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Abstract

On account of the traditional method in hybrid stability analysis being too rough, a new method of
taking dual or single mode was put forward for 4 typical levers in the hybrid stability analysis re-
spectively and transited to the dynamic analysis smoothly. After verifying the superiority of the
method through examples, the broad application prospect would be given in the end.
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1. Introduction

In the traditional hybrid lever stability analysis, its weight is usually ignored or simply put onto the top and bot-
tom nodes proportionally, then calculates the critical load ignoring the lever weight ([1] p. 107) to simplify the
calculation. It is not hard to find that the technique is too rough and the error in dynamic stability analysis will
increase with the acceleration of the more serious as the accurate range of analyzed result only exists in the 2
extreme states considering either the top loading or the lever weight only (that doesn’t exist objectively). How-
ever, only the space between the 2 extreme ends does be the needs of the reality. Consequently, improving the
precision of the intermediate state is of great significance. How to make use of both ends of accurate results,
with a continuous function connecting the two is what will be introduced in this paper.

Below the concept of length coefficient connecting the two extreme ends, it will be put for word adopting the
way of dual or single mode to realize the hybrid stability analysis first, then evolves to dynamic stability analysis
smoothly increasing the accuracy greatly, hoping to provide some improvements to the related industries such as
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space exploration, seismic structure engineering and high-speed transport etc. having to face high acceleration.

First of all, several concepts will be emphasized or put forward.

Model: The functions of y™ describing the lever axis of critical state;

Hybrid stability analysis: The stability analysis considering both the top load P and the lever weight (in a
unit length) q;

Dynamic stability analysis: The hybrid analysis considering the encountered acceleration also;

Energy method ([1] p. 88): A very extensive method for stability analysis in which the defect in static method
of too complicated in calculation can be avoided; normally gets the approximate results of the larger only;

The nature of the lower limit (in energy method) [2]: Considering the true one as the lower limit of ana-
lyzed results in energy method, as narrated in [1] P90: the critical load becomes larger than the true one. Here
just continue formulating ([2] p.2) to call it the nature of lower limit;

BC: The abbreviation of Boundary Condition;

Dual model method: Analyze the lever critical loads with double models;

Single model method: Analyze the lever critical loads with a single model;

Limit length: The extreme length of a prismatic cantilever compressive bar with no top loading;

The length coefficient n;: The ratio of the actual length I, over the limit one I, called the length

coefficient (of Lever i in model j), that is n; _ (when i<3)or n,=—- (when i=4);
ijo i0
Reduction factor k; : The factor cutting the critical load directly;
Area coefficient: The ratio of theA?ctuaI section area A, over a corresponding square area A, with the
same moment of inertial, that is: v=-—2
Theoretic weight: When the Iever@veight (in a unit length) is described with the bending stiffness El and

7.837El

|3

the extreme length | of a cantilever with no top loading as g, = ([1] p. 103, the extreme length of the

lever being marked as 1, in this paper) called the theoretic weight of the lever;
Actual weight: The actual lever weight (in a unite length usually do not equal to the theoretic on) would be

takenas q,;
Weight coefficient: The actual weight (in a unit length) over the theoretic one being equal to the Area
coefficient, called the weight coefficient, that is v = % _ % ;
G

In order to make the text concise and clear, below agreed to use “A > B” instead of “proposition B could be
derived by proposition A” and agreed upon in the formula that “I” to be the length of the lever; “z” to be a varia-
ble with no dimension and “x” to be the one with the length dimension; “a” to be a micro constant with the di-
mension of moment. Also, the levers discussed below are all prismatic, no longer prompt.

2. The Hybrid Stability Analysis for Several Typical Levers—Dual Model or Single
One

Up to now, what could be seen about the hybrid stability analysis is that either ignoring the weight or putting the
total weight of gl on to the upper and bottom sections proportionally, then analyze with the method consider-
ing the top loading only in reference in order to simplify the calculation ([1] p. 107).

As the matter of fact, the space between the two extreme ends of ignoring either the top loading P or the lever
weight q is very large; anyhow of putting the weight to the up and bottom nodes by a fixed proportion cannot
satisfy the diversity of the reality, the situation of too rough would be inevitably. However, in order to improve
the accuracy of hybrid analysis, creating a connection of continuous function between the two ends may be the
only option and the establishment of the concept of the length coefficient is the key to achieving this goal.

Below, the dual and single model methods of stability analysis for the 4 kinds of typical levers in Figure
1(a)-(d) would be introduced first, then transit to the dynamic stability analysis.

2.1.Lever1

A cantilever compressive bar as Figure 1(a) would be called Lever 1.
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If the length |, =1, qand EI areall known as constants, the critical load P,, would be discussed with the
dual mode method below.

Model 1-1 (mt)e(ans lever 1-model 1) .

Suppose z=- and m( ) Ely;, =asin— (the first subscript indicates the Lever number; yet the second
one does the model number corresponding to tRe exact solution i ignoring g ([1] p. 47).
= Ely;, =1[mdz = alfsm—dz _2alg —dn—zzz—al(—cosn—;+cj

T T

BConA: Ely;(1)= 2:'[ cos?+Cj =0=>C=0=> Elyl’lzéalcos%Z

1
Ell, 2 Ell, 2 a’l, ¢ . ,mz nZ | mZ
AU = d dz =——L [sin® ~d n’—d—
2 {(y“) ‘T2 I(EI] L7 2E {Sm 27 nEI JS' 22

s jo- cos(nz))d(nz)

Then

|

a’l (nz—sin(nz))l :a—lzL
47El 0 4El 4El

AT = [Z{yﬂ () j

{5 NZP“’*(’ZJ (2 s
-'(néJ[P =t e

RERIERE A

2 2
—~PpP= n El +[TE 4jq| (11_1a)

412 272

Below will derive several important values associated with model 1-1 from (11-1a) (Due to the following 2
formulas corresponding to the 2 vastly different states of the lever; 2 kinds of symbols as |, and 1, indicat-
ing the bar length would be taken to conform them).

If q=0,then P, = % ~2, 4674011|— ~ 246740115 El . P, (1]P48) (11-23)

1 1

(The first digit 0 in the subscript indicates on the premise of q=0, for B, is a constant of exact value in
this case, a 2 digit subscript as Py, indicating the premise and the lever number is applied conforming the rela-
tionsamong PR,,, EI and | or I).

If P=0,meansthat |, —»1,, (the limitlength of this model)

2
vEl 2 e 2977560E (11-1b)

TEAY
4'110 -4 I110

Then g, =

(The last digit 0 in the manuscript indicates on the premise of P=0; q,,, and l,, are not the exact ones
keeping a 3 digit subscript, the same below)

1>, ~8. 2977560 (11-2b)

G0

Rewrite the above formula as:

Taking q,,, in (11-1b) to replace q in (11-1a), a hybrid expression of critical load would be:
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-4 2 =4 Gyl
P = Py _(? Oiyoly = | 1- 7 ;0 : Pt
01

3
I
z[l_t_lJ Jpol z (1_ n131) Po = (1=K ) Py

(11-3a)

IllO

3 3
Obviously in the above that k,, =n’ = [I—lj = (L] (11-3b)

IllO I110

(ky, . n, are called the reduction factor of the critical load and the length coefficient of model 1-1 respec-
tively).

Discussion 1-1

We can see by (11-3a) that when n, —»0,P,,; > P, it conforms to the actual situation; whiles when

n,—1, P,,—>0, I,—>1l, and q110—>8.297756$; it is quite difference from the exact one of

110
7.837El
I1310
between P,, and k;, (see straight line AC in Figure 2) making the hybrid analysis to be in the early dawn

([1] p. 103). Visible there are flaws in model 1-1. After all, (11-3a) reflects the rough relationship

now.
P
I

Bl A B

qo
11:

A

(a) (b) (© (d)

(A indicates the sine wave)

Figure 1. 4 kinds of typical Levers.

Model 1-2
El . . . -
Suppose Z = Ii =|§ and m= T Yy = 15a(z4 - 222) (from [2], method 6 in example 2 in which the stability
1 1
analysis considering only the lever weight q with the error being just about 0.023%; although it is not as good as
that of 0.0056% of method 9 in the example, to maintain the function with integer power simplifying the calcu-

lation, the trail function Ely/, corresponding to method 6 with the precision being high enough, is adopted

here).
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Ely,, =1{ y/,dz =15al | (z* - 22°)d
BCona: " [ =15al (2" 22" = Ely}, = al, (32° ~102° +7)
=al, (32° -102° + D)1 =0

2,2
U :%Iljl'(yl”z)z 2EI (z* 222)2 dz:mjl'(zg—426+4z4)dz

2El
2,2 2
_15%a Il(l_i ij: 5a’l (35+4><9(7—5)):5X107a I
2El \9 7 5) 2EI7 14El
AT :I ' Iq y12
1
15°a’%° 5 3 2 c 3 2
And = PI(BZ -10z +7) dz+q|jz(3z -10z +7) dz
2(E1)°15°\ 1 1
212
_ | (6800P+11><21><39q|)
2(El)x11x21
2 213
Equaling AU and AT gives 5x107a’l = a2| (6800P+Mj
14El 2(El)'11x21

107x33El 11x21x39q| 11x21x39ql,
2 LN T e — (12-1a)
13601 4x 6800 4x 6800
Imitating model 1-1, below will derive several important values associated with model 1-2 (Due to the fol-

lowing 2 formulas corresponding to the 2 vastly different states of the lever, 2 kinds of symbols 1, and 1,
would be taken in the following for the length of the lever)

107 ><332EI _107 ><332EI < 25063235 EL & P ~ 246740115 El (12-2a)
13601 13601 1? I’

=P=

If q=0, then Py, =

(The first digit 0 in the subscript indicates on the premise of =0, a 3 digit subscript indicates that it is not

the exact one).
If P=0, |, >1,, =1, (the limit length of I, in model 1-2)

107 x 33El 4x6800 El 7.837El
then = = x ~7.8388278 —~ ——~ 1] P103 12-1b
o =0 =g 12139 o=~ ([ Py (12-1b)

(The last digit O in the subscript indicates on the premise of P=0; then q,, >, > 0,, g, called the
theoretical weight of lever 1; as q,, belongs to a approximate exact value of q,; a 2 digit subscript is given
showing the primes and lever number, approximately match the relationship among g, El and I)

. El El
Rewrite (12-1b) as 13, ~ | ~ 7.8388278 — ~ 7.837— (12-2b)
Oio Qs
(1, and 1, are called the extreme length of Lever 1 in case of P=0)
Following the deriving of (11-3a): replace g in (12-1a) with q,, in (12-1b), the corresponding expression

11x 21x39q, | 11x21x39 Gyl
Priz = Pora = x| 1 x 2L | Py,
4% 6800 4x6800 P,
would be: 3 3 (12-3a)
I |
~1-| = P =|1- =+ :(1_n132)P012 (1 klZ) 012

IlZO IlU

LY (1Y
Obviously in the above that k,, =n’, = [I—lj ~ (I—j (12-3b)

120 10

)
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(k, and n,, are called the critical load reduction factor and the length coefficient of model 1-2 respectively).

Discussion 1-2
Although gq,, derived from model 1-2 has very high accuracy, it also exposes its own weakness, when

k, >0 and Ry, —>2.5963235294g is obviously too large and must be improved. Anyway, model 1-2

10

provides a supplementary to model 1-1, see summary 1 below.

Summary 1

The same form and trend of the reduction factors of (11-3b) and (12-3b) are derived from different of model
1-1 and model 1-2; but it is obvious that P, =P, <Py, and q,,, > q, = q,; it could be explained by the dif-
ference of the 2 models: Model 1-1 is derived by static ignoring the lever weight q, making the result of
Py, = P, to be the exact one ([1] p. 48), yet, the accuracy of q,,, is very poor. However, for model 1-2 comes
from the condition of no top loading considering the lever weight g only, such an approach makes the precision
of g, =0, very high, yet the precision of B, is quite poor. Visible that each model has its own strong point;
can this be made use of advantages to achieve a high precision for hybrid stability analysis? As long as to
choose the appropriate result according to “the nature of lower limit”, the problems would be solved smoothly.
Just calculate P,,, and P,,, taking the smaller would be ok.

There are 2 supplements should be put forward below.

(1) An argument for the above conclusion

It is instructing in Figure 2: First of all, confirm A and B in Figure 2(a), according to (11-2a) and (12-2a).
Suppose that E in Figure 1(a) is the intersection of the 2 lines mentioned and the abscissa of Eis k¢ =0.5.

El
Then Pe =(1-kye )Py =(1-05)Ry, =Pyppe OF 05P,, = (1—kuE)2.4674011|—2

sk w1 05X 28963235 ) 1ragzg K L OATSEATS () 9476058

2.4674011 Ky, 0.5
That is k, =~0.9476958k,, ; If k, =1, then k;, =0.9476958, C and D would be confirmed. Straight line
AC and BD are the images of the functions P,,, and P,,. A is the only precision point in AC, while D is the
one in BD.
Obviously, R, <P,,, on the left part of E (the intersection of the 2 lines, when kj; is smaller) and

Cl
Py > Py, In the right part of E. (when k,; is larger); it provides a simple way for selecting and inspecting:
Just calculate P,,, and P, according to (11-3a) and (12-3a), taking the smaller one would be ok! Obviously,
the effective image is the solid line AED, while the invalid image is the dotted line BEC, a straight line AD

would pass point E” as shown in Figure 2(b) (a detail view the local part of EE).

PCl" ‘\

Poa | B P E
cr

K>
0 k,~03 Fo~1D  C k~T
(k,, ~0.473879) (k,, ~0.9476958)
(a)

Figure 2. The straight line method sketch.

()
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(2) The simplified method for calculating the critical load—the straight line method
It looks very close between the broken line AED and straight one AD; if the differences between the 2 at the
sections are not so large, it will reduce the amount of calculation greatly using the method of the straight-line
AD. Obviously the largest difference between the 2 lines is at section E (E’). As long as the difference between
the 2 would be calculated, whether the scheme is feasible could be determined.
The abscissa of E is, K,.,e #0.5 or k. =0.4738479,

Then Pyye ~(1-kye )Py = (1—0.4738479)% ~ 0.52615212‘1637:1& ~1. 2982277?
1 1
And P, e ~(1-kype )Py, = (1- 05)2'%632'&&2982277%, confirming that P, ;. =~ P, -
Obviously, the equation of the straight line AD is: P, ~(1-k, )Py (SL)
Taking ke 0.5 in(SL), then P, ~(1—Kye )Py ~(1-0. S)Wﬂzlz%?o%%

The difference between the value 1. 2337006|— of E' (in the straight line AD) and that 1. 2982277||E—I of E

(in the broken one AED) is about 5.2% being the largest difference between the 2 lines, showing that the method
of straight line AD is suitable for calculate the hybrid critical load of Leverl tending to security. Surely now
readers have been found, precise two points A and D have been connected by a continuous function (SL).

2.2. Lever 2

A simply supported compressive bar as Figure 1(b), would be called lever 2.

Suppose that length 1, =21, the weight q and the bending stiffness El are all known, the critical load P,,
would be discussed below.

Model 2-1 (mt)e(ans lever 2-model 1) .

Suppose z=-— and Ely, =m= asin? called the model 2-1 (corresponding to the exact solution ignor-

ing q ([1] p. 49) !

:Elyizzljmdz=27m.[sin%zd(zzj 2:'( cos—- +D]

According to the symmetry of function of m above, we have

Ely'(1) = Za'( cos ™+ Dj ~0= Ely), =ia'cos(“—zj
T 2 | T 2

EII 2 22l nz nz
AU =2x " V'dz = Ell dz = ==—[sin? d| ==
7 10%) I(Ej <l | (2j (zj

azl aZI ) . aZI aZI
= ‘[(1—cos(1tz))d(nz)= e (mz —sin(nz)), :E:ﬁ

As a complete sine wave is symmetry with the center shaft, AT could be calculated by putting the top loading

And

2
P and the total weight 2gl on to the middle point C equivalently (the vertical displacement being I(%J (see
(L

the calculation of AT in model 1-1), then we got.

AT:Z(P+qI)~I(na—E||j2

. . a?l al '\
Equaling AU and AT gives =2(P+ql)l| —
quating g 2El (P+al) (nElj

n°El n°El q_l2

= =P+ql or P=—~— 21-1a
41? a I2 2 ( )

)
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Bellow will derive several important values associated with model 2-1 (Due to the following 2 formulas cor-
responding to the 2 vastly different states of the bar; 2 kinds of symbols as |, and l,,, indicating the length
would be taken to conform them).

n’El _n’El _

If g= O, then POZl :T —I—2 = POZ = POl ([l] p. 49) (21'2a)
2

(The first digit 0 in the subscript indicates on the premise of ¢ =0, for P,, is a constant of exact value in
this case, a 2 digit subscript as P,, indicating the premise and the lever number is applied conforming the rela-
tionsamong PF,, El and I or L,).

If P=0,then I, > 1,, (thelimitlength of I, in this model),

2
Then gy, = 2% = ~19.7302088 = (21-1b)
210 210

(The last number 0 in the subscript indicates on the premise of P =0;then g,, and l,, are not the exact
ones keeping a 3 digit subscript).

2
2Bl 197392088 E- (21-2b)

210 quO

Rewrite (21-1b) as 13, =

With reference to the derivation of (11-3a), take q,,, in (21-1b) to replace q in (21-1a), the formula corres-
ponding to the critical load would be:

2 2 2
Prar = . IZEI - q—ZlOIZ = [1—%—1()) Po1 = {1_ 27T3 2 [ iz jI_ZJ P
l; 2 Poos 15 \n°El )2

oo

(21-3a)

210

3
Obviously in the above: k,, =n3, = [I—ZJ (21-3b)

I210

(k,,, n, are called the reduction factor of the critical load and the length coefficient of model 2-1 respec-
tively).
Discussion 2-1

We can see from (21-3a) that when n,, -0, P,,, > P,, =R, , itis realistic; whiles n, —1 then l, = Lo

and 0, —>19.7392088$ (21-1b), must be too large according to the nature of lower limit and the derivation
210
of model 1-1, it should be improved. Of course, similar to formula (11-3a), (21-3a) reflects the relationship be-
tween P,, and k, roughly (see straight line BD in Figure 2(a)), laying some foundation for the hybrid anal-
ysis.
Model 2-2 X
Suppose z = n and m(z)=Ely;, = a(4Oz3 -337° —72) (Satisfies m(0)=m(1)=0)

2

= Ely,, :IM (z)= aj<4023 —337° —7z)dz = a(lOz4 -117° —%zz +Cj
1

723

= Ely,, =a 102 ~11° — L2 +C |dz=a| 225 - 224~ L v cz4 D
2 2 4" 6

BC: ¥, (0)=y,(1)=0=>D=0 and C =§:> Ely,, = a(lOz4 -117° —%zz +§j
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El ¢, , a’l 2
= AU =7{(y22)2 o|z=2E2 (402° - 332 - 7z} dz

+
7 6 5 4 3

_ | 1600 2640 529+462 49 5503a2|2
2El 420El

P, , qzl? |,
7= [ () [

1

2 2
And =2k PI[lOz “11p -ty jdz+q|j [102 -l E] dz
2(EI) 1 2 1 2 12
2
_ a|22(4211P+@q|2j
2(EI) 1680 480

Equaling AU and AT gives
5503a%l,  a’l, (4211P+6ﬂ j:>4211P_5503E| 6774,
420El  2(EI)*\1680 480 2 1680 21012 480

_ 1680x5503El 1680x677ql, .  1680x677ql,
421121012 4211x480  4211x480

(22-1a)

Imitating model 1-2, below will derive several important values associated with model 2-2 (Due to the fol-
lowing 2 formulas corresponding to the 2 vastly different states of the bar, 2 kinds of symbols 1, and I,,,
would be taken to conform them).

If q=0, then P, = o00x3%03EL ;) 4545238661— ~2.6136310 5" | > Py = 24674011 EL - (20-20)

4211x 21012 12

(The first subscript 0 indicates on the premise of g =0, the 3 digit subscript indicates that the value is not an
exact one).
If P=0 means I, > l,, =1, then

SO03EL, 48 1857044715l ~ 23224300 F!

e X
215,y 6771, 12,

U220 = U & 3
0.5l
) (22-1b)
~0.29634q, ~ 5,0, < U,y 19.7392088%
210
(The final subscript 0 indicates on the premise of P =0 ; the 2 digit subscript indicates the value is an exact
one or its approximation, would be proved in supplement 2-2 below).

15, ~ I3 ~18.5794471407 (22-2b)

q20

Rewrite the above formula as:

(1, is called the approximation of the limit length in model 2-2).
Taking q,, in (22-1b) instead of ¢ in (22-1a), the corresponding expression would appear as:

1680x 677 qmlz 1680x 677
P22 ® Fozs = Ul 1-
4211x 480 Poss 4211>< 480
| 3 (22-3a)
~ [1_[|_2j Jpozz = (1_ ngz) 022 = (1 kzz) 022
220
| 3
Obviously in the above formula that k,, =n3, = [I_Zj (22-3b)
20

)
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(k,, and n,, are called the reduction factor of the critical load and the length coefficient of model 2-2 re-
spectively).

Discussion 2-2

Although the precision of q,, derived from model 2-2 is very high (see Supplement 2-2), it expose its own
short board that when n,, -0, P, is too large obviously and must be improved. Anyway, model 2-2 pro-
vides some supplement to model 2-1, see line BD in Figure 2.

Supplement 2-2: q,, in (22-1b) is the weight limit approximation without top loading; our confidence
comes from the following inequality:

o 1BSTOUATL Ly g gq1oa58 0 < Chan 78388278 Ly 1 446005 0

Oy 19.7392088 L, L Qo 82977560 I, |y

It shows that the accuracy of model 2-2 is higher than that of model 1-2.
Comparing (22-3a) with (12-3a), it is clear that except to the subscripts, the rest of the formulas are all the
same; Of course the straight line method in (2) of Summary 1 is also apply here.

2.3.Lever 3

A directional lever (freely in vertical direction) compressive bar as Figure 1(c) would be called Lever 3.

If the length |, = 4l , the weight g and the bending stiffness EI are all known, the critical load P, would
be discussed.

Model 3-1 (means Lever 3-model 1)

Suppose z :I5 and Ely,=m= acos%Z (the exact solution ignoring the weight g ([1] p. 49)

= Ely;, =1 mdz =2%chos%zd%z=2—m(sin%z+c)

I
n 2 7=2 T 2
2 2
= o = x 58350 =2 g = oo Jo[ 5
23 + L El nEl | 5 %5
_ all ~ a2l ) - a2l ~ a2|4
_E{(HCOS(nZ))d(nZ)—E(nusm(nz))o ==

The external work AT could be done by putting the top loading P and the total weight 4ql on to the mid-

2 2
dle point C equivalently as: AT=2(P+2qI)-2I( aEllj :4(P+2ql)-l(a?llj .
T

n

. . a’?l al ¥ n2El
Equaling AU =AT gives —=4(P+2ql)l| — | == ——=P+2ql
q g g El ( al) (nElj 41° q
n’El 4n’El  ql ql
=P= -2ql or P= -—2=p,-23 31-1a
JTER 12 2 % 2 ( )

Bellow will derive several important values associated with model 3-1. Due to the following 2 formulas cor-
responding to the 2 vastly different states of the bar; 2 kinds of symbols as I, and I, indicating the bar
length would be taken as: 2 2

If q=0, then P, =P, =P, :E—EI: 4n 2E| ~ 39.4784176E—2|: 2.4674011E—2I (the exact solution: [1] p.

4] | I |
49) (31-2a). 3 3

(The first digit O in the subscript indicates on the premise of q =0, for P, is a exact constant in this case,

a 2 digit subscript as Py, indicating the premise and the lever number is applied conforming the relations

among P,, ElI and I).
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If P=0,means I, —l;, (thelimitlength in this model)

2
Uaso = 8"|$ "‘TE' ~78. 9568352|—
then 3 3 (31-1b)

El
~1.23370055-55- = 015742000, = /g,

(The final subscript 0 indicates on the premise of P=0).

2
2, =87 El _ 78.9568352 EL (31-2b)

310 q310

Rewrite the above formula as:

With reference to the derivation of (11-1b) taking q,,, to replace q in (31-1a), the corresponding critical load

1, Oyl 8a’Ell, [ 12
P,s =Py 1-B08 \p =1 — 23| 3 P
cr3l — q310 2 ( 2P03 ] ( I'jlo (SnZEI 03

3
- {1— [I'—3] J P = (1— N ) Poss = (1- k3l)39.4784176%

would be: (31-3a)

310 3

3
Obviously in the above: k,, =n3, = [I—3j (31-3b)

|.310

(ky; and ny, are called the reduction factor of critical load and the length coefficient respectively).
Discussion 3-1

According to the experience of model 1-1 and model 2-1, this model also provides the exact value of P, , but

Oy Must be too large, should to be improved. Anyway, (31-3a) reflects the relationship between P, and

ks, roughly (see straight line AC in Figure 2), laying some foundation for the hybrid analysis.
Model 3-2

Suppose  z =|i and m(z)=Ely;, =a(84z° —165z* +80z° -1) , satisfying m(0)=m(4)=-1
= ElyY) =5(2) = |3(420z4 —~6602° +2402° ) , satisfying S (0)=S(1)=0

3
= Ely;, = al,(142° —332° + 202" - z), satisfying Ely;, (0) = Ely;, (1) =0

11 1 o
:>y32:I3[227 2°+47° 52 j,satlsfymg Y52 (0)=y5(1)=0
2 2 2
=AU =B [y yar =2 '3j(84z5—165z4+80z3—1)2dz:a '3( 744 j:124a l
2 4 2E 2EI\11-9-7) 231l

AT = jPI (Vi) dz+.[qZI ) dz

1

P[(142° -332° + 202" - 2)2 dz +ql? | 2(1426 ~332° +20z" - 2)2 dzj

__2K [
2(E1°\ 1 1

_al (463 L4 qu
2(E1)°\18018 3276 '°

2 213
Equaling AU and AT gives 12427, __al, 2( 463 P+ adl qlsj
231El 2( ) 18018 3276

p_ 18018 x 248!EI ~ 18018x47ql, (32-1a)
463x 231l 463x 3276

)
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Below will derive several important values associated with model 3-2 (Due to the following 2 formulas cor-
responding to the 2 vastly different states of the bar, in order to keep the size of EIl constant, 2 kinds of sym-
bols I, and I,,, would be taken to conform them).

If q=0, then P, - C0L8x248El | 41.7796976% ~ 2611231105 5 P, ~ 2.4674011% (32-2a)

463x231 12 : 12

(The first digit O in the subscript indicates on the premise of q=0).
If P=0 means k;, »1 and I, - l,, =1;, (the limitation of length of this model) then,

Gy = G = Mg ~ 74.83172152
231x47 13, B
El (32-1b)
~1.1692456 —— ~ 0.14919560, ~ 3,0, < Gy,

20
(In the coming Supplement 2-3 will prove that it is the approximation of the exact solution, ¢, is adopt)

Rewrite (32-1b) as 13, =13, ~ 74.83172147EL (32-2b)

Uso
(13, and I, are all called the limit length of model 3-2).
Following the deriving of (22-3a): replace q in (32-1a) with (32-1b), the corresponding expression will be:

18018x 471, _ 1_18018x47I3 oo
%0 463x3276 463x3276 P, | ™%

Prs2 = Fogo —
Y (32-3a)
= {1—[%} J Pro = (1-13 ) Py = (1, )41.7796976242|E—2'

30 3

3
Obviously in the above that k,, =n3, = {Iij (32-3b)

|30

(ky, and n,, are called the critical force reduction factor and the length coefficient of model 3-2 separately).

Discussion 3-2

Although the precision of q,, derived from model 3-2 is very high (see Supplement 3-2), it expose its own
short board that when n,, -0, PRy, obviously is too large and must be improved. Anyway, model 3-2 pro-
vides some supplement to model 3-1, see line BD in Figure 2.

Supplement 3-2 (following Supplement 2-2): As the exact value g,, could not be found at present, we have
enough confidence to take qs,,, as the similar one, which comes from the (approximate) equation:

o 78388278 Ly 6 gppp005 0 o e  TAB3LT215 ko or77egglo  indicating that the
Gy 82977560 1, o Guo | 78.9568352 1, g

accuracy of model 3-2 and model 1-2 are very close. Of course, | also hope to have the ability (conditions) read-
ers solve the exact critical load g for the lever, making the problem clearer and no suspense.

Comparing (32-3a) with (12-3a), it is clear that except to the subscripts, the rest of the formulas are all the
same; Of course the straight line method is also apply here.

The dual mode method for three Levers has been introduced above; if there is no second model for the Lever
to be discussed, the single mode method has to be applied.

2.4. Lever 4

A directional lever (freely in horizontal) compressive bar as Figure 1(d) would be called lever 4.
If the length 1, = 2I, the weight g and the bending stiffness EI are all known, the critical load P,, would
be discussed below. As there is no second model (would be discussed in the following), the symbols in the for-

mulas would be taken with a single digit subscript 4 indicating the lever number only.



R. Song, S. X. Wu

Model 4
Suppose z X and Ely; =m= asinn—Z (It is the model of central symmetry called the model 4 being the
exact model in cdndition of g=0 [1]p. 29)

= Ely, = Ijmdz _ 2l jsin%zd(ﬂjz —2al (COS%ZJFCJ

E 2

L
BConA: Ely,(1)= —2al (cosn—Z+C) =0= Ely}, _ 2l ™
T 2 | T 2
2 2
—au=2xE! (ygl)zdz:Enj(Mj dz=20 sinz(n—zjd(nz)
2 1 LBl il 2

|

_atly atl, 1 all A,
= .1[(1 cos(nz))d(nz) = = (nz sm(nz))0 T

Taking the equivalent concentrated load on C to calculate AT : Just delete the algebraic term containing g
and take 2(P+ql) toinstead of P in the formula of AT in model 1-1,

2
That is: AT :2(P+ql)l[a—lj

nEl
Equaling AU and AT gives all _ 2(P+ql)l (a_l ’
2El nEl
nEl ’El ql
=>-—=P+ql or P=——--% 4-1a
R Z 2 (¢-12)
(Following the analysis in the above models, 2 symbols would be taken in the following formula).
The conclusion in model 1-1 indicates that formula (4-1a) is the exact solution for both P and g, then:
n’El  7*El
If q=0, then PO4:F:|_2:PO3:P02 =P (4-2a)
4
(The first digit O in the subscript indicates on the premise of q=0).
2 2
o=l 2T EL 19730008850
4' |40 40
If P=0, then - (4-1b)
~ 2.4674011 5 ~0.3148400q, ~ 4,9,

(0.51,,)

(The last number 0 in the subscript indicates on the premise of P=0; q,, and |, are all the exact or
nearly exact ones getting a 2 digit subscript).

2
2°El 197392088 E- (4-2b)

Rewrite the above as: I, =
40 q40

(1,, is called the extreme length in model 4).
Taking q,, in (4-1b) to replace q in (4-1a), the hybrid expression of critical load would be:

| Qo 2r2EN, (12
Prs = P _q4oé:{1_ﬁ] P :(1_TA(27I;EI P
04 40

(e amesn

(4-3a)

4
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3
Obviously in the above that k, =n =[I—4J (4-3b)

|40

(k, and n, are called the critical load reduction factor and the length coefficient of model 4 respectively).
Discussion 4
The changing rule of P

cré

with k, has been show clearly in (4-3a): When k, -0, P

cr4

— B, and when

k,—»1, I, >, and q —>19.7392088|E7|z 2.4674011% (41-1b). As it is center symmetry model, the 2
40

values above have been the critical ones for both top loading P and lever weight g. If a better one would be dis-
covered, it must be a good thing for us.

Summary 2

There are 4 kinds of levers have been discussed above, they all have 2 models except lever 4. As there is no
best, just better for the second models, hop to see better second models for all kinds of the objects in hybrid sta-
bility analysis making the scope of accurate analysis could be widened day by day. Of course, the author also
welcomes the opinion of this article making a negative, because the exploration is the precondition of the de-
velopment of the theory. Denying the wrong conclusion still can prevent the happening of calamity.

3. Area Coefficient and Dynamic Stability Analysis

In order to adapt to the stability analysis for all kinds of cross section levers, below will introduce the concept of
the area coefficient, the actual area of the cross section A, over the corresponding one of A, with the same
moment of inertial of a square cross section. Of course, it is equal to the weight coefficient, the actual weight in
aunit length q, over its theoretical value f.q,;

Thatis v= A_ % (5-1)
Bi%

For the static stability analysis (with no acceleration), the traditional method usually ignore the lever weight
or simply distribute it onto the upper and lower note proportionally, then take the method ignoring the lever
weight ([1] p. 105-107) to go on the analyze. However, it is too rough for not considering the factor of the length
coefficient impacting on the result greatly, and the situation will increase along with the acceleration as well in
dynamic stability analysis. In order to analyze the critical load more accurately undergoing acceleration, below
will solve the effect of acceleration on the relevant quantities, namely the related expressions in dynamic stabil-
ity analysis.

Suppose the objects is subjected to the influence of acceleration of (m —1) g upward, g is the acceleration of
gravity on the earth’s surface, the values contain the factor of g should increase m times to be mqg making the
static reduction k; become the dynamic one of K;, =vmk;, (in case i<3)or K, =vmk, (in case i=4),
then the general formula (SL) in the section of Summary 1 turns to be:

If i<3,then P

meri

~ (1=K ) Py = (1-vmk;, ) By (SL1)

If i=4,then P

m

s ~ (1=K, )Py =(1-vmk, )P, (SL2)

Just calculate the corresponding values in (SL1) or (SL2) can work out the corresponding critical load imme-
diately.

IIn order to make the analysis more convenience, 3 constants for every one of the 4 typical levers related to
the above 2 formulas are given in Table 1.

Summary 3

1) The straight line method (in summary 1) would not only suitable for Leverl, but also for lever 2 and lever
3 as well; as there is no second model for lever 4, its analysis becomes even simpler taking (SL2), making the
dynamic stability analysis for all kinds of the Levers discussed in this paper become very simple.

2) For the 3 levers having the second model, their maximum errors belong to the same order (of magnitude no
more than 5.2%, see the last part in summary 1) according to the following 3 similar formula:
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Table 1. The constants associated with dynamic stability analysis.

i 1 2 3 4
El El El
. - % . G, ~18.5794471 G ~1.1692486 - a9, 107392088 -
o ~ 23224309, ~ 014919560, ~ 0.3148400q,
B P ~ 7.8375—' 2~ 18.579447145—' 15 ~ 7483172155 2~ 19.73920885—'
_7’El _7’El P _n°El _ n’El
b S woar ©ar “ar
I ~ 2.4674011% B~ 9.8696044% ~ 39.4784176% ~ 9.86960440:57'
3 3
boo Mo Yoy 78388278 1 49446005 (N12)
I, n, K, 82977560 10551909
1, n .
by _Mp Ky 18STOMTL_ 1 9410458 (N22)
5, 1, K, 19.7392088 10624218
12, nd k :
b Moy Ko 748317215 1 9477548 (N32)
o S, ki, 789568352  1.0551252

4. Examples

Below would provide not only the concrete steps for the analysis, but also the fundamental relationship between
the critical load and the lever number as well. Also, the results of 4 kinds of Levers encountered 4 values of ac-
celerations are provided in Table 2. In order to simplify the description, only one of the 4 situations is provided

in detail for each lever.
The material involving in the examples unified with joist steel of 20a, the relevant data are shown in Table 2,

whiles the results analyzed is in Table 3.
Table 2. The data of | steel of 20a ([3] p. 7.26 and modified by internet (February 2015)).
I (em*) I,(cm*)

158.0

Area (cm?) The actual weight/m

VEI

q, =7.837 T 27.929kg-m™ ~274kn-m™

35.578 2370

Data preparing:
Dangerous direction is the one of the smaller moment of inertia: 1, =158.0cm*, A~ 35.578(cm4) .
4

Calculating the section area: ;’—2 =158.0(cm*) = A, =b} =+/158x12 ~ 43.543082(cm” ).

35.578
43.543082 El
Actual weight: g, =vg,q, (B, comes from (i2-1b)); the theoretical weight: g, =7.837—).

3 3
1. [ij =1, thatis 1, =2l, when
Lo 2 8
m=1.0, m=15, m=20 and m=3.0, calculate the critical load (in the dangerous direction).

Case 1: The upward acceleration is O (thatis m=1.0).

The straight line method:

~ 0.817 ; The uniform reduction factor: k,, =n;,

Areas coefficient: v=

©|

Example 1. Figure 1(a) shows lever 1 of 20a I steel, if k,, =n, :[
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merl <

P ~ (1—vmk,, )Py, = (1— O.81708x1.0><%) P,

According to (SL1), we have:
0.817 )\ 2.4674EI El
| l-— | x2215—
8 |2 2
Traditional method: Put the 0.3q,l to the upper note then overlap:
2.4674EI 3 0.3x1.0x0.817x7.837EI < 0.547%

P.ri = By —0.3mvg,l = B 2
gi;i ~ 4.847 , comparing with the Traditional method, the synergy is over 3 times.
. 3 :
Example 2. Figure 1(b) shows Lever 2 of 20a | steel, if k, =n3, = [Il_j - (%} =%, that is o =2 _when
10

m=10, m=15, m=2.0 and m=3.0, calculate the critical load P, .

Case 2: The upward acceleration is 0.5g (thatis m=1.5).

According to (SL1) (The straight line method), we have:
1) P, ~ (1_ 1.5x 0.817) 2.4674EI N 2.0892

Pz = (1=mvk,, )Py, = (1—1.5>< 0.817x 2 5 E -
Traditional method: Add 0.5, to the upper note, then:

P ~P,—05mvgl ~ 2.46|7240EI _ 0.5x1.5x0.817 Ix20.296>< 7.837El N 1.046%
2.089 ~1.997 , comparing with the Traditional method, the synergy is about 2 times.

1.046 3 s
Example 3. Figure 1(c) shows lever 3 of 20a | steel,, if ky, =n3, :(IL] :(%) :%, that is 1, =2I,
30

when m=1.0, m=15, m=2.0 and m=3.0, calculate the critical load P, .

Case 3: The upward accelerationis 1.0g (thatis m=20).
According to (SL1) (The straight line method), we have:

3
o (1 mky)P, :[1_2Xo.817[ﬂ }pm [1-SET|2AE ol

e
mcr " 4 IZ
Traditional method: Add 0.5, to the upper note, then:
2.4674El1 0.5x2.0x0.817x0.149x 7.837El El
P.s = P; —0.5mvg,l ~ 5 - 2 z1.513|—2

1.963 ~1.2974, comparing with the Traditional method, synergy is about 29.7%.

1.513 3 3
Example 4. Figure 3 shows lever 4 of 20a | steel, if k, =n, :[L] :(1] :1, that is 1, =2I, when
8

IlO

m=1.0, m=15, m=2.0 and m=3.0, calculate the critical load.

P P
\ (ED, —>
A B
EI EI =21
C D
Frr Ay

Figure 3. A structure equivalent to Lever 4.
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Case 4: The upward accelerationis 2.0g (thatis m=3.0).
According to (SL2) (The straight line method), we have:

Pors = (1-mvk,, )Py, = (1—3.0>< 0.817 x%) Pu = (1— 3x 05817j 2'46|Z4E| ~ 1.711%
Traditional method: Add 0.5q,| to the upper note, then:
P ~P,—05mvgl ~ 24674El 0.5x3x0.817x0.315x7.837El _ —0.558%

12 12
Traditional method completely lost the carrying capacity, the straight-line method still has considerable bear-
ing capacity.

Table 3. Data summary (the material is | steel of 20a), the unite of P, is %).

Lever number i and the

reduction factor k. =1k, =n; =1/8 =2, k,=m, =18
ij
m 1 15 2.0 3.0 1 15 2.0 3.0
The f;rei:]gohdt line 5915 2.089 1.963 1711 2215 2.089 1.963 1711
R Traditional
r:]e'tr:gga 0.547 ~0.414 ~1.374 1.027 4520 1.046 0.570 -0.350
Synergy (%) 387.4 *) ) *) 45.8 200 339 °)
Lever number | i=3, k,=n,=18 i=4, k,=n'=18
m 1 15 2.0 3.0 1 15 20 3.0
The rsTt]Z'hgohJ line 5515 2.089 1.963 1711 2215 2.089 1.963 1711
R Traditional
rf]e'ﬂ:g da 1.990 1592 1513 1.036 1.459 0.955 0.451 -0.558
Synergy (%) 113 312 297 65.2 51.8 219.7 335.3 ©

Summary4: The results of the examples in this section show that the traditional method is too conservative and the waste situation is very serious
with the increasing of the acceleration.

5. Summary and Outlook

With the development of the society and the progress of science and technology, the dynamic stability analysis
demand grows with times. Although the theory related to acceleration and stability is also developing fleetly in
recent years, it focuses either on the strength fracture of the beams and columns coursing by vertical or hori-
zontal direction acceleration respectively as in [4] or on the stability of columns with no acceleration as in [5];
the document about instability destruction, is rare indeed. During the earthquake, of course, the vertical and ho-
rizontal direction acceleration usually occur at the same time; the strength damage problem, apparently, is more
common, but the instability of pillar of vertical acceleration to destruction can’t be rule out; so, about the dy-
namic stability analysis of the post must be mentioned on the agenda. This is the reason why I push this paper.

I also want to tell the readers that there is only one step away from the conclusion of this article and the
framework of the dynamic stability analysis. Because the framework of static stability analysis software has de-
veloped very perfect and takes the key pillar of the framework analyzed with the software to dock with one of
the four typical levers analyzed in this paper, the problem would be solved. If you are interested, | would be
happy to see your achievement. | also want to tell the reader that there is only one step away from the conclusion
of this article and the framework of the dynamic stability analysis. Because the framework of static stability
analysis software has developed perfectly; just take its key pillar to dock with the paper, which based on the
constraint conditions in this paper four typical choice of pressure levers on a corresponding, problem is solved.
If you are interested, | would be happy to meet you.

In addition to literature [1], the author failed to find other references. Although after serious check, errors are
still unavoidable. In order to prevent misleading coursing the catastrophe, please readers do more screening, |
will be grateful. So here called for readers interested in this issue propose more criticism. In addition, | hope for
a conditional institution to confirm (or overturn) the conclusion of this article experimentally, making the dy-
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namic stability analysis theory to go into the practical application stage as soon as possible, letting it become a
new power for progress of science, technological and social development.
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