
First of all, several concepts will be emphasized or put forward. 
Model: The functions of ( )ny  describing the lever axis of critical state; 
Hybrid stability analysis: The stability analysis considering both the top load P and the lever weight (in a 

unit length) q; 
Dynamic stability analysis: The hybrid analysis considering the encountered acceleration also; 
Energy method ([1] p. 88): A very extensive method for stability analysis in which the defect in static method 

of too complicated in calculation can be avoided; normally gets the approximate results of the larger only; 
The nature of the lower limit (in energy method) [2]: Considering the true one as the lower limit of ana-

lyzed results in energy method, as narrated in [1] P90: the critical load becomes larger than the true one. Here 
just continue formulating ([2] p.2) to call it the nature of lower limit;  

BC: The abbreviation of Boundary Condition; 
Dual model method: Analyze the lever critical loads with double models;  
Single model method: Analyze the lever critical loads with a single model; 
Limit length: The extreme length of a prismatic cantilever compressive bar with no top loading; 
The length coefficient ijn : The ratio of the actual length il  over the limit one 0ijl  called the length  

coefficient (of Lever i in model j), that is 
0

i
ij

ij

l
n

l
=  (when 3i ≤ ) or 

0

i
i

i

l
n

l
=  (when 4i = ); 

Reduction factor ijk : The factor cutting the critical load directly; 
Area coefficient: The ratio of the actual section area aA  over a corresponding square area cA  with the 

same moment of inertial, that is: a

c

A
v

A
=  

Theoretic weight: When the lever weight (in a unit length) is described with the bending stiffness EI  and  

the extreme length l of a cantilever with no top loading as 3

7.837
t

EIq
l

≈  ([1] p. 103, the extreme length of the  

lever being marked as 10l  in this paper) called the theoretic weight of the lever; 
Actual weight: The actual lever weight (in a unite length usually do not equal to the theoretic on) would be 

taken as aq ; 
Weight coefficient: The actual weight (in a unit length) over the theoretic one being equal to the Area  

coefficient, called the weight coefficient, that is a a

t c

q A
v

q A
= = ; 

In order to make the text concise and clear, below agreed to use “A ≥ B” instead of “proposition B could be 
derived by proposition A” and agreed upon in the formula that “l” to be the length of the lever; “z” to be a varia-
ble with no dimension and “x” to be the one with the length dimension; “a” to be a micro constant with the di-
mension of moment. Also, the levers discussed below are all prismatic, no longer prompt. 

2. The Hybrid Stability Analysis for Several Typical Levers—Dual Model or Single 
One 

Up to now, what could be seen about the hybrid stability analysis is that either ignoring the weight or putting the 
total weight of ql  on to the upper and bottom sections proportionally, then analyze with the method consider-
ing the top loading only in reference in order to simplify the calculation ([1] p. 107). 

As the matter of fact, the space between the two extreme ends of ignoring either the top loading P or the lever 
weight q is very large; anyhow of putting the weight to the up and bottom nodes by a fixed proportion cannot 
satisfy the diversity of the reality, the situation of too rough would be inevitably. However, in order to improve 
the accuracy of hybrid analysis, creating a connection of continuous function between the two ends may be the 
only option and the establishment of the concept of the length coefficient is the key to achieving this goal. 

Below, the dual and single model methods of stability analysis for the 4 kinds of typical levers in Figure 
1(a)-(d) would be introduced first, then transit to the dynamic stability analysis. 

2.1. Lever 1 
A cantilever compressive bar as Figure 1(a) would be called Lever 1. 
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If the length 1l l= , q and EI  are all known as constants, the critical load 1crP  would be discussed with the 
dual mode method below. 

Model 1-1 (means lever 1-model 1) 
Suppose xz

l
=  and ( ) 11

πsin
2
zm z EIy a′′= =  (the first subscript indicates the Lever number; yet the second 

one does the model number corresponding to the exact solution ignoring q ([1] p. 47). 

11
π 2 π π 2 πd sin d sin d cos
2 π 2 2 π 2
z al z z al zEIy l m z al z C ′⇒ = = = = − + 

 ∫ ∫ ∫  

BC on A: ( )11 11
1

2 π 2 π1 cos 0 0 cos
π 2 π 2
al z al zEIy C C EIy − ′ ′= − + = ⇒ = ⇒ = 
 

 

Then 
( )

( )( ) ( ) ( )( )

2 2 22 2 21 1 1 1
11

1 1 1 1
2 2 22

11 1 1
0

1

π π πd d sin d sin d
2 2 2 2 π 2 2

1 cos π d π π sin π
4π 4π 4 4

EIl EIl a l a lm z z zU y z z z
EI EI EI

a l a l a la lz z z z
EI EI EI EI

 ′′∆ = = = = 
 

= − = − = =

∫ ∫ ∫ ∫

∫
 

And 

( ) ( )

( )

( )

2
2 2

11 11
1 1

2 2
22

11
1 1

12 2 2
0

2

d d
2 2

π2 cos d 2 d
π 2 π

cos ππ π 4
π π 2 π π 2π

Pl qlT y z z y z

al z all P z l qlz y z
EI EI

zal ql all P l P ql
EI EI

 
′ ′∆ = + 

 
       ′= +             

     −     = + + = +                 

∫ ∫

∫ ∫  

Equaling U∆  and T∆  gives 
22 2

2
π 4

4 π 2π
a l all P ql
EI EI

  − = +         
  

2 2

2 2
π π 4
4 2π

EIP ql
l

 −
⇒ = +  

 
                            (11-1a) 

Below will derive several important values associated with model 1-1 from (11-1a) (Due to the following 2 
formulas corresponding to the 2 vastly different states of the lever; 2 kinds of symbols as 1l  and 110l  indicat-
ing the bar length would be taken to conform them).  

If 0q = , then 
2

011 012 2 2
1 1

π 2.4674011 2.4674011
4

EI EI EIP P
l l l

= ≈ ≈ ≈  ([1] P48)          (11-2a) 

(The first digit 0 in the subscript indicates on the premise of 0q = , for 011P  is a constant of exact value in 
this case, a 2 digit subscript as 01P  indicating the premise and the lever number is applied conforming the rela-
tions among 01P , EI  and l  or 1l ). 

If 0P = , means that 1 110l l→  (the limit length of this model) 

Then 
2 2

110 3 2 3
110 110

π 2π 8.2977560
4 π 4

EI EIq
l l

= × ≈
−

                        (11-1b) 

(The last digit 0 in the manuscript indicates on the premise of 0P = ; 110q  and 110l  are not the exact ones 
keeping a 3 digit subscript, the same below) 

Rewrite the above formula as: 3
110

110

8.2977560 EIl
q

≈                           (11-2b) 

Taking 110q  in (11-1b) to replace q in (11-1a), a hybrid expression of critical load would be: 
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( ) ( )

2 2
110 1

11 01 110 1 012 2
01

3
31

01 11 01 11 01
110

π 4 π 41
2π 2π

1 1 1

cr
q lP P q l P
P

l P n P k P
l

    − −
≈ − ≈ −         
  
 ≈ − ≈ − = −    

                     (11-3a) 

Obviously in the above that 
3 3

3 1
11 11

110 110

l lk n
l l

   
= = =   

   
                   (11-3b) 

( 11k , 11n  are called the reduction factor of the critical load and the length coefficient of model 1-1 respec-
tively). 

Discussion 1-1 
We can see by (11-3a) that when 11 0n → , 11 01crP P→ , it conforms to the actual situation; whiles when  

11 1n → , 11 0crP → , 1 110l l→  and 110 3
110

8.297756 EIq
l

→ ; it is quite difference from the exact one of  

3
110

7.837EIq
l

→  ([1] p. 103). Visible there are flaws in model 1-1. After all, (11-3a) reflects the rough relationship  

between 11crP  and 11k  (see straight line AC in Figure 2) making the hybrid analysis to be in the early dawn 
now. 
 

 
Figure 1. 4 kinds of typical Levers. 

 
Model 1-2  

Suppose 
1

x xz
l l

= =  and ( )4 2
12

1

15 2EIm y a z z
l

′′= = −  (from [2], method 6 in example 2 in which the stability  

analysis considering only the lever weight q with the error being just about 0.023%; although it is not as good as 
that of 0.0056% of method 9 in the example, to maintain the function with integer power simplifying the calcu-
lation, the trail function 12EIy′′  corresponding to method 6 with the precision being high enough, is adopted 
here). 
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BC on A: 
( )

( )

4 2
12 12

5 3
1 1

d 15 2 d

3 10 0

EIy l y z al z z z

al z z D

′ ′′= = −

= − + =

∫ ∫
   ( )5 3

12 1 3 10 7EIy al z z′⇒ = − +  

( ) ( ) ( )

( )( )

2 2 222 2 4 2 8 6 41 1 1
12

1 1 1
2 2 2 2

1

15d 15 2 d 4 4 d
2 2 2

15 1 4 4 5 5 10735 4 9 7 5
2 9 7 5 2 7 14

EIl a l a lU y z z z z z z z z
EI EI

a l a l a l
EI EI EI

′′⇒ ∆ = = − = − +

× = − + = + × − = 
 

∫ ∫ ∫
 

And 

( ) ( )

( )
( ) ( )

( )

2
2 2

12 12
1 1

2 2 3 2 25 3 5 3
2 2

1 1

2 2

d d
2 2

15 3 10 7 d 3 10 7 d
2 15

11 21 396800
2 11 21 4

Pl qzlT y z y z

a l P z z z ql z z z z
EI

a l qlP
EI

′ ′∆ = +

 
= − + + − + 

 

× × = + × ×  

∫ ∫

∫ ∫  

Equaling U∆  and T∆  gives 
( )

2 2 3

2
5 107 11 21 396800

14 42 11 21
a l a l qlP

EI EI
× × × = + 

 ×
 

1
0122

11 21 39107 33 11 21 39
4 6800 4 68001360

qlEI qlP P
l

× ×× × ×
⇒ = − ≈ −

× ×
                  (12-1a) 

Imitating model 1-1, below will derive several important values associated with model 1-2 (Due to the fol-
lowing 2 formulas corresponding to the 2 vastly different states of the lever, 2 kinds of symbols 1l  and 120l  
would be taken in the following for the length of the lever) 

If 0q = , then 012 012 2 2 2
1

107 33 107 33 2.5963235 2.4674011
1360 1360

EI EI EI EIP P
l l l l

× ×
= = ≈ > ≈       (12-2a) 

(The first digit 0 in the subscript indicates on the premise of 0q = , a 3 digit subscript indicates that it is not 
the exact one). 

If 0P = , 1 120 10l l l→ =  (the limit length of 1l  in model 1-2) 

then 120 10 3 3 3
120 10

107 33 4 6800 7.8377.8388278
11 21 391360 t

EI EI EIq q q
l l l

× ×
= = × ≈ ≈ ≈

× ×
 ([1] P103)       (12-1b) 

(The last digit 0 in the subscript indicates on the premise of 0P = ; then 120 10 tq q q→ → , tq  called the 
theoretical weight of lever 1; as 10q  belongs to a approximate exact value of tq ; a 2 digit subscript is given 
showing the primes and lever number, approximately match the relationship among q, EI and l) 

Rewrite (12-1b) as 3 3
120 10

10

7.8388278 7.837
s

EI EIl l
q q

≈ ≈ ≈                    (12-2b) 

( 120l  and 10l  are called the extreme length of Lever 1 in case of 0P = ) 
Following the deriving of (11-3a): replace q in (12-1a) with 10q  in (12-1b), the corresponding expression 

would be:   

( ) ( )

10 1 120 1
12 012 012

012

3 3
31 1

012 12 012 12 012
120 10

11 21 39 11 21 391
4 6800 4 6800

1 1 1 1

cr
q l q lP P P

P

l lP n P k P
l l

 × × × ×
≈ − ≈ − × × × 
      
   ≈ − = − = − = −            

          （12-3a） 

Obviously in the above that 
3 3

3 1
12 12

120 10

l lk n
l l

   
= = ≈   

   
                        (12-3b) 
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( 12k  and 12n  are called the critical load reduction factor and the length coefficient of model 1-2 respectively). 
Discussion 1-2  
Although 10q  derived from model 1-2 has very high accuracy, it also exposes its own weakness, when  

12 0k →  and 012 2
10

2.5963235294 EIP
l

→  is obviously too large and must be improved. Anyway, model 1-2  

provides a supplementary to model 1-1, see summary 1 below. 
Summary 1 
The same form and trend of the reduction factors of (11-3b) and (12-3b) are derived from different of model 

1-1 and model 1-2; but it is obvious that 011 01 012P P P= <  and 110 10 tq q q> ≈ ; it could be explained by the dif-
ference of the 2 models: Model 1-1 is derived by static ignoring the lever weight q, making the result of 

011 01P P=  to be the exact one ([1] p. 48), yet, the accuracy of 110q  is very poor. However, for model 1-2 comes 
from the condition of no top loading considering the lever weight q only, such an approach makes the precision 
of 10 tq q≈  very high, yet the precision of 012P  is quite poor. Visible that each model has its own strong point; 
can this be made use of advantages to achieve a high precision for hybrid stability analysis? As long as to 
choose the appropriate result according to “the nature of lower limit”, the problems would be solved smoothly. 
Just calculate 11crP  and 12crP  taking the smaller would be ok. 

There are 2 supplements should be put forward below. 
(1) An argument for the above conclusion 
It is instructing in Figure 2: First of all, confirm A and B in Figure 2(a), according to (11-2a) and (12-2a). 

Suppose that E in Figure 1(a) is the intersection of the 2 lines mentioned and the abscissa of E is 12 0.5Ek = . 

Then ( ) ( )11 11 011 012 121 1 0.5cr E E cr EP k P P P= − = − =  or ( )012 11 20.5 1 2.4674011E
EIP k
l

= −  

11
11

12

0.5 2.5963235 0.47384791 0.4738479 0.9476958
2.4674011 0.5E

kk
k

×
⇒ ≈ − ≈ ⇒ ≈ ≈  

That is 11 120.9476958k k≈ ; If 12 1k = , then 11 0.9476958k = , C and D would be confirmed. Straight line 
AC and BD are the images of the functions 11crP  and 12crP . A is the only precision point in AC, while D is the 
one in BD. 

Obviously, 11 12cr crP P<  on the left part of E (the intersection of the 2 lines, when 1 jk  is smaller) and 
11 12cr crP P>  in the right part of E. (when 1 jk  is larger); it provides a simple way for selecting and inspecting: 

Just calculate 11crP  and 12crP  according to (11-3a) and (12-3a), taking the smaller one would be ok! Obviously, 
the effective image is the solid line AED, while the invalid image is the dotted line BEC, a straight line AD 
would pass point E’ as shown in Figure 2(b) (a detail view the local part of EE). 

 

 
Figure 2. The straight line method sketch. 
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 (2) The simplified method for calculating the critical load—the straight line method 
It looks very close between the broken line AED and straight one AD; if the differences between the 2 at the 

sections are not so large, it will reduce the amount of calculation greatly using the method of the straight-line 
AD. Obviously the largest difference between the 2 lines is at section E (E’). As long as the difference between 
the 2 would be calculated, whether the scheme is feasible could be determined. 

The abscissa of E is, 12 0.5cr Ek ≈  or 11 0.4738479Ek = , 

Then ( ) ( )11 11 01 2 2 2
1 1

2.46740 2.46740111 1 0.4738479 0.5261521 1.2982277cr E E
EI EI EIP k P

l l l
≈ − ≈ − ≈ ≈  

And ( ) ( )12 12 012 2 2
2.59632352941 1 0.5 1.2982277cr E E

EI EIP k P
l l

≈ − ≈ − ≈ , confirming that 11 12cr E cr EP P≈ . 

Obviously, the equation of the straight line AD is: ( )1 12 011cr EP k P≈ −                (SL) 

Taking 12 0.5cr Ek ≈  in (SL), then ( ) ( )1 12 01 2 2
2.46740111 1 0.5 1.2337006cr E E

EI EIP k P
l l′ ≈ − ≈ − ≈  

The difference between the value 21.2337006 EI
l

 of E' (in the straight line AD) and that 21.2982277 EI
l

 of E  

(in the broken one AED) is about 5.2% being the largest difference between the 2 lines, showing that the method 
of straight line AD is suitable for calculate the hybrid critical load of Lever1 tending to security. Surely now 
readers have been found, precise two points A and D have been connected by a continuous function (SL). 

2.2. Lever 2 
A simply supported compressive bar as Figure 1(b), would be called lever 2.  

Suppose that length 2 2l l= , the weight q and the bending stiffness EI  are all known, the critical load 2crP  
would be discussed below. 

Model 2-1 (means lever 2-model 1) 
Suppose xz

l
=  and 21

πsin
2
zEIy m a′′ = =  called the model 2-1 (corresponding to the exact solution ignor-

ing q ([1] p. 49) 

12
2 π π 2 πd sin d cos
π 2 2 π 2
al z z al zEIy l m z D   ′⇒ = = = − +   

   ∫ ∫
 

According to the symmetry of function of m above, we have 

( ) 21
1

2 π 2 π1 cos 0 cos
π 2 π 2
al z al zEIy D EIy −   ′ ′= − + = ⇒ =   
     

And 
( )

( )( ) ( ) ( )( )

2 22 2
21

1 1 1
22 2 2

1 2
0

1

2 π π2 d d sin d
2 π 2 2

1 cos π d π π sin π
2π 2π 2 4

EIl m a l z zU y z EIl z
EI EI

a la l a l a lz z z z
EI EI EI EI

     ′′∆ = × = =     
     

= − = − = =

∫ ∫ ∫

∫
 

As a complete sine wave is symmetry with the center shaft, T∆  could be calculated by putting the top loading 

P and the total weight 2ql  on to the middle point C equivalently (the vertical displacement being 
2

π
all
EI

 
 
 

 (see 

the calculation of T∆  in model 1-1), then we got. 

( )
2

2
π
alT P ql l
EI

 ∆ = + ⋅  
   

Equaling U∆  and T∆  gives ( )
22

2
2 π
a l alP ql l
EI EI

 = +  
 

  

2 2
2

2 2
2

π πor
24

qlEI EIP ql P
l l

⇒ = + = −                         (21-1a) 
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Bellow will derive several important values associated with model 2-1 (Due to the following 2 formulas cor-
responding to the 2 vastly different states of the bar; 2 kinds of symbols as 2l  and 210l  indicating the length 
would be taken to conform them). 

If 0q = , then 
2 2

021 02 012 2
2

π π
4

EI EIP P P
l l

= = = =  ([1] p. 49)                (21-2a) 

(The first digit 0 in the subscript indicates on the premise of 0q = , for 021P  is a constant of exact value in 
this case, a 2 digit subscript as 02P  indicating the premise and the lever number is applied conforming the rela-
tions among 02P , EI  and l  or 2l ). 

If 0P = , then 2 210l l→  (the limit length of 2l  in this model),  

Then 
2

210 3 3
210 210

2π 19.7392088EI EIq
l l

= ≈                         (21-1b) 

(The last number 0 in the subscript indicates on the premise of 0P = ; then 210q  and 210l  are not the exact 
ones keeping a 3 digit subscript). 

Rewrite (21-1b) as 
2

3
210

210 210

2π 19.7392088EI EIl
q q

= ≈                   (21-2b) 

With reference to the derivation of (11-3a), take 210q  in (21-1b) to replace q in (21-1a), the formula corres-
ponding to the critical load would be:  

( ) ( )

22 2
210 2 210 2 2

21 021 022 3 2
0212 210

3
32

02 21 02 21 02
210

π 2π1 1
2 2π

1 1 1

cr
q l q l lEI EIP P P

Pl l EI

l P n P k P
l

    
= − = − = −         
  
 = − = − = −    

            (21-3a) 

Obviously in the above: 
3

3 2
21 21

210

lk n
l

 
= =  

 
                      (21-3b) 

( 21k , 21n  are called the reduction factor of the critical load and the length coefficient of model 2-1 respec-
tively).  

Discussion 2-1 
We can see from (21-3a) that when 21 0n → , 21 02 01crP P P→ = , it is realistic; whiles 21 1n →  then 2 210l l→   

and 210 3
210

19.7392088 EIq
l

→  (21-1b), must be too large according to the nature of lower limit and the derivation  

of model 1-1, it should be improved. Of course, similar to formula (11-3a), (21-3a) reflects the relationship be-
tween 2crP  and 2k  roughly (see straight line BD in Figure 2(a)), laying some foundation for the hybrid anal-
ysis. 

Model 2-2 
Suppose 

2

xz
l

=  and ( ) ( )3 2
22 40 33 7m z EIy a z z z′′= = − −  (Satisfies ( ) ( )0 1 0m m= = ) 

( ) ( )3 2 4 3 2
22

1

740 33 7 d 10 11
2

EIy M z a z z z z a z z z C ′⇒ = = − − = − − + 
 ∫ ∫

 

4 3 2 5 4 3
22

7 11 710 11 d 2
2 4 6

EIy a z z z C z a z z z Cz D   ⇒ = − − + = − − + +   
   ∫

 

BC: ( ) ( )22 220 1 0 0y y D= = ⇒ =  and 4 3 2
22

23 7 2310 11
12 2 12

C EIy a z z z ′= ⇒ = − − + 
 
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( ) ( )
2 22 3 22

22
1 1

2 2
2 2

d 40 33 7 d
2 2

55031600 2640 529 462 49
2 7 6 5 4 3 420

a lEIU y z z z z z
EI

a l a l
EI EI

′′⇒ ∆ = = − −

 = − + + + = 
 

∫ ∫

 

And 

( ) ( )

( )

( )

2
22 2

22 22
1 1

2 22
4 3 2 4 3 22

22
1 1

2
2

22

d d
2 2

7 23 7 2310 11 d 10 11 d
2 12 2 122

4211 677
1680 4802

Pl qzlT y z y z

a l P z z z z ql z z z z z
EI

a l P ql
EI

′ ′∆ = +

    = − − + + − − +         

 = + 
 

∫ ∫

∫ ∫  

Equaling U∆  and T∆  gives 

( )

2 2
2 2 2

22 2
2

5503 6774211 677 4211 5503
420 1680 480 1680 4802102

a l a l qlP EIP ql
EI lEI

 = + ⇒ = − 
   

2 2
0222

2

1680 677 1680 6771680 5503
4211 480 4211 4804211 210

ql qlEIP P
l

× ××
⇒ = − = −

× ××
                  (22-1a) 

Imitating model 1-2, below will derive several important values associated with model 2-2 (Due to the fol-
lowing 2 formulas corresponding to the 2 vastly different states of the bar, 2 kinds of symbols 2l  and 220l  
would be taken to conform them). 

If 0q = , then  022 022 2 2 2
2 2

1680 5503 10.4545238661 2.6136310 2.4674011
4211 210

EI EI EI EIP P
l l l l

×
= ≈ ≈ > ≈

×
  (22-2a) 

(The first subscript 0 indicates on the premise of 0q = , the 3 digit subscript indicates that the value is not an 
exact one).  

If 0P =  means 2 220 20l l l→ ≈ , then  

( )220 20 2 3 3
220220 20 20

2 210 3
210

5503 48 18.5794471 2.3224309
67721 0.5

0.29634 19.7392088t t

EI EI EIq q
ll l l

EIq q q
l

β

= ≈ × ≈ ≈

≈ ≈ < ≈

         (22-1b) 

(The final subscript 0 indicates on the premise of 0P = ; the 2 digit subscript indicates the value is an exact 
one or its approximation, would be proved in supplement 2-2 below). 

Rewrite the above formula as: 3 3
220 20

20

18.5794471407 EIl l
q

≈ ≈                 (22-2b) 

( 20l  is called the approximation of the limit length in model 2-2). 
Taking 20q  in (22-1b) instead of q in (22-1a), the corresponding expression would appear as: 

( ) ( )

220 2
22 022 20 2 022

022

3
32

022 22 022 22 022
220

1680 677 1680 6771
4211 480 4211 480

1 1 1

cr
q l

P P q l P
P

l P n P k P
l

 × ×
≈ − ≈ − × × × 
   ≈ − = − = −    

                 (22-3a) 

Obviously in the above formula that 
3

3 2
22 22

20

lk n
l

 
= =  

 
                  (22-3b) 
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( 22k  and 22n  are called the reduction factor of the critical load and the length coefficient of model 2-2 re-
spectively).  

Discussion 2-2 
Although the precision of 20q  derived from model 2-2 is very high (see Supplement 2-2), it expose its own 

short board that when 22 0n → , 022P  is too large obviously and must be improved. Anyway, model 2-2 pro-
vides some supplement to model 2-1, see line BD in Figure 2. 

Supplement 2-2: 220q  in (22-1b) is the weight limit approximation without top loading; our confidence 
comes from the following inequality:  

220 210 210 120 110 110

210 220 220 110 120 120

18.5794471 7.83882780.9412458 0.9446925
19.7392088 8.2977560

q l l q l l
q l l q l l

≈ ⋅ ≈ < ≈ ⋅ ≈
 

It shows that the accuracy of model 2-2 is higher than that of model 1-2. 
Comparing (22-3a) with (12-3a), it is clear that except to the subscripts, the rest of the formulas are all the 

same; Of course the straight line method in (2) of Summary 1 is also apply here. 

2.3. Lever 3 
A directional lever (freely in vertical direction) compressive bar as Figure 1(c) would be called Lever 3. 

If the length 3 4l l= , the weight q and the bending stiffness EI  are all known, the critical load 3crP  would 
be discussed. 

Model 3-1 (means Lever 3-model 1) 

Suppose xz
l

=  and 13
πcos
2
zEIy m a′′ = =  (the exact solution ignoring the weight q ([1] p. 49) 

31
2 π π 2 πd cos d sin
π 2 2 π 2
al z z al zEIy l m z C ′⇒ = = = + 

 ∫ ∫
 

BC on C: ( ) 3 3
31 31

2

2 2π π2 sin 0 sin
π 2 π 2z

al alz zEIy C EIy
=

 ′ ′= + = ⇒ = 
 

 

( )

( )( ) ( ) ( )( )

2 22 2
31

1 1 1
22 2 2

1 4
0

1

4 π π4 d 2 d cos d
2 π 2 2

1 cos π d π π sin π
π π 4

EIl M a l z zU y z EIl z
EI EI

a la l a l a lz z z z
EI EI EI EI

     ′′⇒ ∆ = × = =     
     

= + = + = =

∫ ∫ ∫

∫
 

The external work T∆  could be done by putting the top loading P and the total weight 4ql  on to the mid-

dle point C equivalently as: ( ) ( )
2 2

2 2 2 4 2
π π
al alT P ql l P ql l
EI EI

   ∆ = + ⋅ = + ⋅   
   

. 

Equaling U T∆ = ∆  gives ( )
22 2

2

π4 2 2
π 4

a l al EIP ql l P ql
EI EI l

 = + ⋅ ⇒ = + 
 

    

2

2
π 2
4

EIP ql
l

⇒ = −  or 
2

3 3
032

3

4π
2 2

ql qlEIP P
l

= − = −                   (31-1a) 

Bellow will derive several important values associated with model 3-1. Due to the following 2 formulas cor-
responding to the 2 vastly different states of the bar; 2 kinds of symbols as 3l  and 310l  indicating the bar 
length would be taken as: 

If 0q = , then 
2 2

03 02 01 2 2 2 2
3 3

π 4π 39.4784176 2.4674011
4

EI EI EI EIP P P
l l l l

= = = = ≈ ≈  (the exact solution: [1] p. 
49) (31-2a). 

(The first digit 0 in the subscript indicates on the premise of 0q = , for 031P  is a exact constant in this case, 
a 2 digit subscript as 03P  indicating the premise and the lever number is applied conforming the relations 
among 03P , EI  and l ).  
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If 0P = , means 3 310l l→  (the limit length in this model) 

then 

2 2

310 3 3 3
3 3

33

8π π 78.9568352
8

1.23370055 0.1574200 t t

EI EI EIq
l l l

EI q q
l

β

= = ≈

≈ ≈ ≈

                   (31-1b) 

(The final subscript 0 indicates on the premise of 0P = ). 

Rewrite the above formula as: 
2

3
310

310 310

8π 78.9568352EI EIl
q q

= ≈            (31-2b) 

With reference to the derivation of (11-1b) taking 310q  to replace q in (31-1a), the corresponding critical load 

would be: 

( ) ( )

2 2
3 310 3 3 3

31 03 310 03 033 2
03 310

3
33

031 31 031 31 2
310 3

8π1 1
2 2 8π

1 1 1 39.4784176

cr
l q l EIl lP P q P P

P l EI

l EIP n P k
l l

   
= − = − = −         
   = − = − = −    

          (31-3a) 

Obviously in the above: 
3

3 3
31 31

.310

lk n
l

 
= =  

 
                       (31-3b) 

( 31k  and 31n  are called the reduction factor of critical load and the length coefficient respectively). 
Discussion 3-1 
According to the experience of model 1-1 and model 2-1, this model also provides the exact value of 03P , but 

310q  must be too large, should to be improved. Anyway, (31-3a) reflects the relationship between 3crP  and 
31k  roughly (see straight line AC in Figure 2), laying some foundation for the hybrid analysis. 
Model 3-2 
Suppose 

3

xz
l

=  and ( ) ( )5 4 3
32 84 165 80 1m z EIy a z z z′′= = − + − , satisfying ( ) ( )0 4 1m m= = −  

( ) ( ) ( )3 4 3 2
32

3

420 660 240aEIy S z z z z
l

⇒ = = − + , satisfying ( ) ( )0 1 0S S= =  

( )6 5 4
32 3 14 33 20EIy al z z z z′⇒ = − + − , satisfying ( ) ( )32 320 1 0EIy EIy′ ′= =  

7 6 5 2
32 3

11 12 4
2 2

y l z z z z ⇒ = − + − 
 

, satisfying ( ) ( )32 320 1 0y y= =   

( ) ( )
2 2 222 5 4 33 3 3 3

32
1 1

124744d 84 165 80 1 d
2 2 2 11 9 7 231

EIl a l a l a lU y z z z z z
EI EI EI

 ′′⇒ ∆ = = − + − = = ⋅ ⋅ ∫ ∫  

( ) ( )

( )
( ) ( )

( )

2
2 23 3

32 32
1 1

2 3 2 26 5 4 2 6 5 43
32

1 1

2 2
3

32

d d
2 2

14 33 20 d 14 33 20 d
2

463 47
18018 32762

Pl qzlT y z y z

a l P z z z z z ql z z z z z z
EI

a l P ql
EI

′ ′∆ = +

 
= − + − + − + − 

 

 = + 
 

∫ ∫

∫ ∫

 

Equaling U∆  and T∆  gives 
( )

2 2 3
3 3

32

124 463 47
231 18018 32762

a l a l
P ql

EI EI
 = + 
 

 

3
2
3

18018 4718018 248
463 3276463 231

qlEIP
l

××
⇒ = −

××
                       (32-1a) 
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Below will derive several important values associated with model 3-2 (Due to the following 2 formulas cor-
responding to the 2 vastly different states of the bar, in order to keep the size of EI  constant, 2 kinds of sym-
bols 3l  and 320l  would be taken to conform them). 

If 0q = , then  032 032 2 3 2
3 3

18018 248 41.7796976 2.61123110 2.4674011
463 231

EI EI EI EIP P
l l l l

×
= ≈ ≈ > ≈

×
  (32-2a) 

(The first digit 0 in the subscript indicates on the premise of 0q = ).  
If 0P =  means 32 1k →  and 3 320 30l l l→ ≈  (the limitation of length of this model) then, 

( )

320 30 3 3
320 30

3 3103
20

248 3276 74.8317215
231 47

1.1692456 0.1491956
0.25

t t

EI EIq q
l l

EI q q q
l

β

×
= ≈ ≈

×

≈ ≈ ≈ <
                (32-1b) 

(In the coming Supplement 2-3 will prove that it is the approximation of the exact solution, 30q  is adopt) 

Rewrite (32-1b) as 3 3
320 30

30

74.83172147 EIl l
q

= ≈                    (32-2b) 

( 320l  and 30l  are all called the limit length of model 3-2). 
Following the deriving of (22-3a): replace q in (32-1a) with (32-1b), the corresponding expression will be:  

( ) ( )

3 3 320
32 032 30 032

032

32
33

032 32 032 32 2
30 3

18018 47 18018 47
1

463 3276 463 3276

1 1 1 41.7796976242

cr
l l q

P P q P
P

l EIP n P k
l l

 × ×
= − = − × × 
  
 = − = − = −    

          (32-3a) 

Obviously in the above that 
3

3 3
32 32

30

l
k n

l
 

= =  
 

                         (32-3b) 

( 32k  and 32n  are called the critical force reduction factor and the length coefficient of model 3-2 separately). 
Discussion 3-2 
Although the precision of 30q  derived from model 3-2 is very high (see Supplement 3-2), it expose its own 

short board that when 32 0n → , 032P  obviously is too large and must be improved. Anyway, model 3-2 pro-
vides some supplement to model 3-1, see line BD in Figure 2. 

Supplement 3-2 (following Supplement 2-2): As the exact value 30q  could not be found at present, we have 
enough confidence to take 320q  as the similar one, which comes from the (approximate) equation:  

120 110 110 320 310 310

110 120 120 310 320 320

7.8388278 74.83172150.9446925 0.9477548
8.2977560 78.9568352

q l l q l l
q l l q l l

≈ ⋅ ≈ ≈ ≈ ⋅ ≈ ,  ind ica t ing  tha t  the  

accuracy of model 3-2 and model 1-2 are very close. Of course, I also hope to have the ability (conditions) read-
ers solve the exact critical load q for the lever, making the problem clearer and no suspense. 

Comparing (32-3a) with (12-3a), it is clear that except to the subscripts, the rest of the formulas are all the 
same; Of course the straight line method is also apply here. 

The dual mode method for three Levers has been introduced above; if there is no second model for the Lever 
to be discussed, the single mode method has to be applied. 

2.4. Lever 4 
A directional lever (freely in horizontal) compressive bar as Figure 1(d) would be called lever 4. 

If the length 2 2l l= , the weight q and the bending stiffness EI  are all known, the critical load 4crP  would 
be discussed below. As there is no second model (would be discussed in the following), the symbols in the for-
mulas would be taken with a single digit subscript 4 indicating the lever number only. 
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Model 4 
Suppose xz

l
=  and 4

πsin
2
zEIy m a′′ = =  (It is the model of central symmetry called the model 4 being the 

exact model in condition of 0q =  [1] p. 49) 

4
2 π π 2 πd sin d cos
π 2 2 π 2
al z z al zEIy l m z C−   ′⇒ = = = +   

   ∫ ∫  

BC on A: ( )4 41
1

2 π 2 π1 cos 0 cos
π 2 π 2
al z al zEIy C EIy− − ′ ′= + = ⇒ = 
 

 

( ) ( )

( )( ) ( ) ( )( )

2 22 2
41

1 1 1
2 2 22

12 2 4
0

1

π2 d d sin d π
2 π 2

1 cos π d π π sin π
2π 2π 2 4

EIl M a l zU y z EIl z z
EI EI

a l a l a la lz z z z
EI EI EI EI

   ′′⇒ ∆ = × = =   
   

= − = − = =

∫ ∫ ∫

∫
 

Taking the equivalent concentrated load on C to calculate T∆ : Just delete the algebraic term containing q 
and take ( )2 P ql+  to instead of P in the formula of T∆  in model 1-1, 

That is: ( )
2

2
π
alT P ql l
EI

 ∆ = +  
 

 

Equaling U∆  and T∆  gives ( )
22

2
2 π
a l alP ql l
EI EI

 = +  
 

  

2
4

2 2
4

π πor
24

qlEI EIP ql P
l l

⇒ = + = −                         (4-1a) 

(Following the analysis in the above models, 2 symbols would be taken in the following formula). 
The conclusion in model 1-1 indicates that formula (4-1a) is the exact solution for both P and q, then:  

If 0q = , then 
2 2

04 03 02 012 2
4

π π
4

EI EIP P P P
l l

= = = = =                     (4-2a) 

(The first digit 0 in the subscript indicates on the premise of 0q = ). 

If 0P = , then 

( )

2 2

40 3 3 3
40 40

43
40

π 2π 19.7392088
4

2.4674011 0.3148400
0.5

t t

EI EI EIq
l l l

EI q q
l

β

= = ≈

≈ ≈ ≈
                (4-1b) 

(The last number 0 in the subscript indicates on the premise of 0P = ; 40q  and 40l  are all the exact or 
nearly exact ones getting a 2 digit subscript). 

Rewrite the above as: 
2

3
40

40 40

2π 19.7392088EI EIl
q q

= ≈                      (4-2b) 

( 40l  is called the extreme length in model 4). 
Taking 40q  in (4-1b) to replace q in (4-1a), the hybrid expression of critical load would be: 

( ) ( )

2 2
40 44 4 4

4 04 40 04 043 2
04 40

3 2
34
4 04 4 012

40 4

2π1 1
2 2 2π

π1 1 1

cr
q ll EIl lP P q P P

P l EI

l EI n P k P
l l

    
= − = − = −         
   = − = − = −    

              (4-3a) 
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Obviously in the above that 
3

3 4
4 4

40

lk n
l

 
= =  

 
                      (4-3b) 

( 4k  and 4n  are called the critical load reduction factor and the length coefficient of model 4 respectively). 
Discussion 4 
The changing rule of 4crP  with 4k  has been show clearly in (4-3a): When 4 0k → , 4 04crP P→  and when  

4 1k → , 4 40l l→  and 40 3 3
40

19.7392088 2.4674011EI EIq
l l

→ ≈  (41-1b). As it is center symmetry model, the 2  

values above have been the critical ones for both top loading P and lever weight q. If a better one would be dis-
covered, it must be a good thing for us. 

Summary 2 
There are 4 kinds of levers have been discussed above, they all have 2 models except lever 4. As there is no 

best, just better for the second models, hop to see better second models for all kinds of the objects in hybrid sta-
bility analysis making the scope of accurate analysis could be widened day by day. Of course, the author also 
welcomes the opinion of this article making a negative, because the exploration is the precondition of the de-
velopment of the theory. Denying the wrong conclusion still can prevent the happening of calamity. 

3. Area Coefficient and Dynamic Stability Analysis 
In order to adapt to the stability analysis for all kinds of cross section levers, below will introduce the concept of 
the area coefficient, the actual area of the cross section aA  over the corresponding one of cA  with the same 
moment of inertial of a square cross section. Of course, it is equal to the weight coefficient, the actual weight in 
a unit length aq  over its theoretical value i tqβ ; 

That is a a

s i t

A q
v

A qβ
= =                                   (5-1) 

For the static stability analysis (with no acceleration), the traditional method usually ignore the lever weight 
or simply distribute it onto the upper and lower note proportionally, then take the method ignoring the lever 
weight ([1] p. 105-107) to go on the analyze. However, it is too rough for not considering the factor of the length 
coefficient impacting on the result greatly, and the situation will increase along with the acceleration as well in 
dynamic stability analysis. In order to analyze the critical load more accurately undergoing acceleration, below 
will solve the effect of acceleration on the relevant quantities, namely the related expressions in dynamic stabil-
ity analysis.  

Suppose the objects is subjected to the influence of acceleration of ( )1m g−  upward, g is the acceleration of 
gravity on the earth’s surface, the values contain the factor of q should increase m times to be mq  making the 
static reduction ijk  become the dynamic one of 2 2i iK vmk=  (in case 3i ≤ ) or 4 4K vmk=  (in case 4i = ), 
then the general formula (SL) in the section of Summary 1 turns to be: 

If 3i ≤ , then ( ) ( )2 0 2 01 1mcri i i i iP K P vmk P≈ − = −                      (SL1) 

If 4i = , then ( ) ( )4 4 04 4 041 1mcrP K P vmk P≈ − = −                      (SL2) 

Just calculate the corresponding values in (SL1) or (SL2) can work out the corresponding critical load imme-
diately. 

IIn order to make the analysis more convenience, 3 constants for every one of the 4 typical levers related to 
the above 2 formulas are given in Table 1. 

Summary 3 
1) The straight line method (in summary 1) would not only suitable for Lever1, but also for lever 2 and lever 

3 as well; as there is no second model for lever 4, its analysis becomes even simpler taking (SL2), making the 
dynamic stability analysis for all kinds of the Levers discussed in this paper become very simple. 

2) For the 3 levers having the second model, their maximum errors belong to the same order (of magnitude no 
more than 5.2%, see the last part in summary 1) according to the following 3 similar formula: 
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Table 1. The constants associated with dynamic stability analysis. 

i 1 2 3 4 

0iq  10 3
10

7.837 t

EIq q
l

≈ ≈
 

20 3
20

18.5794471

2.3224309 t

EIq
l

q

≈

≈  

30 3
30

1.1692456

0.1491956 t

EIq
l
q

≈

≈  

40 3
40

19.7392088

0.3148400 t

EIq
l

q

≈

≈  

3
0il  

3
10

10

7.837 EIl
q

≈
 

3
20

20

18.57944714 EIl
q

≈
 

3
30 3

30

74.8317215 EIl
l

≈
 

3
40

40

19.7392088 EIl
q

≈
 

0iP  

2

01 2

2
1

π
4

2.4674011

EIP
l

EI
l

=

≈
 

2

02 2

2
2

π
4

9.8696044

EIP
l

EI
l

=

≈
 

2

03 2

2
3

π
4

39.4784176

EIP
l

EI
l

=

≈
 

2

04 2

2
04

π
4

9.86960440

EIP
l

EI
l

=

≈
 

 

3 3
120 11 11
3 3

12110 12

7.8388278 1 0.9446925
8.2977560 1.0551909

l n k
kl n

= = ≈ ≈ ≈                  (N12) 

3 3
220 21 21
3 3

22210 22

18.5794471 1 0.9412458
19.7392088 1.0624218

l n k
kl n

= = ≈ ≈ ≈                 (N22) 

3 3
320 31 31
3 3

32310 32

74.8317215 1 0.9477548
78.9568352 1.0551252

l n k
kl n

= = ≈ ≈ ≈                 (N32) 

4. Examples 
Below would provide not only the concrete steps for the analysis, but also the fundamental relationship between 
the critical load and the lever number as well. Also, the results of 4 kinds of Levers encountered 4 values of ac-
celerations are provided in Table 2. In order to simplify the description, only one of the 4 situations is provided 
in detail for each lever. 

The material involving in the examples unified with joist steel of 20a, the relevant data are shown in Table 2, 
whiles the results analyzed is in Table 3. 

 
Table 2. The data of I steel of 20a ([3] p. 7.26 and modified by internet (February 2015)). 

Area (cm2) ( )4cmxI
 ( )4cmyI

 The actual weight/m 

35.578 2370 158.0 1 1
3

7.837 27.929 kg m 274 kn ma

vEIq
l

− −= ≈ ⋅ ≈ ⋅
 

 
Data preparing: 
Dangerous direction is the one of the smaller moment of inertia: 4158.0 cmYI = , ( )435.578 cmA ≈ . 

Calculating the section area: ( ) ( )
4

4 2 2
2158.0 cm 158 12 43.543082 cm

12 c
b A b= ⇒ = = × ≈ . 

Areas coefficient: 35.578 0.817
43.543082

v = ≈ ; The uniform reduction factor: 3
2 2

1
8i ik n= = . 

Actual weight: a i tq v qβ=  ( iβ  comes from (i2-1b)); the theoretical weight: 7.837t
EIq
l

= ). 

Example 1. Figure 1(a) shows lever 1 of 20a I steel, if 
3 3

3
12 12

10

1 1
2 8

lk n
l

   = = = =   
  

, that is 10 2l l= , when  

1.0m = , 1.5m = , 2.0m =  and 3.0m = , calculate the critical load (in the dangerous direction). 
Case 1: The upward acceleration is 0 (that is 1.0m = ). 
The straight line method: 
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According to (SL1), we have: 
( )1 12 01 01

2 2

11 1 0.81708 1.0
8

0.817 2.46741 2.215
8

mcrP vmk P P

EI EI
l l

 ≈ − = − × × 
 

 ≈ − ≈ 
 

 

Traditional method: Put the 0.3 aq l  to the upper note then overlap:  

1 01 2 2 2

2.4674 0.3 1.0 0.817 7.8370.3 0.547mcr t
EI EI EIP P mvq l

l l l
× × ×

≈ − ≈ − ≈  
2.215 4.847
0.457

≈ , comparing with the Traditional method, the synergy is over 3 times.  

Example 2. Figure 1(b) shows Lever 2 of 20a I steel, if 
3 3

3
12 12

10

1 1
2 8

lk n
l

   = = = =   
  

, that is 10 2l l= , when  

1.0m = , 1.5m = , 2.0m =  and 3.0m = , calculate the critical load crP . 
Case 2: The upward acceleration is 0.5g  (that is 1.5m = ). 
According to (SL1) (The straight line method), we have:  

( )2 22 02 02 2 2
1 1.5 0.817 2.46741 1 1.5 0.817 1 2.089
8 8mcr

EI EIP mvk P P
l l

×   ≈ − = − × × ≈ − ≈   
     

Traditional method: Add 0.5 aq l  to the upper note, then:  

2 02 2 2 2
2.46740 0.5 1.5 0.817 0.296 7.8370.5 1.046crm t

EI EI EIP P mvq l
l l l

× × × ×
≈ − ≈ − ≈

 2.089 1.997
1.046

≈ , comparing with the Traditional method, the synergy is about 2 times.  

Example 3. Figure 1(c) shows lever 3 of 20a I steel,, if 
3 3

3
32 32

30

1 1
2 8

lk n
l

   = = = =   
  

, that is 10 2l l= ,  

when 1.0m = , 1.5m = , 2.0m =  and 3.0m = , calculate the critical load crP . 
Case 3: The upward acceleration is 1.0g  (that is 2.0m = ). 
According to (SL1) (The straight line method), we have:  

( )
3

3 32 03 03 2 2
10

0.817 2.46741 1 2 0.817 1 1.963
4mcr

l EI EIP mvk P P
l l l

     ≈ − = − × ≈ − ≈          
Traditional method: Add 0.5 aq l  to the upper note, then:  

3 03 2 2 2
2.4674 0.5 2.0 0.817 0.149 7.8370.5 1.513mcr t

EI EI EIP P mvq l
l l l

× × × ×
≈ − ≈ − ≈

 1.963 1.2974
1.513

≈ , comparing with the Traditional method, synergy is about 29.7%.  

Example 4. Figure 3 shows lever 4 of 20a I steel, if 
3 3

3
12 12

10

1 1
2 8

lk n
l

   = = = =   
  

, that is 10 2l l= , when  

1.0m = , 1.5m = , 2.0m =  and 3.0m = , calculate the critical load. 
  

 
Figure 3. A structure equivalent to Lever 4. 



R. Song, S. X. Wu 
 

 
363 

Case 4: The upward acceleration is 2.0g  (that is 3.0m = ). 
According to (SL2) (The straight line method), we have:  

( )4 42 04 04 2 2
1 3 0.817 2.46741 1 3.0 0.817 1 1.711
8 8mcr

EI EIP mvk P P
l l

×   ≈ − = − × × ≈ − ≈   
     

Traditional method: Add 0.5 aq l  to the upper note, then:  

4 04 2 2 2

2.4674 0.5 3 0.817 0.315 7.8370.5 0.558mcr t
EI EI EIP P mvq l

l l l
× × × ×

≈ − ≈ − ≈ −  

Traditional method completely lost the carrying capacity, the straight-line method still has considerable bear-
ing capacity. 

 

Table 3. Data summary (the material is I steel of 20a), the unite of crP  is 2

EI
l

). 

Lever number i and the 
reduction factor ijk  i = 1, 3

12 12 1 8k n= =  i = 2, 3
22 22 1 8k n= =  

m  1 1.5 2.0 3.0 1 1.5 2.0 3.0 

crP  

The straight line 
method 2.215 2.089 1.963 1.711 2.215 2.089 1.963 1.711 

Traditional  
method 0.547 −0.414 −1.374 1.027 4.520 1.046 0.570 −0.350 

Synergy (%) 387.4 ∞ ∞ ∞ 45.8 200 339 ∞ 
Lever number i 

and k i = 3, 3
32 32 1 8k n= =  i = 4, 3

4 4 1 8k n= =  

m  1 1.5 2.0 3.0 1 1.5 2.0 3.0 

crP  

The straight line 
method 2.215 2.089 1.963 1.711 2.215 2.089 1.963 1.711 

Traditional  
method 1.990 1.592 1.513 1.036 1.459 0.955 0.451 −0.558 

Synergy (%) 11.3 31.2 29.7 65.2 51.8 219.7 335.3 ∞ 

Summary4: The results of the examples in this section show that the traditional method is too conservative and the waste situation is very serious 
with the increasing of the acceleration. 

5. Summary and Outlook 
With the development of the society and the progress of science and technology, the dynamic stability analysis 
demand grows with times. Although the theory related to acceleration and stability is also developing fleetly in 
recent years, it focuses either on the strength fracture of the beams and columns coursing by vertical or hori-
zontal direction acceleration respectively as in [4] or on the stability of columns with no acceleration as in [5]; 
the document about instability destruction, is rare indeed. During the earthquake, of course, the vertical and ho-
rizontal direction acceleration usually occur at the same time; the strength damage problem, apparently, is more 
common, but the instability of pillar of vertical acceleration to destruction can’t be rule out; so, about the dy-
namic stability analysis of the post must be mentioned on the agenda. This is the reason why I push this paper. 

I also want to tell the readers that there is only one step away from the conclusion of this article and the 
framework of the dynamic stability analysis. Because the framework of static stability analysis software has de-
veloped very perfect and takes the key pillar of the framework analyzed with the software to dock with one of 
the four typical levers analyzed in this paper, the problem would be solved. If you are interested, I would be 
happy to see your achievement. I also want to tell the reader that there is only one step away from the conclusion 
of this article and the framework of the dynamic stability analysis. Because the framework of static stability 
analysis software has developed perfectly; just take its key pillar to dock with the paper, which based on the 
constraint conditions in this paper four typical choice of pressure levers on a corresponding, problem is solved. 
If you are interested, I would be happy to meet you. 

In addition to literature [1], the author failed to find other references. Although after serious check, errors are 
still unavoidable. In order to prevent misleading coursing the catastrophe, please readers do more screening, I 
will be grateful. So here called for readers interested in this issue propose more criticism. In addition, I hope for 
a conditional institution to confirm (or overturn) the conclusion of this article experimentally, making the dy-
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namic stability analysis theory to go into the practical application stage as soon as possible, letting it become a 
new power for progress of science, technological and social development. 

References 
[1] Timoshenko, S.P. and Gere, J.M. (1961) Theory of Elastic Stability. 2nd Edition, McGraw-Hill Book Company, Inc., 

Toronto. 
[2] Song, R. and Wu, S.X. (2015) An Expansion of Boundary Theory and the Application of Joint Condition. Open Jour-

nal of Applied Sciences. http://www.scirp.org/journal/ojapps 
[3] Yang, W.Y. (1985) Practical Manual of Civil Engineering. Chinese Communications Press, Beijing. (In Chinese)  
[4] Chopra, A.K. (2005) Dynamics of Structures—Theory and Applications to Earthquake Engineering (Computing Es-

sentials of Second Edition). Tsinghua University Press, Beijing.  
[5] Chen, J. (2010) Stability of Steel Structures—Theory and Design. China Electric Power Press, Beijing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Submit your manuscript at: http://papersubmission.scirp.org/ 

http://www.scirp.org/journal/ojapps
http://papersubmission.scirp.org/

	A Preliminary of Dynamic Stability Analysis
	Abstract
	Keywords
	1. Introduction
	2. The Hybrid Stability Analysis for Several Typical Levers—Dual Model or Single One
	2.1. Lever 1
	2.2. Lever 2
	2.3. Lever 3
	2.4. Lever 4

	3. Area Coefficient and Dynamic Stability Analysis
	4. Examples
	5. Summary and Outlook
	References

