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Abstract 
In the past, researchers have applied Bender’s decomposition to distribution problem and used 
feasibility constraint to speed up the performance of Bender’s decomposition. Further, the appli-
cation of Branch and Bound to single-stage multi-commodity single-period warehouse location 
problem (SSMCSPWLP) with strong constraints has shown that they are more effective. It was also 
shown in the previous research (in the context of Branch and Bound Methodology) that hybrid 
formulation for the single-stage single-period multi-commodity warehouse location problem 
yielded superior results. In this paper we apply Benders’ decomposition to strong and weak formu-
lations of single-stage multi-commodity multi-period warehouse location problem (SSMCMPWLP). 
As suggested in the previous literature we put feasibility constraints in the pure integer sub- 
problem to speed up the performance of Benders’ decomposition. We also develop an additional 
cut (constraint that is again added to pure integer sub-problem) and show that it further speeded 
up Benders’ Decomposition. This research led to the possibility of applying Benders’ Decomposi-
tion to the hybrid formulation of SSMCMPWLP in future. 
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1. Introduction and Literature Survey 
Warehouse location-allocation problem is a well-known real life problem encountered in the areas like supply 
chain of FMCG, FCI, fertilizer, and cement distribution system etc. So, the objective of the problem is to mi-
nimize the total cost of taking the goods from the manufacturing sites to the end customers and effectiveness of 
strong and weak formulation. All the commodities are produced at the manufacturers’ end and directly or indi-
rectly brought to the customer end. Large distances separate production and consumption centers, and therefore 
many warehouses are located at various locations between plants and markets. 

Warehouse is a building constructed as a part of supply chain for the storage of goods from plants to the mar-
ket. Not to store finished goods but it involves various value-added functions like consolidation, packing and 
shipment of orders to customers. All manufacturing facilities are not located close to market or customer so a 
warehouse location stage becomes essential. And thus warehouse location plays an important role in the supply 
chain management system. There may be more than one stage of the warehouses located between plants and the 
markets (multistage warehouse location problem). Consideration of minimal transportation cost and fixed cost 
thus is a key concern in the location allocation process of a warehouse, so transportation is done by the multi- 
period when the order is required. Also the capacity of the warehouse is also a matter of consideration while 
solving the problem. Here, we develop the strong and weak formulations for a single-stage multi-period multi- 
commodity warehouse location problem (SSMCMPWLP). Below the classifications of warehouse location 
problems researched upon are briefly described. 

Single Stage/Multi-Stage 
Single Stage refers to the problems where commodities are stored at a single stage between plants and mar-

kets while in the multi-stage problems commodities are stored at more than one stage. Figure 1 shows the 
schematic representation of single-stage multi-commodity distribution from plants to markets. 

Single Period/Multi-Period 
The problem which is developed for a single period ignoring the fluctuation demand and supply conditions 

within a period is a single-period problem whereas the multi-period problem deals with developing the problem 
over different periods with demand and supply fluctuating from one period to another. 

Single Commodity/Multi-Commodity 
When problem deals with a single commodity/product, it is a single-commodity problem otherwise multi- 

commodity distribution system. 
Un-Capacitated/Capacitated 
In un-capacitated problems the capacity of the warehouse is assumed to be infinite and in a capacitated prob-

lem it is known and fixed. However here the capacity of warehouse is a time-dependent factor as well as the 
demand and supply of particular time period for particular commodity are variable/dependent on previous time 
period and so is the capacity. 

Our problem is Multi-Commodity SSCWLP, in which facility location is considered at single stage, which 
has been attempted by many researchers. An overview of the work done in the field of facility allocation can be 
looked from the review work done by ReVelle & Eiselt [1]. Geoffrion & Graves [2], Sharma [3], Sharma [4] 
and Kouvelis et al. [5] have used weak formulation of the problem and not the strong formulations. Geoffrion & 
Graves [2] and Sharma [3] have attempted the Single Stage SSUWLP (Single Stage Un-Capacitated Warehouse 
location Problem) and they have given completely different formulations considering two different real life  

 

 
Figure 1. Multi-commodity distribution from plants to markets via warehouses. 
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problems. Keskin & Uster [6] have attempted a SSCWLP (with capacity limit at the manufacturing plant, not on 
the warehouse). Our problem is one where the fixed capacity of facility to be located is to be handled, i.e. CPLP. 
This type of problem has been attempted by various researchers in the past. The literature on CPLP as given by 
Francis & Goldstein [7], Salkin [8] is abundant. This type of problem is handled and solved by researchers by 
both the exact solution methods and heuristic approaches. The heuristics methods used here as used for Simple 
Plant Location Problem (SPLP) like ADD procedure given by Kuehn and Hamburger [9]. The ADD and DROP 
algorithms were tested by researchers such as Khumwala [10], Domschke & Drexl [11] and Jacobsen [12]. 

Sharma [3] solved the real life fertilizer distribution system problem using Benders’ Decomposition formu-
lating it as a mixed 0 - 1 integer linear program (MILP). The concept of strong and weak formulations as given by 
Sharma & Verma [13] also gave the hybrid formulations for the same problem. The proposal of multi-commod- 
ity problem formulation for given by Elson [14]. Capacitated plant location problem is also of interest to many 
researchers and many heuristic and exact approaches have been given for the same. Sharma & Agrawal [15] 
used vertical decomposition to solve the two staged capacitated warehouse location problem (TSCWLP) which 
was attempted by Keskin and Uster [6] using heuristic based scatter search algorithm. Some new strong formu-
lations of the two staged location problem were shown by Sharma & Namdeo [16]. Sharma et al. [17] have giv-
en the strong formulations of SSSPMCWLP and shown the effectiveness of strong over weak in terms of num-
ber of iterations using Branch and Bound solutions. They also developed the hybrid formulations for it to im-
prove the computational time. 

Benders Decomposition 
J.F. Benders devised an algorithm to deal with some perplexing variables i.e. those which when temporarily 

fixed makes the solving of the problem manageable. Benders showed that fixing the values of these variables 
reduces the given problem to an ordinary linear program, parameterized by the value of the perplexing variables 
vector. He proposed the cutting-plane algorithm for finding the optimal solution and also specifying the extreme 
values and set of the values of the variable fixed for which the solution remains optimal. 

Bender’s decomposition is a technique to solve huge mixed-variable programming problems. It is one of the 
types of Decomposition methods used to solve big problem by portioning them into several sub problems. This 
procedure is an iterative one and when converged gives the results. The sub problem is a dual LP problem, and 
the master problem is a pure IP problem i.e. continuous variables are not involved. Details of Benders’ Decom-
position method solving mixed 0 - 1 integer linear program can be found in Geoffrion & Graves [2] and Sharma 
[3]. 

Geoffrion & Graves [2] concluded in their paper the remarkable effectiveness of Bender’s Decomposition as a 
computational study for multi commodity warehouse location problems, the numeric results showed that only a 
few cuts are needed to find and verify a solution within one or two tenths of one percent of the global optimum. 
Also a key conclusion was the choice among the mathematical representations of the same problem and incor-
porating one that combines the many constraints describing the convex hull of a portion of the problem’s integer 
feasible solutions. The major capability of this method is that how the generated cuts can be used solve the mod-
ified version of the same problem and thus the termination of the procedure can be expected to be in fewer itera-
tions. All this was possible because of the ease in Bender’s approach which otherwise using branch & bound 
would not have been possible. Sharma [3] had also applied Bender’s decomposition to a distribution problem. In 
this feasibility constraints were included which greatly reduced the number of Bender’s iterations. Also without 
the feasibility constraints it was huge and cost ineffective and hence had to be terminated, the Bender’s cut once 
generated can be stored and used later, thus reducing the number of Bender’s iterations. Moreover, Sharma et al. 
[18] have proved that the Benders’ decomposition is more effective on strong formulation of SSCWLP as com-
pared to weak formulation in terms of number of iteration and Benders’ decomposition is more effective on 
weak formulation of SSCWLP in terms of execution time. 

2. Problem Formulation 
In this research work further development in the already existing work in warehouse location problem is done, 
formulated and solved for single stage single period multi commodity capacitated warehouse location problem. 
We have made the single time period to multi time period problem and solved for multiple periods to incorpo-
rate the fluctuating demand, supply and capacity of warehouse, which is the real time case. Like in the case of 
Food Corporation of India (FCI) takes food grains to markets via several levels of warehousing but here we con-
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sider just a single stage warehousing however for multiple periods and making optimal use of available re-
sources. Direct from plants to market transportation is economically is infeasible and costlier. Thus, supply 
chain manager’s task is the optimal distance wise and cost wise location of warehouses taking into consideration 
the fluctuating demand levels of various commodities market to market. For this decision making of warehouse 
location surveys are conducted and analysis is done by the decision makers. With each location site is associated 
a fixed cost and the warehouse capacity. Along with is the distance of the warehouse from plant to market called 
as the transportation cost per unit of commodity per commodity. The prime objective of the supply chain man-
agers is the optimized minimization of the two costs mentioned viz. fixed cost and transportation cost, keeping 
into consideration the demand fulfillment and thus we get our problem SSMPMCWLP. Sharma & Verma [10] 
formulated SSSCUCWLP with Strong and Hybrid formulations. A similar problem (SSSPMCWLP) has been 
attempted by Sharma et al. [17] using weak, strong and hybrid formulations for single period only; here we 
solve it using weak and strong formulations for multi period using the method of Benders’ Decomposition. Here 
strong and weak formulations will be used for mixed integer programming problem. We will solve with these 
formulations using the Benders’ Partitioning algorithm and try to get best results in terms of upper bound and 
number of iterations so that solving large sized problems in real life could become easier. Strong linking con-
straints termed as strong formulations and weak linking constraints termed as weak formulations highly affect 
the execution time of problem as seen in previous research works. It is expected that a strong formulation gives 
a better result as its search area is highly reduced as compared to that of weak formulation. The major advance-
ments in this work are the incorporation of feasibility constraint with SSMPMCWLP, an additional cut con-
straint and solving them by Benders’ Decomposition. So, basically this work combines the research gaps of 
three works. Since strong formulations take a large CPU time as shown by Sharma et al. [17] so it is expected to 
show similar results here also and thus it creates a path for using Hybrid formulations for the same problem. It is 
the amalgamation of the most efficient strong constraints with the weak constraints and the choice among which 
ones of strong to be added is done by simply hit and trial. Hybrid formulations carry the characteristics of both 
weak and strong constraints and are used to overcome the drawbacks of weak as well as strong and provide a 
highly effective observation in terms of number of iterations or computational time. However, we do not use the 
concept of hybrid formulations in this work but is of importance to have a knowledge about it as it hold the fu-
ture for this research work. 

Assumptions for the Problem 
1) Warehouse capacity known and limited. 
2) Capacity of plant for production and warehouse capacity enough to meet the market demands for different 

commodities at different times. 
3) Storage space for each type of commodity is assumed to be same and are interchangeable, practically vo-

lume of items are different and so space required varies but this is not considered. 
4) Assuming no shortage or ending inventory for any period of the problem under consideration. 
5) Capacity of warehouse, demand and supply all are terms of number of units of goods. 
MODEL 1: New Formulation for SSMCMPWLP 
Indices Used 
i: Set of the supply points (plants); 
j: Set of the potential warehouse points; 
k: Set of the markets; 
m: Set of the commodities; 
t: Set of time period from 1, , .T  
Definition of Constants 
Fj: Fixed cost of establishing and maintaining the warehouse at location “j”; 
Si,m,t: Supply capacity of plant “i” for commodity “m” in time period “t”; 
Dk,m,t: Demand for commodity “m” at market “k” in time period “t”;  
CAPj,t: Capacity of the warehouse at location “j” for all commodities (assumed that all the commodity are of 

same density and occupy same space in time period “t”; 
M: A very large number, here taken as two times the maximum supply or maximum warehouse capacity; 
CPWi,j,m: Cost of shipping one unit from plant “i” to warehouse “j” of the commodity “m”; 
CWMj,k,m: Cost of shipping one unit from warehouse “j” to market “k” for commodity “m”. 
Definition of Decision Variables 
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XPWi,j,m,t: Number of units shipped from plant “i” to warehouse “j” of the commodity type “m” in time period 
“t”; 

XWMj,k,m,t: Number of units shipped from warehouse “j” to market “k” of commodity type “m” in time period 
“t”; 

Yj: Binary variable which is 1 if it is decided to locate a warehouse at location “j” and 0 otherwise; 
Z: Total cost of transporting commodities from plants to warehouses, warehouses to demand points or mar-

kets and fixed cost of locating the warehouses. 
Problem P1 
Minimize     ( ) ( ), , , , , , , , , , , ,

, , , , , ,
i j m t i j m t j k m t j k m t j j

i j m t j k m t j
Z XPW CPW XWM CWM Y F= + +∗ ∗ ∗∑ ∑ ∑            (0) 

Subjected to 
( ), , , , ,

,
; , 1 , 0i j m t k m t

i j k
XP m t u mD tW →≥ ∀ ≥∑ ∑                                        (1) 

( ), , , , ,
,

; , , 2 , 0j k m t k m t
j k k

XWM jD m t u m t∀ → ≥≥∑ ∑                                     (2) 

( ) ( ), , , , , , ; , , Flow balance constraint 3 , ,i j m t j k m t
i k

j m t uXPW XW rsM j m t u= ∀ →∑ ∑           (3) 

( ) ( ), , , , , ; , , Supply Constraints 4 , , 0i j m t i m t
j

i m tXPW S u i m t− ≥ − ∀ → ≥∑                    (4) 

( ) ( ), , , , , ; , , Demand Constraints 5 , , 0j k m t k m t
j

k m t uXW k mM D t∀ →≥ ≥∑                   (5) 

( ) ( ), , , ,
,

; , Capacity Constraints 6 , 0i j m t j t
i m

XPW CAP j t u j t≥ →− ∀− ≥∑                      (6) 

, , , , , ,0;i j m tX i tW jP m≥ ∀                                (7a) 

, , , , , ,0;j k m tX j tM kW m≥ ∀                               (7b) 

( ), , , ,
,

; , 8 , 0i j m t j t j
i m

XPW CAP j t u jY t− ≥ − ∗ ∀ → ≥∑                                    (8) 

( ), , ,
,

; , 9 , 0i j m t j
i m

XPW M j t u jY t− ≥ − ∀ →∗ ≥∑                                       (9) 

( ), , , , , ; , , , 10 , , , 0j k m t k m t j j k m t u jXWM D Y k m t∗ ∀ → ≥≥                               (10) 

( ), , , , , ; , , , 11 , , , 0i j m t i m t j i j m t u iXPW S Y j m t− ≥ − ∀ → ≥∗                               (11) 

( )0,1 ;jY j= ∀                                                                (12) 

( ) ( ), , ,
,

Feasibility Cons; 0traint 13j t j k m t
j k m
CA t tY D uP ≥∗ →∀ ≥∑ ∑                       (13) 

where 
The objective function include the cost of transportation from plants to warehouse, the cost of transportation 

from warehouse to markets and the fixed cost associated with establishing a warehouse at a particular location. 
The constraints 1, 2 ensures that the meeting of demand at each point or total flow equal to total demand 

overall. Constraints 3 - 6 are the flow balance, meeting supply, meeting demand and not overflowing the capac-
ity of warehouse constraints respectively. Constraint 7 is non-negativity constraints. Constraint 8 is ensuring for 
the routing of commodity from plant to markets within the warehouse capacity. Constraint 9 is weak linking 
constraint. Constraint 10 is another linking constraint between demand at market to quantity shipped also ensur-
ing locating a warehouse only when the former happens. Constraint 11 is similar to 10 just with difference of 
linking the shipping quantity with the supply from plant. These two are strong constraints for the problem. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 , , 2 , , 4 , , , 5 , , , 6 , , 8 , , 9 , , 10 , , , , 11 , , , 13u m t u m t u i m t u k m t u j t u j t u j t u j k m t u i j mt u t  are dual 
positive variables and ( )3 , ,u j m t  is unrestricted dual variable associated with constraints 1, 2, 4, 5, 6, 8, 9, 10, 
11, 13 and 3 respectively. 

In the formulation of pure ILP feasibility constraint (Equation (13)) is also added for solving the problem as it 
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reduced the iterations greatly as found by Sharma [3]. The following additional cut constraint was added to pure 
ILP. This constraint endures that same “y” vector is not returned by pure ILP problem. Here “yp” is the solution 
vector of previous iteration. 

( ) ( ) ( ) ( ) 1
j j

f j y j f j yp j∗ ≥ ∗ +∑ ∑  Additional cut                    (14) 

3. Methodology for Benders’ Decomposition 
For the sake of completeness we describe the Benders’ decomposition here in brief. (Details can be seen in 
Sharma [3].) The problem SSCMCMPWLP is similar to the following general mix of 0 - 1 Integer Linear Pro-
gram (ILP). It is assumed that all matrices are of conformable dimensions. 

Problem P 
Min cx dy+                                     (15) 

s.t  
Ax b=                                        (16) 

Dx Ey f+ =                                     (17) 

x R∈                                        (18) 
( )0,1y∈                                       (19) 

for a given “y” the problem reduces to 
Problem 

Min cx                                        (20) 
s.t 

Ax b=                                       (16) 

Dx f Ey= −                                     (21) 

x R∈                                        (18) 
Dual of problem U_B_on_ P is: Assuming u to be dual variable of 16th and v to be dual variable of 21st equa-

tions. 
Problem D_U_B_on_P 

( )Max ub v f Ey+ −                                  (22) 

s.t 
  0uA vD+ ≤                                      (23) 

,u vuB                                        (24) 
It may be noted that we begin with a “y” vector (in our work we assume that “y” will always return feasible 

solution to problem U_B_on_P. hence the problem D_U_B_on_P will not be and thus we have the following 
constraint: unbounded 

( ) 0ub v f Ey+ − ≤                                   (25) 

Then we solve D_U_B_on_P to set values of u and v and we are able to build a constraint (25) we substitute 
for D_U_B_on_P for cx in P to get 

Problem P_ILP (Pure Integer Linear Program) 

( )( ){ },Min maxu v ub f Ey v dy+ − +  

s.t 
Equations (13) and (14) 
We set  

( )( ),maxu vmz ub f Ey v= + −  
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then for every extreme point (up, vp) of the D_U_B_on_P; we have 

( )( )p pmz u b f Ey v≥ + −  for all “p”                          (26) 

Since feasibility (13) and additional cut (14) are added to P_ILP, it ceases to give true lower bound. This is 
the modified Benders’ Decomposition. 

It may be noted that problem D_U_B_on_P gives an upper bound on problem P. Solving D_U_B_on_P gives 
an additional constraint (26) for problem P_ILP, when problem P_ILP is solved then it returns additional y vec-
tor for problem D_U_B_on_P. Thus, it can be easily seen that problem P_ILP gives a lower bound on problem P. 
Theoretically, it will be equal to best upper bound when all cuts of type (25) are included in problem P_ILP. We 
thus start with a feasible “y” vector solve dual of U_B_on_P, which returns additional constraint for problem 
P_ILP. This entire process is termed as one iteration. 

Then as P_ILP returns additional “y” vector procedure of Benders’ Decomposition is repeated. 
Problem DP1 
For a given value of Y dual is written as: 

( ) ( ) ( ){ }

( ){ } ( ){ } ( ) ( ){ }
( ) ( ){ } ( ) ( ){ }

( )

, , , , , ,
, , , ,

, , , ,
, , , ,

, ,
, , , ,

, ,
, , ,

max 1 , 2 , 4 , ,

5 , , 6 , 8 ,

9 , 10 , , ,

11

k m t k m t i m t
m t k m t k i m t

k m t j t j t j
k m t j t j t

j k m t j
j t j k m t

i m t j
j k m t

D u m t D u m t S u i m t

D u k m t CAP u j t CAP Y u j t

M Y u j t D Y u j k m t

S Y u


+ −



+ ∗ − ∗ − ∗ ∗

− ∗ ∗

   
∗ ∗ ∗   



− ∗



∗

−



∗



∗

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑

∑ ( ){ }, , ,j k m t


  

s.t. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) , , ,1 , 3 , 4 , , 6 , 8 , 9 , 11 , , , i j m tu m t u m t u i m t u j t u j t u j t CPWu j k m t+ ≤− − − − −  
( ) ( ) ( ) ( ) , , ,2 , 3 , 5 , , 10 , , , j k m tu m t u m t u k m t u j k m Mt CW≤− + −  

Pure Integer Linear Program (ILP) 

( ) ( )

( ){ } ( ){ } ( ){ }

( ) ( ){ } ( ) ( ){ }

( ) ( ){ }

, , , ,
, ,

, , , , ,
, , , , ,

,
, ,

, ,
, , , , ,

min max 1 , 2 ,

4 , , 5 , , 6 ,

8 , 9 ,

10 , , ,

y j j k m t k m t
j m t k m t k

i m t k m t j t
i m t k m t j t

j t j j
j t j t

k m t j
j k m t j k m

f y D u m t D u m t

S u i m t D u k m t CAP u j t

CAP Y u j t M Y u j t

D Y u j k m t

      + +    
  

∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗

 

− + −

− −

− −
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∑ ∑

∑ ( ) ( ){ }, ,
,

11 , , ,i m t j
t

S Y u j k m t




∗ ∗


∑
 

s.t. 

( ) ( ) ( ){ }

( ){ } ( ){ } ( ) ( ){ }
( ) ( ){ } ( ) ( ){ }

( )

, , , , , ,
, , , ,

, , , ,
, , , ,

, ,
, , , ,

, ,
, , ,

1 , 2 , 4 , ,

5 , , 6 , 8 ,

9 , 10 , , ,
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k m t k m t i m t
m t k m t k i m t
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i m t j
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D u m t D u m t S u i m t

D u k m t CAP u j t CAP Y u j t

M Y u j t D Y u j k m t

S Y u j k

    
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∗


   
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−
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          (1.1) 
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, , ,
,

0;j t j k m t
j k m
CAP Y D t+ ∀∗− ≤∑ ∑                             (1.2) 

Problem DSFP1 (Dual of Strong Formulation) 

( ) ( )

( ){ } ( ){ } ( ){ }

( ) ( ){ } ( ) ( ){ }

( ) ( ){ }

, , , ,
, ,

, , , , ,
, , , , ,

,
, ,

, ,
, , , , ,
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Problem DWFP1 (Dual of Weak Formulation) 
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Equation (1.1) is the dual integer linear program of the problem P1 whereas Equation (2.1) is the dual integer 
program with the vectors linked with strong constraints of the formulation i.e. Equations (6, 8, 10, 11) and Equ-
ation (3.1) dual integer program of problem P1 with vectors linked with weak constraint Equation (9) (Big M 
constraint). In these the vectors linked with constraints 1, 2, 4 and 5 are neither strong nor weak but they are ne-
cessary binding constraints for the problem included in both weak and strong. 
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4. Empirical Investigation 
In the work firstly, overall dual of problem P1 will be solved and its optimal value will thus be compared with to 
solve both strong (2.1) and weak (3.1) with and without the constraint 14 of additional cut as discussed above. 
Thus, overall this work solves and compares the following 4 models. Thus, the set of problems we setup here 
are: 

1) Strong formulation with additional cut or Strong Twin (with feasibility constraint also);  
2) Strong formulation without additional cut (with feasibility constraint also); 
3) Weak formulation with additional cut or Weak Twin (with feasibility constraint also); 
4) Weak formulation without additional cut (with feasibility constraint also). 
As discussed above the problem instances will be created and used in solving the problem with Benders’ De-

composition for weak and strong (with or without additional cut constraint). So we define the range of values for 
each supply, demand, capacity and costs. The data used here may or may not match the actual real time data but 
our aim here is to use the same data values to solve the four set of problems and get inferences from them about 
the effectiveness it exhibits. 

By solving the above set of problems A, B, C and D in GAMS (General Algebraic Modeling System). The 
concept of strong and weak constraints have developed in the context of branch and bound methodology for 
SSCWLP [13] [15] [18]-[20]. Sample problems were created randomly for the formulations shown for weak as 
well as strong of size 5 × 5 × 5 × 5 × 5, 10 × 10 × 10 × 4 × 4, 20 × 20 × 20 × 4 × 4, 30 × 30 × 30 × 4 × 4, 40 × 
40 × 40 × 4 × 4 but they all seemed to be too small to show any significant difference in the time and no. of ite-
rations required for solving the problems. Each of the problem size was tested with 25%, 50%, 100%, 200%, 
300% over supply and overcapacity and results were found to be not different significantly for above four men-
tioned problem set up. 

Thus, the need of bigger problems was felt and 50 × 50 × 50 × 4 × 4 problem showed significant results. 
However here also 200% over capacitated and over supply problem sets gave close values and very small but it 
clearly showed the effectiveness of benders decomposition method. The no. of iterations in this problem set was 
between 1 and 10 for at least 20 problem sets tested, when the linear programming problem required iterations in 
lakhs to find the optimal. The summary of results for 50 × 50 × 50 × 4 × 4 problems with 200% over capacity 
and 200% over supply is shown in Table 1. 

We then increased the overcapacity and over supply to 400% for problem size 50 × 50 × 50 × 4 × 4 with fol- 
 

Table 1. Results of 50 × 50 × 50 × 4 × 4 problems with 200% over capacity and 200% over supply. 

Problem no. Weak twin Weak w/o Strong twin Strong w/c z (in thousands) Iteration of z Time of z (sec) 
1 1 2 1 1 109,774 1,703,788 1002.649 
2 5 6 8 10 110,401 1,380,168 1001.38 
3 1 2 1 1 109,701 1,097,844 1001.361 
4 1 2 1 1 109,654 1,670,042 1001.402 
5 1 2 1 1 110,453 1,393,727 1001.185 
6 1 2 1 1 110,591 950,059 1001.363 
7 2 3 3 3 110,219 1,507,439 1001.224 
8 2 3 3 3 110,121 1,415,500 1004.3 
9 3 4 5 4 110,023 1,374,593 1001.223 
10 2 3 2 2 110,202 1,260,132 1001.076 
11 1 2 1 1 110,318 1,357,733 1001.126 
12 1 2 1 1 110,169 1,481,628 1001.139 
13 1 2 1 1 110,360 1,388,015 1001.361 
14 2 2 1 3 109,901 1,593,936 1001.402 
15 1 2 1 1 110,369 1,373,463 1001.185 
16 3 4 7 9 110,194 1,408,611 1001.363 
17 1 2 1 1 109,825 1,542,841 1001.512 
18 1 2 1 1 109,941 1,457,553 1001.186 
19 1 2 1 1 110,357 1,676,642 1001.249 
20 1 2 1 1 110,083 1,378,270 1001.076 
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lowing assumptions into consideration: 
1) In each problem instance demand for each commodity in each market is taken as uniformly distributed with 

lower bound of 5000 units and upper bound of 7000 units. 
2) The average over supply of a commodity at any plant and over capacity at any warehouse is more than the 

market demand at about 400%. 
3) Uniform distribution of Warehouse Capacity and Supply Capacity of plants are taken. 
4) Carrying cost from plant to warehouse is distributed uniformly between 1000 and 3000. 
5) Carrying cost from warehouse to market is distributed uniformly between 1000 and 3000. 
6) Warehouse location fi × ed cost in uniform between 800,000 and 1,000,000. 
7) However, all the values in codes are taken to be in units of thousands. 
Problems were created with same data input in the four categories mentioned above( A, B, C and D), all the 

codes were solved in GAMS using an Intel(R) Core(TM) i7-4770S CPU @ 3.10 GHz. The summary of the re-
sults for 50 × 50 × 50 × 4 × 4 problems with 400% over capacity and over supply are tabulated in given Table 2. 

 
Table 2. Results of 50 × 50 × 50 × 4 × 4 problems with 400% over capacity and over supply. 

Problem No. Weak twin Weak w/o Strong twin Strong w/c z (in thousands) Iteration of z Time of z (sec) 

1 3 79 26 161 104,721 1,546,890 1001.361 

2 23 82 26 161 105,283 1,341,085 1001.402 

3 30 81 25 160 104,625 1,144,628 1001.185 

4 24 78 70 163 104,581 1,160,866 1001.363 

5 99 79 26 165 105,339 1,368,499 1001.512 

6 24 75 26 158 105,391 1,263,044 1001.186 

7 181 83 3 157 105,129 1,350,222 1001.249 

8 34 83 26 160 105,037 1,203,089 1001.162 

9 2 79 26 159 104,921 1,554,805 1001.366 

10 24 76 69 169 105,117 1,155,440 1001.16 

11 3 83 70 165 105,117 1,382,498 1001.68 

12 86 79 26 159 104,643 1,042,430 1001.515 

13 24 80 26 158 105,025 1,199,248 1001.224 

14 3 76 38 158 104,959 427,540 1004.3 

15 60 75 26 166 104,841 1,061,089 1001.223 

16 2 79 4 161 104,475 1,671,970 1001.076 

17 30 81 5 159 105,013 1,522,824 1001.126 

18 24 79 86 159 104,523 1,503,683 1001.139 

19 24 78 5 162 105,553 1,129,719 1002.649 

20 55 77 5 159 104,775 1,698,113 1001.38 

21 57 79 4 160 105,391 1,307,763 1001.361 

22 80 75 6 165 104,839 1,475,217 1001.402 

23 4 85 75 166 104,547 1,194,434 1001.185 

24 5 76 28 161 105,647 1,379,576 1001.363 

25 65 60 25 159 105,341 1,357,917 1001.512 

26 66 57 18 158 104,475 1,353,530 1001.186 

27 4 75 30 162 104,767 1,500,937 1001.249 

28 35 85 25 159 105,353 1,110,331 1001.162 

29 2 75 5 161 104,661 1,147,830 1001.366 

30 24 76 25 158 105,469 1,173,126 1001.16 
31 25 78 20 159 105,275 1,217,993 1001.68 
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Continued 

32 150 80 4 160 104,707 1,501,243 1001.515 

33 3 68 5 165 104,521 1,295,242 1001.224 

34 7 82 9 157 105,269 1,553,399 1004.3 

35 2 80 25 161 105,507 1,372,881 1001.223 

36 22 75 65 159 105,421 1,400,975 1001.076 

37 35 89 32 155 104,825 1,378,837 1001.126 

38 100 80 27 166 104,507 1,742,969 1001.139 

39 22 72 20 162 104,925 1,154,679 1002.649 

40 68 81 25 168 105,351 1,415,291 1001.38 

41 5 75 28 158 104,907 1,467,334 1001.361 

42 4 77 6 159 105,063 1,060,513 1001.402 

43 3 78 26 166 104,585 1,324,635 1001.185 

44 86 78 24 158 104,727 1,446,694 1001.363 

45 80 79 22 159 104,835 1,143,093 1001.512 

46 4 77 25 165 104,345 1,162,402 1001.186 

47 67 81 27 168 104,689 1,412,175 1001.249 

48 5 75 4 157 104,909 1,237,658 1001.162 

49 87 78 24 168 105,689 1,456,436 1001.366 

50 85 79 21 159 105,029 1,376,278 1001.16 

 
One thing needs to be noted here that some problems had run-time greater than 24 hours and so we thereby 

restricted our problem size to 50 and these problem codes were terminated in 24 hours because it is practically 
costly and time inefficient such large computational times. Objective function values, number of iterations and 
CPU time for each and every problem instance is recorded and statistical analysis (t-test) is done. 

The results displayed various trends: 
1) Overall additional cut reduces the number of iterations in both weak and strong formulations. 
• Weak twin is better than weak without additional cut 
• Strong twin is better than strong without additional cut 
2) In some problems strong twin gives lesser number of iterations than weak twin. 
3) In some problems weak twin gives lesser number of iterations than strong twin. 
4) In some problems strong twin gives same number of iterations as weak twin. 
The results of the analysis are shown in the following tables given below (Tables 3-5). 

Statistical Analysis 
Hypothesis tests are conducted as follows: 
1) To check whether additional cut reduces the number of iterations in both weak and strong formulations. 
a) To check whether weak twin is better than weak without additional cut for a given set of problems.  

μ1: Difference in means of number of iterations of weak twin and weak without additional cut 
Null hypothesis, H0: μ1 = 0 
Alternate hypothesis, Ha: μ1 < 0 
The results of paired sample statistics for weak twin and weak without additional cut are given below in the 

Table 6. 
From the statistical t-tables we have the critical value for t-stats at α = 0.005 as 2.668 for d.o.f. = 49 and for 

this t-test, t = −6.726 thus we can easily reject null hypothesis μ1 = 0. 
b) To check whether strong twin is better than strong without additional cut for a given set of problems.  

μ1: Difference in means of number of iterations of strong twin and strong without additional cut 
Null hypothesis, H0: μ1 = 0 
Alternate hypothesis, Ha: μ1 < 0 



R. R. K. Sharma et al. 
 

 
256 

The results of paired sample statistics for strong twin and strong without additional cut are given in Table 
7. 

From the statistical t-tables we have the critical value for t-stats at α = 0.005 as 2.668 for d.o.f. = 49 and for 
this t- test, t = −49.529 thus we can easily reject null hypothesis μ1 = 0. 

 
Table 3. Problems when strong twin gives lesser number of iterations than weak twin. 

Problem No. Weak twin Weak w/o Strong twin Strong w/c 

5 99 79 26 165 

7 181 83 3 157 

8 34 83 26 160 

12 86 79 26 159 

15 60 75 26 166 

17 30 81 5 159 

19 24 78 5 162 

20 55 77 5 159 

21 57 79 4 160 

22 80 75 6 165 

25 65 60 25 159 

26 66 57 18 158 

28 35 85 25 159 

32 150 80 4 160 

38 100 80 27 166 

40 68 81 25 168 

44 86 78 24 158 

45 80 79 22 159 

47 67 81 27 168 

49 87 78 24 168 

50 85 79 21 159 

 
Table 4. Problems when weak twin gives lesser number of iterations than strong twin. 

Problem No. Weak twin Weak w/o Strong twin Strong w/c 

1 3 79 26 161 

4 24 78 70 163 

9 2 79 26 159 

10 24 76 69 169 

11 3 83 70 165 

14 3 76 38 158 

18 24 79 86 159 

23 4 85 75 166 

24 5 76 28 161 

27 4 75 30 162 
35 2 80 25 161 
36 22 75 65 159 
41 5 75 28 158 
43 3 78 26 166 
46 4 77 25 165 
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Table 5. Problems when weak twin gives almost same number of iterations as strong twin. 

Problem No. Weak twin Weak w/o Strong twin Strong w/c 

2 23 82 26 161 

3 30 81 25 160 

6 24 75 26 158 

13 24 80 26 158 

16 2 79 4 161 

29 2 75 5 161 

30 24 76 25 158 

31 25 78 20 159 

33 3 68 5 165 

34 7 82 9 157 

37 35 89 32 155 

39 22 72 20 162 

42 4 77 6 159 

48 5 75 4 157 

 
Table 6. Paired sample statistics weak twin is better than weak without additional cut. 

 Mean N Std. Deviation Std. Error Mean 

Pair 1 
weak_twin 39.1400 50 40.46364 5.72242 

weak_w/o 77.7400 50 5.29848 0.74932 

 
Table 7. Paired sample statistics strong twin is better than strong without additional cut. 

 Mean N Std. Deviation Std. Error Mean 

Pair 1 
strong_twin 25.8800 50 19.89733 2.81391 

strong_w/o 161.1400 50 3.48765 0.49323 

 
2) To check whether strong twin gives lesser number of iterations than weak twin in some problems. 

μ1: Difference in means of number of iterations of weak twin and strong twin 
Null hypothesis, H0: μ1 = 0 
Alternate hypothesis, Ha: μ1 > 0 
The results of paired sample statistics for strong twin and weak twin are given below in the Table 8.  
From the statistical t-tables we have the critical value for t-stats at α = 0.005 as 2.845 for d.o.f. = 20 and for 

this t-test, t = 6.663 thus we can easily reject null hypothesis μ1 = 0. 
3) To check whether weak twin gives lesser number of iterations than strong twin in some problems. 

μ1: Difference in means of number of iterations of strong twin and weak twin 
Null hypothesis, H0: μ1 = 0 
Alternate hypothesis, Ha: μ1 < 0 
The results of paired sample statistics for weak twin and strong twin are given below in the Table 9.  
From the statistical t-tables we have the critical value for t-stats at α = 0.005 as 2.977 for d.o.f. = 14 and for 

this t-test, t = −8.091 thus we can easily reject null hypothesis μ1 = 0. 
4) To check whether strong twin gives same number of iterations as weak twin in some problems. 

μ1: Difference in means of number of iterations of strong twin and weak twin 
Null hypothesis, H0: μ1 = 0 
Alternate hypothesis, Ha: μ1 > 0 
The results of paired sample statistics for strong twin and weak twin are given in the Table 10.  
From the statistical t-tables we have the critical value for t-stats at α = 0.005 as 3.012 for d.o.f. = 13 and for 

this t-test, t = −0.280 thus we cannot reject null hypothesis μ1 = 0. 
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Table 8. Paired sample statistics strong twin gives lesser number of iterations than weak twin. 

 Mean N Std. Deviation Std. Error Mean 

Pair 1 
Weak twin 75.9524 21 37.23503 8.12535 

Strong twin 17.8095 21 9.82150 2.14323 

 
Table 9. Paired sample statistics weak twin gives lesser number of iterations than strong twin. 

 Mean N Std. Deviation Std. Error Mean 

Pair 1 
Weak twin 8.8000 15 9.22884 2.38288 

Strong twin 45.8000 15 23.19544 5.98904 

 
Table 10. Paired sample statistics strong twin gives same number of iterations as weak twin. 

 Mean N Std. Deviation Std. Error Mean 

Pair 1 
Weak twin 16.4286 14 11.83030 3.16178 

Strong twin 16.6429 14 10.46317 2.79640 

5. Results 
Twin means both feasibility and additional cut constraint are put in pure integer linear program (ILP) and with-
out means only the feasibility constraint is put in the pure ILP sub problem. We found that weak twin gave sig-
nificantly better performance than weak without additional cut in terms of number of iterations and strong twin 
gave better performance than strong without additional cut again in terms of number of iterations. Sometimes 
weak twin performed better than strong twin and sometimes it was other way around. This raises the possibility 
of applying Benders Decomposition to hybrid formulations of SSMCSPWLP. 

6. Conclusion 
The results show that twin is highly effective in solving SSMCSPWLP in terms of no. of iterations; however 
when comparing weak twin and strong twin no definite conclusion emerges. Some problems showed weak (twin) 
was better and some strong (twin) was better. Thus, Benders Decomposition may be applied to a hybrid formu-
lation of problem considered in this paper [13]. 

References 
[1] ReVelle, C.S. and Eiselt, H.A. (2005) Location Analysis: A Synthesis and Survey. European Journal of Operational 

Research, 165, 1-19. http://dx.doi.org/10.1016/j.ejor.2003.11.032 
[2] Geoffrion, A.M. and Graves, G.W. (1974) Multi-Commodity Distribution System Design by Bender’s Decomposition. 

Management Science, 20, 822-844. http://dx.doi.org/10.1287/mnsc.20.5.822 
[3] Sharma, R.R.K. (1991) Modelling a Fertilizer Distribution System. European Journal of Operational Research, 51, 24- 

34. http://dx.doi.org/10.1016/0377-2217(91)90142-I 
[4] Sharma, R.R.K. (1996) Food Grains Distribution in the Indian Context: An Operational Study. Operations Research for 

Development, Ahmadabad, India. Tripathy, A. and Rosenhead, J., Eds., Chapter 5, New Age International Publishers, 
New Delhi, 212-227. 

[5] Kouvelis, P., Rosenblatt, M.J. and Munson, C.L. (2004) A Mathematical Programming Model for Global Plant Loca-
tion Problems: Analysis and Insights. IIE Transactions, 36, 127-144. http://dx.doi.org/10.1080/07408170490245388 

[6] Keskin, B.B. and Üster, H. (2007) A Scatter Search-Based Heuristic to Locate Capacitated Transhipment Points. 
Computers & Operations Research, 34, 3112- 3125. http://dx.doi.org/10.1016/j.cor.2005.11.020 

[7] Francis, R.L. and Goldstein, J.M. (1974) Technical Note—Location Theory: A Selective Bibliography. Operations 
Research, 22, 400-410. http://dx.doi.org/10.1287/opre.22.2.400 

[8] Salkin, H.M. and De Kluyver, C.A. (1975) The Knapsack Problem: A Survey. Naval Research Logistics Quarterly, 22, 
127-144. http://dx.doi.org/10.1002/nav.3800220110 

[9] Kuehn, A.A. and Hamburger, M.J. (1963) A Heuristic Program for Locating Warehouses. Management Science, 9, 
643-666. http://dx.doi.org/10.1287/mnsc.9.4.643 

http://dx.doi.org/10.1016/j.ejor.2003.11.032
http://dx.doi.org/10.1287/mnsc.20.5.822
http://dx.doi.org/10.1016/0377-2217(91)90142-I
http://dx.doi.org/10.1080/07408170490245388
http://dx.doi.org/10.1016/j.cor.2005.11.020
http://dx.doi.org/10.1287/opre.22.2.400
http://dx.doi.org/10.1002/nav.3800220110
http://dx.doi.org/10.1287/mnsc.9.4.643


R. R. K. Sharma et al. 
 

 
259 

[10] Khumawala, B.M. (1974) An Efficient Heuristic Procedure for the Capacitated Warehouse Location Problem. Naval 
Research logistics Quarterly, 21, 609-623. http://dx.doi.org/10.1002/nav.3800210405 

[11] Domschke, W. and Drexl, A. (1985) ADD-Heuristics’ Starting Procedures for Capacitated Plant Location Models. Eu-
ropean Journal of Operational Research, 21, 47-53. http://dx.doi.org/10.1016/0377-2217(85)90086-4 

[12] Jacobsen, S.K. (1983) Heuristics for the Capacitated Plant Location Model. European Journal of Operational Research, 
12, 253-261. http://dx.doi.org/10.1016/0377-2217(83)90195-9 

[13] Sharma, R.R.K. and Verma, P. (2012) Hybrid Formulations of Single Stage Uncapacitated Warehouse Location Prob-
lem: Few Theoretical and Empirical Results. International Journal of Operations and Quantitative Management (IJOQM), 
18, 53-69. 

[14] Elson, D.G. (1972) Site Location via Mixed-Integer Programming. Journal of the Operational Research Society, 23, 
31-43. http://dx.doi.org/10.1057/jors.1972.4 

[15] Sharma, R.R.K. and Agarwal, P. (2014) Approaches to Solve MID_CPLP Problem: Theoretical Framework and Em-
pirical Investigation. American Journal of Operations Research, 4, 142-154. http://dx.doi.org/10.4236/ajor.2014.43014 

[16] Sharma, R.R.K. and Namdeo, S. (2005) Two Stage Capacitated Warehouse Location Problem: Developing New Strong 
Constraints. Proceedings of Fifth International Conference on Operational Research for Development: ICORD V, 
Jamshedpur, 19-21 December 2005, 330-333. 

[17] Sharma, R.R.K., Tyagi, P., Kumar, V. and Jha, A. (2015) Developing Strong and Hybrid Formulation for the Single 
Stage Single Period Multi Commodity Warehouse Location Problem: Theoretical Framework and Empirical Investiga-
tion. American Journal of Operations Research, 5, 112-128. http://dx.doi.org/10.4236/ajor.2015.53010 

[18] Sharma, R.R.K., Agarwal, P. and Singh, V. (2012) Bender’s Decomposition for Different Formulations of Single Stage 
Single Stage Capacitated Ware House Location Problem: A Brief Theoretical Framework and Empirical Investigation. 
International Journal of Business Research, 12, 43-50. 

[19] Sharma, R.R.K. and Berry, V. (2007) Developing New Formulations and Relaxations of Single Stage Capacitated 
Warehouse Location Problem (SSCWLP): Empirical Investigation for Assessing Relative Strengths and Computational 
Effort. European Journal of Operational Research, 177, 803-812. http://dx.doi.org/10.1016/j.ejor.2005.11.028 

[20] Verma, P. and Sharma, R.R.K. (2011) Vertical Decomposition Approach to Solve Single Stage Capacitated Warehouse 
Location Problem (SSCWLP). American Journal of Operations Research, 1, 100-117.  
http://dx.doi.org/10.4236/ajor.2011.13013 

http://dx.doi.org/10.1002/nav.3800210405
http://dx.doi.org/10.1016/0377-2217(85)90086-4
http://dx.doi.org/10.1016/0377-2217(83)90195-9
http://dx.doi.org/10.1057/jors.1972.4
http://dx.doi.org/10.4236/ajor.2014.43014
http://dx.doi.org/10.4236/ajor.2015.53010
http://dx.doi.org/10.1016/j.ejor.2005.11.028
http://dx.doi.org/10.4236/ajor.2011.13013

	Application of Modified Benders Decomposition to Single-Stage Multi-Commodity Multi-Period Warehouse Location Problem: An Empirical Investigation
	Abstract
	Keywords
	1. Introduction and Literature Survey
	2. Problem Formulation
	3. Methodology for Benders’ Decomposition
	4. Empirical Investigation
	Statistical Analysis

	5. Results
	6. Conclusion
	References

