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Abstract 
In the present work, we numerically study the laminar natural convection of a nanofluid confined 
in a square cavity. The vertical walls are assumed to be insulated, non-conducting, and impermea-
ble to mass transfer. The horizontal walls are differentially heated, and the low is maintained at 
hot condition (sinusoidal) when the high one is cold. The objective of this work is to develop a new 
height accurate method for solving heat transfer equations. The new method is a Fourth Order 
Compact (F.O.C). This work aims to show the interest of the method and understand the effect of 
the presence of nanofluids in closed square systems on the natural convection mechanism. The 
numerical simulations are performed for Prandtl number ( Pr = 6.2 ), the Rayleigh numbers vary-
ing between Ra≤ ≤ ×3 510 5 10  and for different volume fractions χ  varies between 0% and 10% 
for the nanofluid (water + Cu). 

 
Keywords 
Nanofluid, Heat Transfer, Natural Convection, Fourth-Order Compact (F.O.C) Formulation,  
Numerical Performance, Sinusoidal Boundary Thermal Condition 

 

http://www.scirp.org/journal/wjnse
http://dx.doi.org/10.4236/wjnse.2016.62009
http://dx.doi.org/10.4236/wjnse.2016.62009
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


M. Zaydan et al. 
 

 
71 

1. Introduction 
In a better description, nanofluids are engineered colloidal suspensions of nanoparticles (1 - 100 nm) in a base 
fluid. Common base fluids include water, oil, and Ethylene Glycol while nanoparticles are typically made of 
chemically stable metals, metal oxides or carbon in various forms. The use of particles of nanometer dimension 
was first continuously studied by a research group at the Argonne National Laboratory a decade ago. S. Choi [1] 
in 1995 was probably the first one who called the fluids with particles of nanometer dimensions “nanofluids”. 
He showed substantial augmentation of heat transported in suspensions of copper or aluminum nanoparticles in 
water and other liquids. Compared with suspended particles of millimeter or micrometer dimensions, nanofluids 
show better stability and rheological properties, dramatically higher thermal conductivities and no penalty in 
pressure drop. Several published literatures have mainly focused on the prediction and measurement techniques 
in order to evaluate the thermal conductivity of nanofluid. It is noticeable that only a few papers have discussed 
the convective heat transfer of nanofluids, including the experimental and theoretical investigation.  

A numerical study of natural convection of copper-water nanofluide in a two dimensional enclosure was 
conducted by Khanafer et al. [2]. The nanofluid in the enclosure was assumed to be in single phase. It was found 
in any given Grashof number, heat transfer in the enclosure increased with the volumetric fraction of the copper 
nanoparticles in water. Lee et al. [3] measured the thermal conductivity of Al2O3 water and Cu-water nanofluids 
and indicated that the thermal conductivity of nanofluids increases with solid volume fraction. He concluded 
that any new models of nanofluide thermal conductivity should contain the effect of surface area and structure 
dependent behavior as well as the size effect. Xie et al. [4] added spherical and cylindrical shaped nano sized 
SiC particles to water and Ethylene Glycol, separately and found that cylindrical nanoparticles increased thermal 
conductivity more than spherical ones. The dependence of thermal conductivity of nanoparticles-fluid mixture 
was estimated by Xie et al. [5]. Some of the theoretical and experimental studies have been reported on convec-
tive heat transfer coefficient [6]-[9].  

Sandeep Naramgari and C. Sulochana [10] analyzed the momentum and heat transfer behavior of MHD na-
nofluid embedded with conducting dust particles past a stretching surface in the presence of volume fraction of 
dust particles. They solved equations numerically using Runge-Kutta based shooting technique and showed that 
the increase in the interaction between the fluid and particle phase enhanced the heat transfer rate and reduced 
the friction factor. Nader Ben-Cheikh et al. [11] studied natural convection in a square enclosure filled with a 
water based nanofluid (water with Ag, Cu, Al2O3 or TiO2 nanoparticles) with non-uniform (sinusoidal) temper-
ature distribution maintained at the bottom wall. An accurate finite volume scheme along with a multi-grid tech-
nique is devised for the purpose of solution of the governing equations. Tiwari et al. [12] numerically investi-
gated the behavior of copper-water nanofluid in a two sided lid-driven differentially heated cavity. They consi-
dered different cases characterized by the direction of movement of walls and found that both the Richardson 
number and direction of moving walls influenced the fluid flow and thermal behavior. Yadil et al. [13] study the 
Cu/Water nanofluids filled baffled square cavity.  

The effects of Rayleigh number, volume fraction and partitions location on the average Nusselt number are 
studied. I.El Bouihi and R. Sehaqui [14] she simulate the flow features of nanofluids for a range of solid volume 
fraction χ and a sinusoidal thermal boundary condition, and we obtained correlations of heat transfer in enclo-
sures for two different thermal boundary conditions on the left wall. Ami-Nossadati and Ghasemi [15] studied 
natural convection cooling of a localized heat source at the bottom of a nanofluid filled enclosure. Ogut [16] in-
vestigated natural convection of water-based nanofluids in an inclined enclosure with a heat source using the 
expression for calculating the effective thermal conductivity of solid-liquid mixtures proposed by Yu and Choi 
[17]. Ghasemi and Aminossadati [18] considered periodic natural convection in a nanofluid filled enclosure with 
oscillating heat flux. Non-uniform heating of surfaces in buoyancy driven flow in a cavity has significant effect 
of the flow and heat transfer characteristics and finds applications in various areas such as crystal growth in liq-
uids, energy storage, geophysics, solar distillers and others. In a relatively recent study, Sarris et al. [19] re-
ported that the sinusoidal wall temperature variation produced uniform melting of materials such as glass in their 
detailed study on the effect of sinusoidal top wall temperature variations in a natural convection within a square 
enclosure where the other walls are insulated. Corcione [20] studied natural convection in an air filled rectangu-
lar enclosure heated from below and cooled from above for a variety of thermal boundary conditions at the side 
walls. Roy and Basak [21] studied numerically natural convection flows in a square cavity with non-uniformly 
(sinusoidal) heated wall(s) using the finite element method. The bottom wall and one vertical wall were heated 
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(uniformly and non-uniformly) and the top wall was insulated while the other vertical wall was cooled by means 
of a constant temperature bath. Sathiyamoorthy et al. [22] investigated steady natural convection flows in a 
square cavity with linearly heated side wall(s). 

In order to optimize and improve heat transfer by natural convection in closed square cavity. Although exten-
sive research has been given to cases of rectangular cavity filled nanofluid, few studies have focused on the 
study, theoretical or numerical discretizations high order (≥2). The numerical study of systems of equations in 
the heat transfer area is usually treated by various methods, sometimes numérical classics like Finite Elements 
(FE), Volume Finite (VF) and Finite Differences (DF). or using some software adapted as “FLUENT”. To solve 
fluid mechanics problems such as conductive heat transfer, convective or mixed into regular geometries. 

More specific order four schemes have been used to solve the Navier-Stokes in enclosures without consider-
ing the energy equation by Ecran Erturk et C. Gokcol [2]. The objective of this work is to develop a new method 
for solving heat transfer equations in convection. The new method is a Fourth Order Compact. This work aims 
to show the interest of the method and understand the effect of the presence of nanofluids in closed square sys-
tems on the natural convection mechanism. 

2. Mathematical Formulation 
Consider a square cavity filled with a nanofluid. The vertical walls are assumed to be insulated, non-conducting, 
and impermeable to mass transfer. The horizontal walls are differentially heated, the low is maintained at hot 
condition (sinusoidal) when the high one is cold (Figure 1). The nanofluid in the enclosure is Newtonian, in-
compressible, and laminar. The nanoparticles are assumed to have a uniform shape and size. Moreover, it is as-
sumed that both the fluid phase and nanoparticles are in thermal equilibrium state and they flow at the same ve-
locity. The thermophysical properties of the nanofluid are assumed to be constant except for the density varia-
tion in the buoyancy force, which is based on the Boussinesq approximation. 

We have considered the continuity, momentum and energy equations for a Newtonian, Fourier constant prop-
erty fluid governing an unsteady, two-dimensional flow. It is further assumed that radiation heat transfer among 
sides is negligible with respect to other modes of heat transfer. Under the assumption of constant thermal prop-
erties, the Navier-Stokes equations for an unsteady, incompressible, two-dimensional flow are:  

Continuity equation: 

0u v
x y
∂ ∂

+ =
∂ ∂

                                         (1) 

x-momentum equation: 
 

 
Figure 1. Physical model the coordinate system.                      
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,0 2nf nf
u u u Pu v u
t x y x

ρ µ
 ∂ ∂ ∂ ∂

+ + = − + ∆ ∂ ∂ ∂ ∂ 
                             (2) 

y-momentum equation: 

( ),0 2 1nf nf s s f f
v v v Pu v v g T
t x y y

ρ µ χβ ρ χ ρ β
 ∂ ∂ ∂ ∂  + + = − + ∆ + + − ⋅   ∂ ∂ ∂ ∂ 

                   (3) 

Energy equation: 

( )2nf
T T Tu v T
t x y

α∂ ∂ ∂
+ + = ∆

∂ ∂ ∂
                                 (4) 

where 
( )

2 2

2 2 2 and .
κ

α
ρ

∂ ∂
∆ = + =

∂ ∂
eff

nf
p nf

x y C
 

The viscosity of the nanofluid can be estimated with the existing relations for the two-phase mixture. The eq-
uation given by Brinkman [23] has been used as the relation for effective viscosity in this problem, as given by 
Xuan and Li [24] have experimentally measured the apparent viscosity of the transformer oil-water nanofluid 
and of the water-copper nanofluid in the temperature range of 20˚C - 50˚C. The experimental results reveal rela-
tively good agreement with Brinkman’s theory. The thermophysical properties of fluid and the solid phases are 
shown in Table 1. 

The effective density of the nanofluid at reference temperature is 

( )1nf s fρ χρ χ ρ= + −                                    (5) 

The heat capacitance of the nanofluid is expressed as Abu-Nada [25] and Khanafer et al. [2] 

( ) ( ) ( ) ( )1p p pnf s f
C C Cρ χ ρ χ ρ= + −                             (6) 

The effective thermal conductivity of the nanofluid is approximated by the Maxwell-Garnetts model [26] 

( ) ( )
( ) ( )

2 2

2
s f f snf

f s f f s

κ κ χ κ κκ
κ κ κ χ κ κ−

+ − −
=

+ +
                               (7) 

Equations (1)-(4) can be converted to the dimensionless forms by definition of the following parameters as: 

2 2

2

, , , , , , c

f f h cf f

f

T Tx y uH vH p tX Y U V P
H H T TH

H

τ θ
ν ν ρ ν

ν

−
= = = = = = =

−
 

( ) ( )3 3

2 ; andf h c f h c f
r

f ff

gH T T gH T T
Gr Ra P

β β ν
ν α αν

− −
= = =  

Hence, the governing equations of continuity, linear momentum and energy for unsteady laminar flow in 
Cartesian coordinates take the following dimensionless form: 
 

Table 1. Thermophysical properties of water and nanoparticles.                           

Physical properties Pure water Cu 

( )J kg KpC ⋅  4179 383 

( )3kg mρ  997.7 8933 

( )W m Kκ ⋅  0.613 400 

( )1Kβ −  2.1 × 10−4 1.67 × 10−5 
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0U V
X Y
∂ ∂

+ =
∂ ∂

                                    (8) 

,0 2nf nf
U U U Pu V U

X Y X
ρ µ

τ
∂ ∂ ∂ ∂ + + = − + ∆ ∂ ∂ ∂ ∂ 

                        (9) 

( )
,0 2

1s s f f
nf nf

f

V V V P RaU V V
X Y Y Pr

χβ ρ χ ρ β
ρ µ θ

τ β

 + −∂ ∂ ∂ ∂   + + = − + ∆ + ∂ ∂ ∂ ∂ 
           (10) 

( )2
nf

f r

U V
X Y P

αθ θ θ θ
τ α
∂ ∂ ∂

+ + = ∆
∂ ∂ ∂

                           (11) 

The enclosure boundary conditions consist of no-slip and no penetration walls, U = V = 0 on all four walls. 
The thermal boundary conditions on the bottom wall is such that ( )0 sin πY h Xθ θ= = = . The left and right ver-
tical walls are assumed to be insulated, non-conducting, and impermeable to mass transfer 

0 1

0
X XX X

θ θ

= =

∂ ∂
= =

∂ ∂
 and the bottom wall are at the cold temperature 1 0Yθ = =  

The governing equations for the present study in ( ),ψ ω  formulation taking into the account the above men-
tioned assumptions are written in dimensionless form as: 

Kinematics equation: 
2 2

2 2X Y
ψ ω∂ Ψ ∂

+ = −
∂ ∂

                                (12) 

Vorticity equation:  

2 2

2 2
,0

nf

f nfY X X Y YX Y
µψ ω ψ ω ω ω θη

ν ρ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂       − = + +        ∂ ∂ ∂ ∂ ∂∂ ∂        

                  (13) 

where: 
( )

,0

1
.

χβ ρ χ ρ β
η

β ρ

 + − = s s f f

r f nf

Ra

P
 

Energy equation: 

2 2

2 2
nf

f rY X X Y P X Y
αθ θ θ θ
α

 ∂Ψ ∂ ∂Ψ ∂ ∂ ∂     − = +      ∂ ∂ ∂ ∂ ∂ ∂       
                      (14) 

Before turning to the application of the method of fourth order in the equations governing our problem we 
will combine Equations (12) and (13) in a condensed form by introducing a dummy variable Γ , which replace 
either the temperature θ  is the vorticity ω . 

2 2

2 2

T
Y X X Y YX Y
ψ ψ ε η

 ∂ ∂Γ ∂ ∂Γ ∂ Γ ∂ Γ ∂       − = + +        ∂ ∂ ∂ ∂ ∂∂ ∂        
                   (15) 

All these terms are listed in Table 2. 
Dimensionless boundary conditions for ( ),ψ ω  are: 
For: 0, 1X X= =  and 0 1Y≤ ≤ , 0ψ =   
For: 0, 1Y Y= =  and 0 1X≤ ≤ , 0ψ = . 
For vorcicite Störtkuh et al. [27] have presented an analytical asymptotic solution near the corners of cavity 

and using finite element bilinear shape functions they also have presented a singularity-removed boundary con-
dition for vorticity at the corner points as well as at the wall points. For the boundary conditions, in both of the 
numerical methods described above we follow Störtkuh et al. [27] and use the following expression for calcu-
lating vorticity values at the wall. 
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Table 2. Presentation of the different terms of the transport equation.                           

Quantities transported Γ  η  ε  

Vorticity Equation ω  ( )
,0

1s s f f

r f nf

Ra
P

χβ ρ χ ρ β
β ρ

 + −   
,0

nf

f nf

µ
ν ρ

 

Equation of Energy θ  0 
nf

f rP
α
α

 

 

2

. . .. . .
1 11 11 1 24 2 293 2 2
1 11 1 1 1
4 4

V
hh

ψ ω

         + = −−   ∆∆          

                      (16) 

For corner points, we again follow Störtkuh et al. [27] and use the following expression for calculating the 
vorticity values: 

2

. . . . . .
1 11 1. 2 . 1
2 29 23

1 1 1. 1 .
2 2 4

V
hh

ψ ω

   
   
   − + = −    ∆∆    
   
   

                      (17) 

where V is the speed of the wall in our case which is equal to 0 for the four stationary walls. 
In explicit notation, for the wall points shown in Figure 2(a), the vorticity is calculated as the following: 

( ) ( )2

3 1 2 2 4
82b d e f a c d e fh

ω ψ ψ ψ ω ω ω ω ω= − + + − + + + +
∆

                 (18) 

Similarly, for the corner points also shown in Figure 2(b), the vorticity is calculated as the following: 

( )2

3 1 2 2
42b f c e fh

ω ψ ω ω ω= − − + +
∆

                         (19) 

The reader is referred to Störtkuh et al. [27] for details on the boundary conditions. 
The local and averaged heat transfer rates at the bottom hot wall of the cavity are presented by means of the 

local and averaged Nusselt numbers, Nu and Nu , which are, respectively determined as follows:  

0

nf nf

Yf f

h L k
Nu

k k Y
θ

=

  ∂
= = −   ∂ 

                               (20) 

1

0
0

dnf

Yf

k
Nu X

k Y
θ

=

   ∂
 = −   ∂  

∫                                (21) 

3. Method of the Fourth Order Compact 
3.1. Introduction 
High-Order Compact (HOC) formulations are becoming more popular in computational fluid dynamics (CFD) 
field of study. Compact formulations provide more accurate solutions in a compact stencil. In finite differences, 
a standard three-point discretization provides second-order spatial accuracy and this type of discretization is 
very widely used. When a high-order spatial discretization is desired, i.e. fourth-order accuracy, then a five- 
point discretization has to be used. However, in a five point discretization there is a complexity in handling the 
points near the boundaries. High-order compact schemes provide fourth-order spatial accuracy in a 3 × 3 stencil  
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(a)                                (b) 

Figure 2. Grid points at the wall and at the corner: (a) wall points and 
(b) corner points.                                                 

 
and this type of compact formulations does not have the complexity near the boundaries that a standard wide 
(five- point) fourth-order formulation would have. Dennis and Hudson [28], MacKinnon and Johnson [29], 
Gupta et al. [30], Spotz and Carey [31], Li et al. [32], have demonstrated the efficiency of the HOC schemes on 
the stream function and vorticity formulation of two dimensions. In the literature, it is possible to find numerous 
different types of iterative numerical methods for the momentum equations. These numerical methods, however, 
could not be easily used in HOC schemes because of the final form of the HOC formulations used in References 
[28]-[32]. This fact might be counted as a disadvantage of HOC formulations that the coding stage is rather 
complex due to the resulting stencil used in these studies. It would be very useful if any numerical method for 
the solution of momentum equations described in books and papers could be easily applied to HOC formula-
tions. E. Erturk and C. Gokcol [33] present a new Fourth-Order Compact Formulation. The difference of this 
formulation with References [28]-[32] is not in the way that the Fourth-Order Compact scheme is obtained. The 
main difference, however, is in the way that the final forms of the equations are written. The main advantage of 
this formulation is that, any iterative numerical method used for Navier-Stokes equations, can be easily applied 
to this new FOC formulation, since the final form of the presented FOC formulation is in the same form with the 
Navier–Stokes equations. Moreover, if someone already has a second-order accurate ( )2O x∆  code for the so-
lution of conservation equations the mass and momentum, they can easily convert their existing code to fourth- 
order accuracy ( )4O x∆  by just adding some coefficients into their existing code. In this study, we will applied 
Using this new compact formulation, we have solved the conservation equations of mass, momentum and ener-
gy in square cavity at the Rayleigh number varies in the range 3 510 5 10Ra≤ ≤ ×  and for different solide vo-
lume fractions χ  of nanoparticles (Cu) is varied as 0% 10%χ≤ ≤ , taking water as a base fluid with a Prandtl 
number equal to ( )6.2Pr =  using a very fine grid mesh to demonstrate the efficiency of this new formulation. 

3.2. Principle Method of Fourth Order Compact 
We will use the equations of streamlines ψ , vorticity ω  and energy θ  dimensionless forms are given as 
follows: 

Stream function: 
2 2

2 2x y
ψ ψ ω∂ ∂

+ = −
∂ ∂

                                   (22) 

General equation of conservation: 

2 2

2 2y x x y yx y
ψ ψ θε η

      ∂ ∂Γ ∂ ∂Γ ∂ Γ ∂ Γ ∂   − = + +         ∂ ∂ ∂ ∂ ∂∂ ∂         
                    (23) 

For first and second-order derivatives the following discretizations are fourth-order accurate:  

( )
2 3

4
36x

x O x
x x

∂Φ ∆ ∂ Φ
= Φ − + ∆

∂ ∂
                             (24) 

( )
2 2 4

4
2 412xx

x O x
x x

∂ Φ ∆ ∂ Φ
= Φ − + ∆

∂ ∂
                            (25) 
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where xΦ  and xxΦ  are standard second-order central discretizations such that  

1 1

2
i i

x x
+ −Φ −Φ

Φ =
∆

                                  (26) 

1 1
2

2i i i
xx x

+ −Φ − Φ +Φ
Φ =

∆
                                (27) 

If we apply the discretizations in Equations (24) and (25) to Equations (22) and (23), we obtain the following 
equation 

( )
2 4 2 4

4 4
4 4 ,

12 12xx yy
x y O x y

x y
ψ ψψ ψ ω∆ ∂ ∆ ∂

+ − − + ∆ ∆ = −
∂ ∂

                     (28) 

( )

( )

2 4 2 4
4 4

4 4

2 3 2 3 2 3

3 3 3

2 3 2 3
4 2 2 4

3 3

,
12 12

6 6 6

, , ,
6 6

xx yy

y x x y x y y

x y

x y O x y
x y

y x x
y x x

y y O x x y y
y y

ε ε ε ε

ψ ψψ ψ ψ

θψ ηθ η

   ∆ ∂ Γ ∆ ∂ Γ
Γ + Γ − − + ∆ ∆   

∂ ∂   
     ∆ ∂ ∆ ∂ Γ ∆ ∂

= Γ − Γ − Γ − + Γ     
∂ ∂ ∂     

   ∆ ∂ Γ ∆ ∂
+ − + + ∆ ∆ ∆ ∆   

∂ ∂   

                 (29) 

In these equations we have third and fourth derivatives ( )3 3 4 4 3 3 4 4, ,x x y et y∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  of stream func-
tion and general equation of conservation bringing together the equations of vorticity and energy. In order to 
find an expression for these derivatives we use Equations (22) and (23). 

For example, when we take the first and second x-derivative of the stream function Equation (22) we obtain 
3 3

3 2xx x y
ψ ω ψ∂ ∂ ∂

= − −
∂∂ ∂ ∂

                                 (30) 

4 2 4

4 2 2 2x x x y
ψ ω ψ∂ ∂ ∂

= − −
∂ ∂ ∂ ∂

                                (31) 

And also, by taking the first and second y-derivative of the stream function Equation (22) we obtain 
3 3

3 2yy y x
ψ ω ψ∂ ∂ ∂

= − −
∂∂ ∂ ∂

                                (32) 

4 2 4

4 2 2 2y y y x
ψ ω ψ∂ ∂ ∂

= − −
∂ ∂ ∂ ∂

                                (33) 

Using standard second-order central discretizations given in Table 3, these equations can be written as 

( )
3

2 2
3 ,x xyy O x y

x
ψ ω ψ∂

= − − + ∆ ∆
∂

                              (34) 

( )
4

2 2
4 ,xx xxyy O x y

x
ψ ω ψ∂

= − − + ∆ ∆
∂

                             (35) 

( )
3

2 2
3 ,y yxx O x y

y
ψ ω ψ∂

= − − + ∆ ∆
∂

                              (36) 

( )
4

2 2
4 ,yy xxyy O x y

y
ψ ω ψ∂

= − − + ∆ ∆
∂

                             (37) 

When we substitute Equations (35) and (37) into Equation (28) we obtain the following finite difference equ-
ation. 
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Table 3. Standard second-order central discretizations.                                    

Derivations Discretizations 

xΦ  1, 1,

2
i j i j

x
+ −Φ −Φ

∆
 

yΦ  , 1 , 1

2
i j i j

y
+ −Φ −Φ
∆

 

xxΦ  1, , 1,
2

2i j i j i j

x
+ −Φ − Φ +Φ

∆
 

yyΦ  , 1 , , 1
2

2i j i j i j

y
+ −Φ − Φ +Φ

∆
 

xyΦ  1, 1 1, 1 1, 1 1, 1

4
i j i j i j i j

x y
+ + − + + − − −Φ −Φ −Φ +Φ

∆ ∆
 

xxyΦ  1, 1 , 1 1, 1 1, 1 , 1 1, 1
2

2 2
2

i j i j i j i j i j i j

x y
+ + + − + + − − − −Φ − Φ +Φ −Φ + Φ −Φ

∆ ∆
 

xyyΦ  1, 1 1, 1, 1 1, 1 1, 1, 1
2

2 2
2

i j i j i j i j i j i j

x y
+ + + + − − + − − −Φ − Φ +Φ −Φ − Φ +Φ

∆ ∆
 

xxyyΦ  1, 1 , 1 1, 1 1, , 1, 1, 1 , 1 1, 1
2 2

2 2 4 2 2i j i j i j i j i j i j i j i j i j

x y
+ + + − + + − + − − − −Φ − Φ +Φ − Φ + Φ − Φ +Φ − Φ +Φ

∆ ∆
 

 

( )
2 2 2 2

4 2 2 4, , ,
12 12 12 12xx yy xx yy xxyy
x y x y O x x y yω ω ω ψ

 ∆ ∆ ∆ ∆
Ψ +Ψ = − − − − + + ∆ ∆ ∆ ∆ 

 
         (38) 

We note that the solution of Equation (38) is also a solution to stream function Equation (22) with fourth-or- 
der spatial accuracy. Therefore, if we numerically solve Equation (38), the solution we obtain will satisfy the 
stream function equation up to fourth order accuracy. 

In order to obtain a fourth-order approximation for the vorticity equation and energy (23), we follow the same 
procedure. When we take the first and second derivatives of the general equation of conservation (23) with re-
spect to x- and y-coordinates we obtain: 

3 2 2 2 2 2 3

3 2 2 2

1 1 1 1
x y x y y x x y x yx x x x y
ψ ψ ψ ψ η θ

ε ε ε ε ε
∂ Γ ∂ ∂Γ ∂ ∂ Γ ∂ ∂Γ ∂ ∂ Γ ∂ ∂ Γ

= + − − − −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂

            (39) 

4 3 2 2 2 2 3 3

4 2 2 2 3 3

2 2 2 2 3 3 4

2 2 2 2 2 2

1 1 1 1 1

1 1 1

x x y x y y yx x y x x x x

x y x y xx x x y x y x y

ψ ψ ψ ψ ψ
ε ε ε ε ε

ψ ψ ψ η θ
ε ε ε ε

∂ Γ ∂ ∂Γ ∂ ∂ Γ ∂ ∂ Γ ∂ ∂ Γ ∂ ∂Γ
= + + + −

∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ Γ ∂ ∂ Γ ∂ ∂ Γ ∂ ∂ Γ
− − − − −

∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

             (40) 

3 2 2 2 2 2 3

3 2 2 2

1 1 1 1
x y x y x y y x x yy y y x y

ψ ψ ψ ψ η θ
ε ε ε ε ε

∂ Γ ∂ ∂Γ ∂ ∂ Γ ∂ ∂Γ ∂ ∂ Γ ∂ ∂ Γ
= + − − − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂
            (41) 

4 3 2 2 2 2 2 2 3

4 3 2 2 2 2

2 2 2 2 3 3 4

2 2 3 2 2 2

1 1 1 1 1

1 1 1

x x y x y x y yy y y y y x y

x y x y xy y y x y x y

ψ ψ ψ ψ ψ
ε ε ε ε ε

ψ ψ ψ η θ
ε ε ε ε

∂ Γ ∂ ∂Γ ∂ ∂ Γ ∂ ∂ Γ ∂ ∂ Γ ∂ ∂Γ
= + + + −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ Γ ∂ ∂ Γ ∂ ∂ Γ ∂ ∂ Γ
− − − − −

∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂

            (42) 

If we substitute Equations (39) and (41) for the third derivatives of the general equation of conservation and 
into Equations (29), (40) and (42) and also if we substitute Equations (34) and (36), for the third derivatives of 
stream function into Equations (29), (40) and (42) and finally, if we substitute Equations (40) and (42) for the 
fourth derivatives of the general equation of conservation into Equation (29), then we obtain the following:  
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2 2 2 2

2 2

2 2 2 2 2

2

2 2 2

2 2 2

1 1 1 1
6 6 12 12

1 1 1 1 1
12 12 12 12 12

1 1 1 1
12 12 12

xx yy xy xx xy yy y y xx x x yy

y x x y xxy x xyy y y xy x

x yy x y xx y x xy y

x y x y

x y x y x

y x y x

ψ ψ ψ ψ ψ ψ
ε ε ε ε

ψ ψ ψ ψ ψ ψ
ε ε ε ε ε

ψ ψ ψ ψ ψ ψ
εε ε ε

∆ ∆ ∆ ∆
Γ + Γ − Γ + Γ + Γ + Γ

   ∆ ∆ ∆ ∆ ∆
= Γ − Γ + + Γ − + Γ − Γ   

   
∆ ∆ ∆ ∆

+ Γ + Γ − Γ +

( )

2 2

2 2 2 2 2 2

2

2 2 2 2
4 2 2 4

1

12 12
1 1 1 1

12 12 6 6 12 12
1 thrust , ,

12 12 12 12

y xyy

x xxy xx xy yy xy x y xy

x y xxyy y

y

x y x y x y

x y x y O x x y y

ψ

ψ ψ ψ ψ ψ
ε ε ε ε

η θ η
ε

 ∆
+ Γ 

 
   ∆ ∆ ∆ ∆ ∆ ∆

− + Γ − Γ + Γ + + Γ   
   
   ∆ ∆ ∆ ∆

− − Γ Γ − + Γ − + ⋅ + ∆ ∆ ∆ ∆    ϒ   

     (43) 

where:  
2 2 2

2 2 2

1 1
2
1 1

2 2 2 2
2

2
1 1 1

1thrust
12 12 12

1 1
12 12 12 12

xy y x yy yy y

y xy xxy

y y x

x y x y

ψ θ ψ θ ψ θ

ψ θ θ

 ϒ ϒ ϒ∆ ∆ ∆
= + − − 
ϒ ϒ ϒϒ 
   ϒ∆ ∆ ∆ ∆

+ − − −   ϒ ϒϒ   

 

and 1 2
,0

; .
µ α

ν ρ α
ϒ = ϒ =nf nf

f nf f rP
  

Again we note that the solution of Equation (43) satisfy the vorticity and energy Equation (23) with fourth- 
order accuracy.  

As the final form of our FOC scheme, we prefer to write Equations (38) and (43) as 

xx yy Aψ ψ ω+ = − +                                    (44) 

( ) ( ) ( ) ( )
1

1 1xx yy y x x y yB C D E Fηε ε ψ ψ θ
 

+ Γ + + Γ = + Γ − + Γ + − + ϒ 
         (45) 

where 
2 2 2 2

12 12 12 12xx yy xxyy
x y x yA ω ω

 ∆ ∆ ∆ ∆
= − − − + Ψ 

 
 

2 2

2

1 1
6 12xy y y
x xB

ε ε
∆ ∆

= − Ψ + Ψ Ψ  

2 2

2

1 1
6 12xy x x
y yC

ε ε
∆ ∆

= Ψ + Ψ Ψ  

2 2 2 21 1
12 12 12 12xxy y xy x yy
x y x yD

ε ε
 ∆ ∆ ∆ ∆

= + Ψ − Ψ Ψ + Ψ Ψ 
 

 

2 2 2 21 1
12 12 12 12xyy y xx x xy
x y x yE

ε ε
 ∆ ∆ ∆ ∆

= + Ψ − Ψ Ψ + Ψ Ψ 
 

 

2 2 2 2 2 2

2 2 2 2 2 2

1
12 12 12 12 6 6

1 1 thrust
12 12 12 12 12 12

ψ ψ ψ ψ
ε

ψ ψ η
ε ε

   ∆ ∆ ∆ ∆ ∆ ∆
= + Γ − + Γ − Γ + Γ   
   
     ∆ ∆ ∆ ∆ ∆ ∆

+ + Γ − − Γ Γ − + Γ + ⋅     
     

y xyy x xxy xx xy yy xy

x y xy x y xxyy

x y x y x yF

x y x y x y
            (46) 

We note that the finite difference Equations (44) and (45) are fourth-order accurate ( )4 2 2 4, ,O x x y y∆ ∆ ∆ ∆  
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approximation of the stream function, vorticity and energy Equations (22) and (23). In Equations (44) and (45), 
however, if A, B, C, D, E and F are chosen to be equal to 0 then the finite difference Equations (44) and (45) 
simply become 

xx yyψ ψ ω+ = −                                     (47) 

1
xx yy y x x y y

ηε ε ψ ψ θΓ + Γ = ⋅Γ − ⋅Γ −
ϒ

                        (48) 

Equations (47) and (48) are the standard second-order accurate ( )( )2 2,O x y∆ ∆  approximation of the stream-  

function and the general equation of conservation (22) and (23). When we use Equations (44) and (45) for the 
numerical solution of the stream function and general equation of conservation, we can easily switch between 
second and fourth-order accuracy just by using homogeneous values for the coefficients A, B, C, D, E and F or 
by using the expressions defined in Equation (46) in the code. 

We note that the numerical solutions of Equations (44) and (45), strictly provided that second-order discreti-
zations in Table 3 are used and also strictly provided that a uniform grid mesh with and is used, are fourth-order 
accurate to streamfunction and the general equation of conservation (21) and (22). The only difference between 
Equations (44) and (45) and Equations (22) and (23) are the coefficients A, B, C, D, E and F. So these equations 
are of the same form, therefore, all the iterative numerical methods (such as SOR, ADI, factorization schemes, 
pseudo time iterations, etc.) used to solve stream-function, vorticity and energy Equations (22) and (23) can also 
be easily applied to fourth-order Equations (44) and (45). In our work we apply the ADI method on the equa-
tions of 4th order. 

As a measure of convergence to the steady state, during the iterations we monitored three residual parameters. 
The first residual parameter, RES1, is defined as the maximum absolute residual of the finite difference equa-
tions of steady stream function and general Equations (44) and (45). These are, respectively, given as 

1 1 1 1 1 1
1, , 1, , 1 , , 1 1 1

, ,2 2

2 2
1 max

n n n n n n
i j i j i j i j i j i j n n

i j i jRES A
x yψ

ψ ψ ψ ψ ψ ψ
ω

+ + + + + +
− + − + + +

 − + − +
 = + + −
 ∆ ∆ 

        (49) 

( ) ( )
1 1 1 1 1 1
1, , 1, , 1 , , 11 1

, ,2 2

1 1 1 1 1
, 1 , 1 1, 1, 1, 1,1

,

2 2
1 max 1 1

2 2

n n n n n n
i j i j i j i j i j i jn n

i j i j

n n n n n n
i j i j i j i j i j i jn

i j

RES B C
x y

D
y x

ε ε

ψ ψ ψ ψ

+ + + + + +
− + − ++ +

Γ

+ + + + + +
+ − + − + −+

    Γ − Γ + Γ Γ − Γ + Γ
= + + +       ∆ ∆   

  − Γ − Γ −
− + +    ∆ ∆  

1 1 1 1 1
, 1 , 1 , 1 , 11 1

, ,
12 2 2

n n n n
i j i j i j i jn n

i j i jE F
x y y

θ θη+ + + +
+ − + −+ +

    Γ − Γ −
+ + −         ∆ ∆ ϒ ∆     

(50) 

The magnitude of RES1 is an indication of the degree to which the solution has converged to steady state. In 
the limit RES1 would be zero. The second residual parameter, RES2, is defined as the maximum absolute dif-
ference between two iteration steps in the stream function, vorticity and energy variables. These are, respective-
ly, given as 

( )1
, ,2 max n n

i j i jRES ψ ψ ψ+= −                               (51) 

( )1
, ,2 max n n

i j i jRES +
Γ = Γ −Γ                               (52) 

RES2 gives an indication of the significant digit on which the code is iterating. The third residual parameter, 
RES3, is similar to RES2, except that it is normalized by the representative value at the previous time step. This 
then provides an indication of the maximum percent change in ψ  and Γ  in each iteration step. RES3 is de-
fined as 

1
, ,

1
,

3 max
n n
i j i j

n
i j

RES ψ

ψ ψ
ψ

+

+

 −
 =
 
 

                                (53) 
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1
, ,

1
,

3 max
n n
i j i j

n
i j

RES
+

Γ +

 Γ −Γ
 =
 Γ 

                                (54) 

In our calculations, for all Rayleigh numbers we considered that convergence was achieved when both  
61 10RES ψ
−≤  and 61 10RES −

Γ ≤  were achieved. Such a low value was chosen to ensure the accuracy of the 
solution. At these convergence levels, the second residual parameters were in the order of 102 10RES ψ

−≤  and 
112 10RES −

Γ ≤ , which means that the stream function, vorticity and energy variables are accurate to the 10th and 
9th digit accuracy, respectively, at a grid point and even more accurate at the rest of the grids. In addition, at 
these convergence levels the third residual parameters were in the order of 103 10RES ψ

−≤  and 93 10RES −
Γ ≤ , 

which means that the stream function, vorticity and energy variables are changing with 10% - 9% and 10% - 8% 
of their values, respectively, in an iteration step at a grid point and even with less percentage at the rest of the 
grids. These very low residuals ensure that our solutions are indeed very accurate. 

4. Results and Discussion  
In the present grid independence test, the Prandtl number is set to Pr = 6.2 (pure water). The nanoparticles are 
chosen to be copper (Cu) with a solid volume fraction 0.1χ =  and a Rayleigh number Ra = 105. Numerical 
computations have been carried on five different grid sizes 32 × 32, 42 × 42, 62 × 62, 82 × 82 and 102 × 102 
grid sizes. Table 4 regroups the values of the averaged Nusselt number through the hot wall and the maximum 
value of the stream function. Uniform grid has been used for all the computations. The distribution of the 
u-velocity in the vertical mid-plane and v-velocity in the horizontal mid-plane are shown in Figure 3. It is ob-
served that the curves overlap with each other for 82 × 82 and 102 × 102. So a grid number of 82 × 82 is chosen 
for further computation. 

Our code has been tested for natural convection fluid flows in differentially heated cavities and in Rayleigh- 
Bénard configuration for Rayleigh numbers between 103 and 106 (Table 5) and gave excellent results (see ref. 
[12] [14] [34]-[36]). 
 

  
Figure 3. Velocity profiles at mid-sections of the cavity for various meshes sizes (Ra = 105 and χ = 0.1).                     
 
Table 4. Grid independency results for water-Cu, 510Ra =  and 10%χ = .                                           

Grid 32 × 32 42 × 42 62 × 62 82 × 82 102 × 102 

Nu  4.7357 4.6657 4.6072 4.5848 4.5741 

maxΨ  2.06977 2.0668 2.0621 2.0593 2.0593 
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Table 5. Comparaison between the present work and other studies for Nu .                                           

 310Ra =  410Ra =  510Ra =  610Ra =  

G.de Val Davis [34] 1.118 2.243 4.519 8.799 

Markatos and perikleous [35] 1.108 2.201 4.430 8.754 

G.V.Hadjisophcleous et al. [36] 1.141 2.290 4.964 10.390 

R.K. Tiwari, M.K. Das [12] 1.087 2.195 4.450 8.803 

I. El Bouihi and R. Sehaqui [14] 1.042 2.024 4.520 8.978 

Present work 1.012 2.214 4.103 8.293 

Difference with I. El Bouihi % 2.87 9.38 9.22 7.62 

 
In this section, the nanofluid-filled enclosure is studied for a range of solid volume fraction 0% 10%χ≤ ≤  

and the Rayleigh number varies from 103 to 105. For all simulations the considered base fluid is water (Pr = 6.2). 
In Figure 4, we present the streamlines (top) and isotherms (bottom) for 103 ≤ Ra ≤ 105, for the case of a water- 
Cu nanofluid and pure water. The value of solid volume fraction is set to 0.04χ = . Figure 5 represents the 
same physical quantities but for a volume fraction value of 0.1χ = . Due to the temperature distribution im-
posed at the bottom wall and to the boundary conditions on vertical walls, we observe a symmetry behavior in 
both the streamlines and in the contour maps of the isotherms. We can see that whatever the Rayleigh number 
and value of solid volume fraction, the flow is mainly composed of two counter-rotating circulating cells.  

Figure 6 presents the velocity profiles V(X) and U(Y) along the mid-section of the enclosure X = 0.5 and Y = 
0.5 for different values of χ and is in good concordance with the fact that the nanofluid moves slower than a pure 
water. Indeed, for Ra = 103, the deviation (relative to χ = 0) between the maximum values of vertical velocity is 

max 18.63%V∆ =  for χ = 4% and max 38.77%V∆ =  for χ = 10%. By increasing the Rayleigh number, these devia-
tions decrease. For Ra = 5 × 104 and Ra = 105 these deviations are ( )max 0.04 1.47%V∆ = , ( )max 0.1 22.01%V∆ = , 

( )max 0.04 2.08%V∆ =  and ( )max 0.1 8.73%V∆ =  respectively. As far as the temperature distribution is con-
cerned, clear differences are observed in the isotherm contour plots compared to the case χ = 0. These differenc-
es are accentuated as the solid volume fraction increases. These differences mean that the presence of nanopar-
ticles affect especially the heat transfer rate through the enclosure.  

The heat transfer distribution through the hot wall is displayed in Figure 7 through the plotted lines of the local 
Nusselt number for different values of Ra. One can see that for all combinations of Ra and χ, the local Nusselt 
number behavior is symmetric with respect to the plane X = 0.5. For low Rayleigh numbers, (Ra = 5 × 103) and χ 
= 0, the transfer of heat through the hot wall is relatively low with a slight curvature at X = 0.5. This curvature is 
due to relatively higher intensity of the counter rotating cells represented by the highest value of maxψ  when χ = 
0. When χ increases to χ = 0.1, the curvature at the center disappears because the fluid velocity decreases. The 
heat transfer in this case is maximum at X = 0.5 and is higher due to the presence of nanoparticles whose thermal 
conductivity is much greater than that of water. The same phenomena are observed almost on the curves related to 
Ra = 5 × 104 and Ra = 5 × 105 with a maximum heat transfer in the vicinity of X = 0.25 and X = 0.75. For exam-
ple, for Ra = 5 × 104, the maximum Nusselt number value is Numax = 7.374 and is situated at both locations X = 
0.317 and X = 0.682 for χ = 0. For χ = 0.1, Numax = 10.394 and is located at X = 0.317 and X = 0.695. 

The variations of average Nusselt number (Nu) with Ra and χ are shown in Table 6. For Ra = 103, there is a 
substantial increase in Nu as χ is increased above 2%. In general, Nu increases with χ. When χ is 2%, the in-
crease is approximately 9.75%. When χ is 4%, the increase is approximately 19.51%. When χ is 8%, the in-
crease is above 42.07%. For Ra = 104, as χ is increased to 2%, an increase of 6.03% is observed. A heat transfer 
augmentation of above 27.63% is obtained for 8%χ =  compared to 0%χ =  or more is observed for differ-
ent Rayleigh number Ra. Thus, one can conclude that the Nusselt number increases with the increase of the vo-
lume fraction χ and Rayleigh number Ra. 

5. Conclusions  
In this study the heat transfer enhancement in a two dimensional enclosure filled with nanofluids is studied  
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310Ra =  

  

410Ra =  

  

510Ra =  

  

Figure 4. Streamlines and isotherms for the enclosure filled with water-Cu nanofluid (- - -), 0.04χ =  and pure water (—) 
at different Rayleigh numbers.                                                                               
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310Ra =  

  

410Ra =  

  

510Ra =  

  

Figure 5. Streamlines and isotherms for the enclosure filled with water-Cu nanofluid (- - -), 0.1χ =  and pure water (—) at 
different Rayleigh numbers.                                                                               
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Figure 6. Velocity profiles along the mid-plane for different Ra and different solid volume fractions (Water-Cu).              
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Figure 7. Local Nusselt number through the heated wall for different Ra and solid volume fractions (water-Cu).              
 

Table 6. Comparison of average Nusselt number Nu  for different Rayleigh number and various solid volume fractions.             

 ( )0%A χ =  ( )2%B χ =  100B A
A
−

×  ( )4%C χ =  100C A
A
−

×  ( )6%D χ =  100D A
A
−

×  ( )8%E χ =  100E A
A
−

×  

310Ra =  1.64 1.80 9.75 1.96 19.51 2.14 30.48 2.33 42.07 

35 10Ra = ×  1.73 1.88 8.67 2.04 17.91 2.21 27.74 2.39 38.15 

410Ra =  1.99 2.11 6.03 2.24 12.56 2.39 20.10 2.54 27.63 

45 10Ra = ×  4.42 4.75 7.46 5.09 15.15 5.46 23.52 5.86 32.57 

510Ra =  4.81 5.11 6.23 5.45 13.30 5.83 21.20 6.26 30.14 

55 10Ra = ×  6.42 6.73 4.82 7.16 11.52 7.67 19.47 8.22 28.03 

610Ra =  7.61 7.89 3.67 8.29 8.93 8.87 16.55 9.54 25.36 
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numerically. This study presented a new fourth-order compact formulation and investigated the effect of a sinu-
soidal thermal boundary condition, for different Rayleigh number Ra and volume fractions of nanoparticles. The 
flow and temperature fields are symmetric near the middle plane of the enclosure due to the imposed symmetry 
condition on the bottom wall boundary. From the results of this work, the following main conclusions may be 
drawn: 
• The fourth-order accurate compact formulation was developed and was in agree with previous studies. 
• Our numerical code has been validated for different Rayleigh number.  
• A comparative study illustrates that the suspended nanoparticles substantially increase the heat transfer rate 

with an increase in the nanoparticles volume fraction for different Rayleigh number Ra Rayleigh number. 
Moreover, the nanofluid flows as well as the cooper nanoparticles increase. 

In the near future, this study will be extended for different geometry studies and other types of base fluids and 
nanoparticles. 
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Nomenclature  
i  x-direction grid point 
j  y-direction grid point 
Cp  Specific heat capacity (J·K−1) 
g  Gravitational cceleration (m·s−2) 
h  ocal heat transfer coefficient (m−2·K−1) 
H  Height of cavity (m) 
qw  Heat flux (W·m−2) 
t  Dimensional time (s) 
τ  Non-dimensional time 
T  Temperature (K) 
p  pressure (pa)  
(x, y) Dimensionless Cartesian coordinates (m) 
u, v velocity components in x, y directions (m·s−1) 

Greek-Symbols  
α  Fluid thermal diffusivity (m2·s−1) 
β  Thermal expansion coefficient (K−1) 
ν  Kinematic viscosity (m2·s−1) 
ρ  Density (kg·m−3) 
μ  Dynamic viscosity (N·s·m−2) 
κ  Thermal conductivity (W·m−1·K−1) 
ψ  dimensional stream function  
θ  non-dimensional temperature 
ω  dimensionalvorticity 
χ  nanoparticle volume fraction 

Subscripts 
c cold wall 
eff effective 
h hot wall 
s solid 
f pure fluid 
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