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Abstract 
 
Finite-time boundedness and H∞ finite-time boundedness of switched linear systems with time-varying delay 
and exogenous disturbances are addressed. Based on average dwell time (ADT) and free-weight matrix 
technologies, sufficient conditions which can ensure finite-time boundedness and H∞ finite-time bounded-
ness are given. And then in virtue of the results on finite-time boundedness, the state memory feedback con-
troller is designed to H∞ finite-time stabilize a time-delay switched system. These conditions are given in 
terms of LMIs and are delay-dependent. An example is given to illustrate the efficiency of the proposed 
method. 
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1. Introduction 

A switched system is a special kind of hybrid system, 
which is composed of a family of subsystems and a 
switching sequence orchestrating the switching between 
the subsystems. Recently, switched systems have re-
ceived a great deal of attention, and commonly been 
found in automotive engine control systems, network 
control, process control, traffic control, etc. Many im-
portant progress and remarkable results have been made 
on basic problems concerning stability and design of 
switched systems [1-10]. For recent progress, readers can 
refer to survey papers [11-13] and the references therein. 
Many Lyapunov function techniques are effective tools 
dealing with switched systems [14-17]. Average dwell 
time and dwell time (DT) approaches were employed to 
study the stability and stabilization of time-dependent 
switched systems [18-20]. 

Time-delay, which is a common phenomenon en-
countered in many engineering process, is known to be 
great sources of poor performance and instability. For 
switched systems, because of the complicated behavior 
caused by the interaction between the continuous dy-
namics and discrete switching, the problem of time de-
lays is more difficult to study [21]. The current methods 
of stabilization for time-delay systems can be classified 
into two categories: delay-independent and de-
lay-dependent stabilization [22-24]. In [25], by using free 

weighting matrix scheme and average dwell time method 
incorporated with a piecewise Lyapunov functional, ex-
ponentially stability and L2-gain were analyzed for a 
class of switched systems with time-varying delays and 
disturbance input. In [26], the robust stability, robust 
stabilization and H∞ control problems for time-delay 
discrete switched singular systems with parameter un-
certainties are discussed. 

Up to now, most of existing literature related to stabil-
ity of switched systems investigates Lyapunov asymp-
totic stability, which is defined over an infinite time in-
terval. However, in practice, one is interested in not only 
system stability (usually in the sense of Lyapunov) but 
also a bound of system trajectories over a fixed short 
time [27]. The finite-time stability is a different stability 
concept which admits the state does not exceed a certain 
bound during a fixed finite-time interval. Some early 
results on finite-time stability can be found in [28-30]. 
Finite-time stability and stabilization for discrete linear 
system were investigated in [31]. In [32], finite-time sta-
bilization of linear time-varying systems has been dis-
cussed. It should be pointed out that a finite-time stable 
system may not be Lyapunov asymptotical stable, and a 
Lyapunov asymptotical stable system may not be fi-
nite-time stable since the transient of a system response 
may exceed the bound [33]. So far, however, compared 
with numerous research results about Lyapunov stability, 
few results on finite-time stability have been given in 
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literature about the finite-time boundedness switched 
systems with time-delay. This motivates us to study in 
this area. 

In [27], finite-time boundedness and finite-time 
weighted L2-gain for a class of switched delay systems 
with time-varying exogenous disturbances is investigated. 
In [33], the problems of finite-time stability analysis and 
stabilization for switched nonlinear discrete-time systems 
are addressed, and then the results are extended to H∞ 
finite-time boundedness of switched nonlinear dis-
crete-time systems. In [34], finite-time stability and sta-
bilization problems for a class of switched linear systems 
were studied, and the state feedback controllers and a 
class of switching signals with average dwell-time have 
been designed to stabilize the switched linear control 
systems. 

However, to the best of authors’ knowledge, there is 
no result available yet on finite-time stability of switched 
systems with time-varying delay. Thus, it is necessary to 
investigate finite-time stability and finite-time bounded-
ness for a class of switched linear systems with 
time-varying delay, which is an important property for 
switched system. Our contributions are given as follows: 
1) Definitions of finite-time boundedness and H∞ fi-
nite-time are extended to switched linear systems with 
time-varying delay. 2) Sufficient conditions for fi-
nite-time boundedness and H∞ finite-time boundedness 
of switched linear systems with time-varying delay are 
given. 3) A set of memory state feedback controllers are 
designed to guarantee the closed-loop switched system 
with time-varying delay H∞ finite-time bounded. 

The paper is organized as follows. In Section 2, some 
definitions and problem formulations are presented. In 
Section 3, based on ADT technology and LMIs, suffi-
cient conditions which ensure finite-time stability of 
switched linear systems with time-varying delay are 
given. In Section 4, sufficient conditions which guaran-
tee the switched system has H∞ finite-time are presented. 
In Section 5, a set of memory state feedback controllers 
are designed, which can guarantee the closed-loop 
switched system H∞ finite-time bounded. Finally, an 
example is presented to illustrate the efficiency of the 
proposed method in Section 6. Conclusions are given in 
Section 7. 

Notations: The notations used in this paper are stan-
dard. The notation P > 0 means that P is a real symmetric 
and positive definite; the symbol ‘*’ within a matrix 
represents the symmetric term of the matrix; the super-
script ‘T’ stands for matrix transposition; Rn denotes the 
n-dimensional Euclidean space; I and 0 represent the 
identity matrix and a zero matrix, respectively; 

stands for a block-diagonal matrix. diag{ }  max P  
and  denote the maximum and minimum ei-

gen-values of matrix P, respectively; Notations ‘sup’ and 
‘inf’ denote the supremum and infimum, respectively. 

 Pmin

2. Preliminaries and Problem Formulation 

In this paper, a switched linear system with time-varying 
delay is described as follows: 

                  
             
              ,0

t d t t t

t t t

x t A x t A x t d t B u t G t

z t C x t D u t E t

x t t t

   

  





 

     
   


  



(1) 

where   nx t R  is the state,  is the control 
input, 

  mu t R
  mz t R  is the measurement output,  tA , 

 d t ,  t , ( )t , ( )t , ( )t  and ( )t  are real 
known constant matrices with appropriate dimensions, 
A 

( )t

B G C D E

  is the continuous vector valued function specifying 
the initial state of the system, ( )t  is the time-varying 
exogenous noise signal and satisfies Assumption 1, 
     N: 0t I  1,2,,   is the switching signal, 

corresponding to it, the switching sequence  
      0 0 0 1 1; , , , , , , , ,| , 0,1,k k kx i t i t i t i I k  

ki
   

means that the  th subsystem is activated when 
 1,k kt t t  .  d t  denotes the time-delay satisfying 

Assumption 2. 
Assumption 1. The exogenous noise signal is time- 

varying and satisfies 

   
0

d , 0T t t t d d  .


          (2) 

Assumption 2. The time-varying delay satisfies 

 0 d , d( ) 1.t t h              (3) 

Remark 1. It should be pointed out that the Assump-
tion 2 about time-varying delay d(t) in this paper is dif-
ferent from that of [27], where the time-delay is constant. 
In [33], the concept of finite-time boundedness and H∞ 
finite-time boundedness for discrete switched system 
were proposed. In this paper, we extend the definitions to 
continuous switched linear system with time-varying 
delay. First, the following three lemmas are presented, 
which play important roles in our further derivation. 

Lemma 1 [35]. The linear matrix inequality  

11 12

21 22

S S
S 0

S S

 
  
 

22

, where  and  are 

equivalent to 

11 11
TS S 22 22

TS S

S 0 , 1
12 22 12S S S ST

11 0  . 

Lemma 2 [36]. For any , let 0T t   ,N t T  de-
note the switching number of  t  over  . If ,t T

   0, aN t T N T t            (4) 

holds for and an integer , then is called an average 
dwell-time. 
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




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



Lemma 3 [37]. For given symmetrical matrix X,  

1 1

1

0
*

P X Q

R




 
 and are satisfied  2 2

2

0
*

P X Q

R




 
simultaneously, if and only if the following inequality 
holds 

1 2 1 2

1

2

* 0

* *

P P Q Q

R

R

 
 
  

           (5) 

Definition 1. (Finite-time stability) Switched system 
(1) with  and  is said to be fi-
nite-time stability with respect to 

  0u t    0t 
, , , , ,fT d R   , 

where 0     and , R is positive definite matrix 
and is a switching signal. If 

0d 
 t    Tx t Rx t  ,  

0, ft  T   , whenever     x Rx0
T

 sup       . If  

the above condition holds for any switching signal  t , 
system (1) is said to be uniformly finite-time stability 
with respect to .  , , , ,fT d R 

Remark 2. As can be seen from Definition 1, the con-
cept of finite-time stability and Lyapunov asymptotic 
stability are different. A Lyapunov asymptotically stable 
switched system may not be finite-time stable if its states 
exceed the prescribed bounds. 

Remark 3. The meaning of “uniformity” in Definition 
1 is with respect to the switching signal, rather than the 
time, which is identical to that of [11]. 

Next, the definitions of finite-time boundedness and 
H∞ finite-time boundedness for switched system with 
time-varying delay are introduced. 

Definition 2. (Finite-time boundedness) Switched sys-
tem (1) with  is said to be finite-time bound-
edness with respect to

  0u t 
 , , , , ,fT d R   , where  

0     and , R is positive definite matrix and  0d 
 t  is a switching signal. If    Tx t Rx t  , 

0, ft T  

0
T

 

 

sup

, , whenever      
0

: fT Tt t  
    x Rx

dt t d 

     . 

Definition 3. (H∞ finite-time boundedness) Switched 
system (1) with  is said to be H∞ finite-time 
boundedness with respect to

  0u t 
( , , , , , )fT d R   , where 

0    , , 0d  0  , R is positive definite matrix 
and ( )t  is a switching signal, following conditions 
should be satisfied: 

1) Switched system (1) is finite-time bounded. 
2) Under zero-initial condition ,   0t   ,0t    , 

the output z(t) satisfies 

       2

0 0
d df fT TT Tz t z t t t t t    .       (6) 

In this paper, the main purpose is to find sufficient 
conditions, which can ensure the finite-time boundedness 

and H∞ finite-time boundedness, and apply these condi-
tions to design H∞ finite-time stabilizing controller. 

Remark 4. Definition 3 means that once a switching 
signal is given, a switched system is H∞ finite-time 
boundedness if, given a bound on initial state and a H∞ 

-gain  , the state remains within the prescribed bound 
in the fixed finite-time interval. 

3. Finite-Time Stability and Bounded 
Analysis 

In this section, we focus on finite-time boundedness of 
switched time-delay system (1) with , that is   0u t 

        
     

( ) ( ) ( ) , 0

,0

t d t tx t A x t A x t d t G t t

x t t t

   

 

    


  

 
(7) 

Now, let us discuss the finite-time boundedness of 
switched time-delay system (6). For a symmetric positive 
definite matrix n nR R  , it is easy to verify that R can  

be factorized according to , where   1/2 1/2T
R R R 

1 2R  is also a symmetric positive definite matrix. 

Theorem 1. For any i , let I 1 2 1 2
i iP R PR  , 

1 2 1 2
i iQ R Q R  , . Suppose that there exist 

matrices , , , , ,  , 

1/ 2
iS R 

0iQ 

2,

,

0i i

i

 

1/2
iS R

0iS 0iP 

11, 1

22

X X

X

0iW  1,iN 2,iN

*iX   
 

 and constants 0i  , 0   

such that 

11 12 13

22 23

33

*

* *

0

   
    
 


 

            (8) 

11, 12, 1,

22, 2,* 0

* * i

i i i

i i

i

X X N

X N

e S 

 
    
  

        (9) 

    2 3 4 max 1sup i fi i T
i

i I
e e d W e

          


      (10) 

where 

11 1, 1, 11,

12 1, 2, 12,

13

22 2, 2, 22,

23

33

.

,

,

(1 ) ,

,

. .

i

T T
i i i i i i i i i i i i i

T T
i di i i di i i i

T
i i i i i

T T
i di i di i i i

T
di i i

T
i i i i

TA P PA P Q A S A N N X

PA A S A N N X

PG A S G

h e Q A S A N N X

A S G

G S G W



  

 



 





        

     

  

       

 

  

 

If the average dwell time of the switching signal satis-
fies 

Copyright © 2011 SciRes.                                                                                  ICA 



H. LIU  ET  AL. 206
 

 

   

*

1 2 3 4

ln

ln ln i i

a a

fT

e e 

 


         




   

 (11) 

then the switched systems is finite-time boundedness 
with respect to ( , , , , , )fT d R   , where 1  , 

  maxsup
i I

d W 0 lni fT N      i jP P


,   ,  

i jQ Q  , i jS S  ,i j I , ,  i I imax 


, 

  1 miinfi I iP   n  2 supi I  max iP ,  

  3 maxsupi I iQ   ,   4 maxsupi I iS   . 

Proof. Choose a Lyapunov-like function as follows 

         1, 2, 3,i i i iV t V t V t V t V t          (12) 

where 

     

     

     

1,

( )
2, ( )

0 ( )
3,

,

d ,

d d .

i

i

T
i i

t t s T
i it d t

t t s T
i it

V t x t Px t

V t e x s Q x s s

V t e x s S x s s




 









 









   

 

When , taking the derivative of V(t) with 
respect to t along the trajectory of switched system (7), 
we have 

 1,k kt t t 

         
    

    
    
   
   

1,
T T

i i

T T
i i i i

T T
di i

T
i di

T T
i i

T
i i

V t x t Px t x t Px t

x t A P P A x t

x t d t A Px t

x t P A x t d t

t G Px t

x t PG t





 

 

 

 





  i

    (13) 

       
        
     

       

2, 2,

( )

2,

1

1

i

i

T
i i i i

d t T
i

T
i i i

T
i

V t V t x t Q x t

d t e x t d t Q x t d t

V t x t Q x t

h e x t d t Q x t d t



 





 

   

 

   




 (14) 

       

   
     

   

3, 3,

0

3,

( )

d

d

i

i

T
i i i i

T
i

T
i i i

t s t T
it

V t V t x t S x t

e x t S x t

V t x t S x t

e x s S x s s

 





 

  

 


 



 

  

 







  

 

 

 

       (15) 

From the Leibniz-Newton formula, the following 
equation is true for any matrices , , 1,iN 2,iN  i I  
with appropriate dimensions 

    

      

1,

2,

( )

2 d

d 0

iT T

i

t

t d t

N
x s x t s

N

x t x t d t x s s


 
    

 
        

    (16) 

For any matrices ,  with appropriate 
dimensions, we have 

0iX  i I 

       1 1 1 1( )
d 0

tT T
i it d t

t X t s X s s   


      (17) 

where       1

TT Tt x t x t d t     . 

Then, it follows from (13)-(17) that 

           

 
  

 

 
  

 

   
    
 

       

1, 2, 3,

11 12 13

22 23

33

( )

1, 2,

( )

1 1( )

2

*

* *

2

d

d

i

i i i i i

T

t s t T
it

T T
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x t x t

x t d t x t d t
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x t N x t d t N
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


 

 
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




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
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

 






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 


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2

3 3( )
, , d

T

t T T
it d t

t t

t s t s s t W t



   




  



 (18) 

 
Assuming conditions (8) and (9) are satisfied, we ob-

tain 

      T
iV t V t t W t    i       (19) 

By calculation, we have 

     
 

   

( )

( )

( )

( ) d

t kk

k

tk
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t t

t k

t t s T
tt

V t e V t

e s W









 







 s s
      (20) 

Since 1  , i jP P  , i jQ Q  , iS S j   and 
1 2P R 1 2

i iPR , 1 2 1 2
i iQ R Q R  , 1 2

iS R

j

1 2
iS R , then 

,      ,

,      ,

i j i

i j

P P Q Q

S S i j I

 



 

  
          (21) 

Assume that  kt i  and  at switching 
instant . According to (19), we obtain 

 kt   j

kt

       
k k

kt t
V t V t 

 
 k           (22) 

For any  0, ft T , let N be the switching number of 
σ(t) over (0, Tf ). Using the iterative method, we have 
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     

   

   

      

1

2

11

(0)

( )
(0)0

1
( )

( )

0

( , )
( )0
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d
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d
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
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













s s





   (23) 

where  max i I i  . 
Noticing that 0 f aN N T   , then 

         0
max0 0 supf f aT N T

i I iV t e V d W
 

 
   (24) 

On the other hand, 

         
          
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
  (25) 

             
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 

0

( 0 0 0

0 0

(0)

max 0

max 0
0

max 0
0
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T

T

T
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
  


 






 
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

 

 





   

   

      









  

  

 









  



   





  

ds s

(26) 

Taking (24)-(26) into account, we obtain 

   
    

0
2 3 4 max

1

sup
f f a

T

i
T N Ti I

x t Rx t

e e d W
e

 

 
       





  


 (27) 

1) When 1  , from (10), 

    f fT TTx t Rx t e e
             (28) 

2) When 1  , from (11), 

   1 2 3 4

ln

ln ln i i

f

a

T

e e 


         


   

  (29) 

Substituting (29) into (27) yields 

   Tx t Rx t               (30) 

According to definition 2, we can conclude that the 
switched time-delay system (6) is finite-time bounded 
with respect to ( , , , , , )fT d R   . The proof is com-
pleted.  

Remark 5. In the proof of Theorem 1, there is no re-
quirement of negative definitiveness on , which is 
different from the classical Lyapunov function for 
switched systems in the case of asymptotical stability. In 
order to reduce the conservatism of the theorem condi-
tions, free-weighing matrix method is introduced. When 

 V t

1  , one obtains τa, in other words, there is no restric-
tion on the average dwell time for switching signal. 

When the time-varying exogenous noise signal 
  0t  , the results about finite-time stability can be 

obtained and given in the following corollary. 
Corollary 1. Assume that the switched time-delay 

system (6) satisfies   0u t   and . For any   0t 

i I , let 1 2
i iP R P  1 2R , 1 2

iQ R  1 2
iQ R ,  

1 2 1 2
iS R

0iQ 

iS R . Suppose that there exist matrices , 

, , 

0iP 

0iS  11, 12,

22,

0
*

i i
i

i

X X
X

X

 
  
 

0

, ,  

and constants 

1,iN 2,iN

i  , 0   such that 

11 12

22

0
*

  
    





               (31) 

11, 12, 1,

22, 2,* 0

* * i

i i i

i i

i

X X N

X N

e S 

 
  
 


 

          (32) 

 2 3 4 1
i fi i
Te e e                   (33) 

where 

 
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1, 1, 11,

12 1, 2, 12,

22 2, 2, 22,

,

,
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i i i i i i i i i i

T
i i i
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A P P A P Q A S A

N N X
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h e Q A S A N N X 

 



 

 

     

  

     

        i

 

If the ADT of the switching signal   satisfies 

    

*

1 2 3 4

ln

ln ln i i

a a

fT

e e 

 


         




   

   (34) 

then the switched system is finite-time stability with re-

spect to  , , , ,fT R   , where 0 lnfT N    , 

1  , i jP P  , i jQ Q  , i jS S  , ,i j I  , 

 i I imax  1 inf  , ,    min iP 
i I
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  2 maxsupi I iP  

  4 maxsupi I iS  

   

, ,  

. 

  3 maxsupi I iQ  

 u t 

 

Remark 6. It is easy to find that some differences be-
tween Lyapunov asymptotical stability and finite-time 
stability. Conditions (33) and (34) must be satisfied for 
finite-time stability, which is not necessary for asymp-
totical stability. Thus, the two concepts are independent. 
However, in previous research, there are few results on 
finite-time stability, which needs our full investigation. 

4. H∞ Finite-Time Boundedness Analysis 

In this section, we discuss H∞ finite-time boundedness of 
switched time-delay system (1) with . First, 
consider the following switched time-delay system 

0
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 
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
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

I
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  (35) 

Theorem 2. For any i , let 1 2 1 2
i iP R PR , 
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i
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 
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i

 such that 

13

23
2

* 0

T T
i i

T T
i i i i i

C E

I G S G E E 

  
 

  
    






 (36) 

12, 1,

22, 2,* 0

* * i

i i i

i i

i

X X N

X N

e S 

 
 
  

         (37) 
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i fT
e d e
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If the ADT of the switching signal   satisfies 
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    (39) 

then the switched systems is H∞ finite-time boundedness 
with respect to , , , )fT d R  , where 1  ,  

i jP P 
i jQ Q,   , i jS S  , ,  ,i j I

 max i I i  

  2 maxsupi I iP  

  4 maxsupi I iS  

, ,  

, ,  

. 

  min iP 

i I

1 infi I 

3 sup    max iQ 

Proof. Assuming condition (36) is satisfied, then we 
obtain 
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   (41) 

which implies that 
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       (42) 

From Theorem 1, conditions (37)-(39) can ensure that 
the switched time-delay system (35) is finite-time 
bounded with respect to (0, , , , , )fT d R  . 

Next, we will prove condition (6) is satisfied under 
zero initial condition. Choose the following Lyapunov 
function          1, 2, 3,i i i iV t V t V t V t V t    , where 
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When  1,k kt t t  , by virtue of (36), we can obtain 
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  (43) 

Since 1  , i jP P  , i jQ Q  , iS S j   and 
1 2P R 1 2

i iPR , 1 2 1 2
i iQ R Q R  , 1 2 1 2

i iS R S R 

, j I

, then 

, , ,j i jQ S S ii j iP P Q       . In what follows, 

assume that  kt i   and  at switching 

instant . We have 

 kt j 

kt
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kt t
V t V t 

 
 k          (44) 

Since  max i
i I

 


 , then it follows from (43) and (44) 
that 
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When (0, Tf ), let N be the switching number of σ(t) 
over (0, Tf ). Using the iterative method, we have 
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  
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
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











    (46) 

Under zero initial condition, (46) implies 

   
0

0 df
t T NV t e s s

             (47) 

that is 

     
     

,

0

,2

0

d

d

f

f

t T N s t T

t T N s t T

e z s z s s

e s











   




      (48) 

Setting t = Tf, we obtain 

       2

0 0
d df fT TT Tz s z s s s s s        (49) 

Therefore, according to Definition 3, the proof is com-
pleted. 

5. Finite-Time Stabilization 

In this section, the static state feedback controllers are 
designed. Based on the results in the previous section, the 
closed-loop system H finite-time bounded with respect 
to 0, , , , ,fT d R   can be ensured by memory state 
feedback controllers       1, 2,i iu t K x t K x t d t   . 
Applying the memory state feedback controllers into 
switched time-delay system (1), we can obtain the 
closed-loop switched system as follows 

             
             
   

( )

( )

[ ,0]

t d t t

t t t

x t A x t A x t d t G t

z t C x t D x t d t E t

x t t t

  

  





 

    
    


  



  (50) 

where        1,t t tA A B K     t , 

       2,d t d t t tA A B K     ,        1,t t tC C D K     t , 

     2,t tD D K   t . 

From condition (36), we have 

11 12
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2

1 1

* 0

0* * 0

* * * 0

* * * *

T T
i i i i
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di i

T T
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
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 
   
 

 
  

   (51) 

where 

 

11 1, 1, 11,

12 1, 2, 12,

22 2, 2, 22,1 .i

T T
i i i i i i i i i

T
i di i i i

T
i i i i

A P P A P Q N N X

P A N N X

h e Q N N X 

 





       

    

      

,

,

i

 

According to Lemma 3, (37) and (51) are equivalent to 
the following inequality 

11 12 1,

22 2,
2

1 1

* 0

* * 0 0
0

* * * 0 0

* * * * 0

* * * * *

i

T T
i i i i i
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di i i
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e S

I
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 
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(52) 

where 

 

11 1, 1,

12 1, 2,
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,
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1 .i

T T
i i i i i i i i i

T
i di i i
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i i i
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h e Q N N 

      

   

     

 

For matrix Inequality (52), let , 
1, 2,

0i
T Ti

i i

P
M

N N

 
  
 

i diA A
A

I I

 
   

 , then 

 

11 12

22*

0

0 1 i

T T
i i i i

i i i

i

A M M A

Q P

h e Q 



  
   

 
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 

     (53) 

Let 
1

1

1, 2,

0
i

i

i i

P
M

L L




 
  
  

 and  

 1 1ag , , , ,i iT M I I S di
TT

I . Pre-multiplying Equation (52) 

by  and post-multiplying Equation (52) by T, we 
ave h     
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11 12 13 14
1 1
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where , 1
1,i i iL Q  1

2,i i iL Q  , . 

Denote 

 ,  ,  0i i iR    
1

i iP P , 1
i iS S  , 1

i iQ 1
1, 1,i i iY K PQ ,  , 

. By Schur complement (Lemma 1), we can 

obtain the following Theorem. 

1
2,i iQ

2,iY K

Theorem 3. For given 0  , i R  , 0 i R  . 

Suppose that there exist matrices 0iP , 0iQ , 0iS  , 

,  and constants 1,iY 2,iY 0i  , 0   and such that 

the following conditions are satisfied  i I 
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If the ADT of the switching signal satisfies 

   
*

2
1 0

ln

ln ln ln
f

a a

f

T

d T N


 

    
 

  
    (57) 

then the memory state feedback gains 1
1, 1,i i iK Y P  and 

1
2, 2,i i iK Y Q  ensure closed-loop switched time-delay 

system (50) H  finite-time bounded with respect to ∞

 0, , , , ,fT d R  . 
Remark 7. In Theorem 3, i  and i  are adjustable 

parameters. By virtue of the method in [38], these pa-
rameters can be obtained. 

Remark 8. It should be pointed out that the conditions 
in Theorems 1, 2, 3 and Corollary 1 are not standard 
LMIs conditions. However, once some values are fixed 
for i , these conditions, i.e., (10) and (38) can be trans-
lated into LMIs conditions. As in [27], (10) and (38) can 
be rewritten in the following forms 

1) The condition (10) can be guaranteed by the fol-
lowing LMI condition, that is, for any , there exists 
some positive numbers 

i I

1 , , ,  and 2 3 4 5  such 

that 

1 i 2I P I                 (58) 

30 iQ  I                 (59) 
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I

I

40 iS                    (60) 

50 iW                    (61) 

 2 3 4 5 1
i fi i T

e e d e
                 (62) 

2) The condition (38) can be guaranteed by the fol-
lowing LMI condition, that is, for any , there exists 
some positive numbers , ,  and  satisfying 
(58)-(60) such that 

i I
1 2 3 4

 2 3 4 1
i fi i T

e e e
             .      (63) 

6. Numerical Simulation and Results 

In this section, for given  and  , an example is em-
ployed to verify the method proposed above. Consider a 
switched linear system with time-varying delay as fol-
lows 

        ( ) ( ) ( )t d t tx t A x t A x t d t G t         (64) 
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, 2 1G G 0.2   0.02h , . 

The values of  , fT ,  and  are selected as 
follows: 

d R

0.5  , , , , 10fT  0.01d  R I 0.05i  , 
0.01  . 

When 2   and 30  , by virtue of Theorem 1, 
one obtains a . For any switching signal * 2.4 659
 t  with average dwell time a

*
a 

2s

, switched linear 
system with time-delay is finite-time bounded with re-
spect to (0.5, 30, 10, 0.01, I, σ). The state trajectory over 
0~10 s under a periodic switching signal with interval 
time  is shown in Figure 1. It is obvious that 
switched linear system (64) is finite-time bounded. The 
state trajectory over 0 ~ 10 s under a periodic switching 
signal with interval time  is shown in Figure 2. 
As can be seen from figure 2, switched linear system (64) 
is not finite-time bounded any more. 

2.5T  s

T 

7. Conclusions 

In this paper, unlike most existing research results fo- 
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Figure 1. The histories of the state trajectory of switched 
system under a periodic switching signal with interval time 
ΔT = 2.5s. 
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Figure 2. The histories of the state trajectory of switched 
system under a periodic switching signal with interval time 
ΔT = 2s. 
 
cusing on Lyapunov stability property of switched 
time-varying delay system, we mainly discuss finite-time 
boundedness and H∞ finite-time boundedness of 
switched linear systems with time-varying delay. As the 
main contribution of this paper, sufficient conditions 
which can guarantee finite-time boundedness and H∞ 
finite-time boundedness of switched linear systems with 
time-varying delay are proposed. And then based on the 
results on finite-time boundedness, the memory state 
feedback controller is designed to H∞ finite-time stabilize 
a switched linear system with time-varying delay. An 
important and challenging further investigation is how to 
extend the results in this paper to uncertain switched 
systems and switched nonlinear systems. 
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