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Abstract 
In this article, we study the string equation of type (2, 2n + 1), which is derived from 2D gravity 
theory or the string theory. We consider the equation as a 2n-th order analogue of the first Painlev
éequation, take the autonomous limit, and solve it concretely by use of the Weierstrass’ elliptic 
function. 
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1. Introduction 
1.1. The String Equation of Type (2, 2n + 1) 
Let or  D ′  stand for the differentiation w.r.t. z , and 1D−  stand for the inverse operator of D . Consider the 
commutator equation of ordinary differential operators  

2 2[ , ] 1, : , :q q q k p p p k
k k k kQ P Q D w D P D v D− −
= == = + Σ = + Σ                  (1) 

for a couple of positive integers ( , )q p . The above equation is called the string Equation (or Douglas equation) 
of type ( , )q p , and appears in the string theory or the theory of 2D quantum gravity [1]-[8]. In the followings, 
we set ( , ) (2, 2 1)q p n= +  for a positive integer n .  

In the case where ( , ) (2,3)q p = , the string equation is written as an ODE satisfied by the potential w  of 

Sturm-Liouville operator 2Q D w= + , and then, by a fractional linear transformation, it is reduced to the first 
Painlevé equation [9]-[11]. In fact, the string equation of type (2,3)  

2 3
2 3[ , ] 1, : , : ,Q P Q D w P D v D v= = + = + +                       (2) 

i.e. 
2

2 2 3 3 2(2 3 ) ( 2 3 ) ( ) 1,v w D v v w D v w v w′ ′′ ′ ′′′ ′′ ′′′ ′− + + − + − − =                   (3) 

is written as an equation 16 4 4 0w ww C w′′′ ′ ′+ + + =  or integrated one 2
13 4 4 0w w C w′′ ′+ + + =  with integral 
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constants 1C  and 2C  by putting 2 1 3
3 3, ,
2 4

v w C v w′ ′′= + =  which is reduced to the first Painlevé equation  

26w w z′′ = +                                        (4) 

by replacement z zα β+ , w wγ δ+  ( , 0)α γ ≠  with 1/52α −= , 34γ α= − , 2
1 2/ 3C Cβ = − ,

12 / 3Cδ = − . 
In the case where ( , ) (2,5)q p = , the string equation  

2 5 3 2
2 3 4 5[ , ] 1, : , :Q P Q D w P D v D v D v D v= = + = + + + +                   (5) 

is similarly reduced to  
(4) 2 3 820 10 40 8

3
w w w w w aw z′′ ′= + − − −  

by replacement z zα β+ , w wγ δ+  ( , 0)α γ ≠  with 1/73α −= − , 56γ α=  and suitable , , aβ δ . That 
is the 4th order equation of the first Painlevé hierarchy. 

1.2. The First Painlevé Hierarchy 
Now we recall the definition of the first Painlevé hierarchy. Consider the serial equations  

1[ ] / 4 0nd w z+ + =                                   (6) 

for n∈ , where [ ]nd w  is an expression of a given meromorphic function w  defined by 0[ ] 1d w =  and 

1[ ] [ ]n w nDd w DG d w+ =  with 2 1 1: 8 4wG D D wD D w− − ′= − − . The equations are derived from the singular mani-
fold equation for the KdV hierarchy, and we call them the first Painlevé hierarchy [10] [12] [13]. For example, 

1 10[ ] / 4d w w C= − + , where 10C  is an integral constant. In the followings, each ijC  is also an integral con-
stant.  

If 1n = , we have 2
2 21 1 20[ ] / 4 6 [ ] ,d w w w C d w C′′= − + + +  then 2[ ] / 4 0d w z+ =  essentially coinsides with 

the first Painlevé equation.  
If 2n = , we have (4) 2 3

3 32 2 31 1 30[ ] / 4 20 10 40 [ ] [ ] ,d w w ww w w C d w C d w C′′ ′= − + + − + + +  and then  
(4) 2 3

32 2 31 1 3020 10 40 [ ] [ ] .w ww w w C d w C d w C z′′ ′= + − + + + +                   (7) 

Again, it essentially coinsides with (5), i.e. the 4th order equation of the first Painlevé hierarchy. 
As proved by K. Takasaki [8], the string equation of type (2, 2 1)n +  is equivalent to (6). So, in this article, 

we also call (6) the string equation of type (2, 2 1)n + .  
Note that S. Shimomura [14] proved the theorems as follows.  
Theorem A [14]. Each 1[ ]nd w+  is a differential polynomial of 2n-th order, i.e. each (6) is an ordinary diffe-

rential equation of 2n-th order.  
Theorem B [14]. At each pole 0z z= , the meromorphic solution to (6) has the form  

2
0

( 1) / 2( ) (1)
( )

k kw z O
z z
+

= +
−

 

for some positive integer 0( ) {1,..., }k k z n= ∈ . 
The author proved a theorem similar to Theorem A for the second Painlevé hierarchy [15], and, in its proof, 

auxiliary differential polynomials play important roles. So, for the first Painlevé hierarchy as well, the auxiliary 
differential polynomials should exist. Recall them.  

Theorem C [16]. Define [ ]nc w  by [ ] [ ]n nDc w wDd w= . Then each 1[ ]nc w+  is a differential polynomial of 
2n-th order.  

1.3. Autonomous Limits 

The first Painlevé equation has the autonomous limit [9]. Replacing ( , )w z  by 2 4( , )w z bε ε ε− −+  with a con-
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stant b∈ , and taking limit 0ε → , we obtain 26w w b′′ = +  which is satisfied by the Weierstrass’ elliptic 
function, i.e.  

2 2 2
, ,

1 1 1( ) : ,
( )m n m n

z
z z

  ℘ = + − −Ω Ω  
′Σ  

where , 1 3: 2 2m n m nω ωΩ = +  for some 1 3, \ {0}ω ω ∈  satisfying 1 3/ : { | Im 0}H z zω ω ∈ = ∈ > . Here ′Σ  

means the sum for 2( , ) \ {(0,0)}m n ∈ . It is well-known that ( )z℘  is a doubly periodic meromorphic func-
tion with two fundamental periods 1 32 , 2ω ω . ( )z℘  satisfies the differential equation  

2 3
2 3( ) 4 ( ) ( )z z g z g′℘ = ℘ − ℘ −  and then  

2
2( ) 6 ( ) / 2z z g′′℘ = ℘ − ,  

where  

2 34 6
, ,

1 1 1 1: , : .
60 140m n m n

g g′ ′= Σ = Σ
Ω Ω

 

For 2n = , a similar result is valid, i.e.  
Theorem D [17]. The 4th order equation of the first Painlevé hierarchy with suitable parameters  

(4) 2 3 820 10 40 8
3

w ww w w aw z′′ ′= + − − −                          (8) 

is reduced to the autonomous equation  

(4) 2 3 820 10 40 8
3

w ww w w aw b′′ ′= + − − −                          (9) 

by replacing ( , , )w z a  by 2 6 4( , , )w z b aε ε ε ε− − −+ , and taking the limit 0ε → . 
Note that the Equation (8) is obtained as a section of the most degenerated 2D Garnier system [18] (see also 

[19] [20]). The following theorem is not trivial but natural if we consider Theorem D together with Theorem B.  
Theorem E [17]. For suitable 2( , )a b ∈ , the autonomous Equation (9) has a solution concretely described 

as  
( ) ( ),3 ( ).w z z z=℘ ℘  

1.4. Results 
A result similar to Theorem D is valid for n∈ . 

Theorem 1.1. The autonomous limit of the string equation of type (2, 2 1)n +  is given by  

1[ ] / 4 0,nd w b+ + =                                  (10) 

where b∈  is a complex parameter.  
Proof. Note that 1[ ]nd w+  has the form  

1 1,
0

[ ] [terms with weight 2( 1)] [ ]n n j j
j n

d w n C d w+ +
≤ ≤

= − + + ∑  

with the weight [14] wt  defined by wt( ) 1z =  and wt( ) 2w = − . After replacement  
2( 1) 2 2( 1 )

1, 0 1, 0( , ,{ } ) ( , ,{ } )n n j
n j j n n j j nz w C z b w Cε ε ε ε− + − − + −
+ ≤ ≤ + ≤ ≤+ , 

taking the limit 0ε → , we obtain the conclusion.   
For the autonomous limit Equation (10), each auxiliary differential polynomial obtained in Theorem C has 

clear meaning. 
Theorem 1.2. The differential polynomial 1[ ]nc w+  is the first integral of (10).  

Proof. By definition, 1 1
1 1 1 1[ ] [ ] [ ] [ ]n n n nc w D wDd w wd w D w d w− −
+ + + +′= = − . Using this relation together with the 
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equation 1[ ] / 4 0nd w b+ + = ,we obtain 1[ ] const.nc w+ =    
Now we extend Theorem E to the case where  
Theorem 1.3. Weierstrass’ elliptic function ( )z℘  is a solution to (10) with suitable parameters.  
Moreover, we can prove the theorem as follows:  
Theorem 1.4. For each integer k  satisfying 1 k n≤ ≤ , 

( 1)( ) ( )
2

k kw z z+
= ℘  

is a solution to (10) with suitable parameters.  
The proofs of these two theorems are given in the next section.  

2. Proofs of Theorem 1.3 and 1.4 
2.1. Proof of Theorem 1.3 
Let all of 1,n jC + ’s for 1 j n≤ ≤  vanish. Take w  satisfying  

2
2[ ] / 4 6 :const.d w w w k′′= − + =  

with suitable 20C , then we have  
2

3 2 4 3[ ] [ ] / 4 , [ ] [ ] / 4 ,w wd w G d w kw d w G d w k= = − = =  

2 3
5 4 6 5[ ] [ ] / 4 , [ ] [ ] / 4 ,w wd w G d w k w d w G d w k= = − = =  

3 4
7 6 8 7[ ] [ ] / 4 , [ ] [ ] / 4 ,w wd w G d w k w d w G d w k= = − = =  

4 5
9 8 10 9[ ] [ ] / 4 , [ ] [ ] / 4 ,w wd w G d w k w d w G d w k= = − = =  

   

with suitable 1,0nC + ’s. Putting 0k = , i.e. choosing ( )w z=℘  as it satisfies 26w w′′ = ,we obtain the conclu-
sion.   

2.2. Proof of Theorem 1.4 
Theorem 1.4 immediately follows from the following lemma.  

Lemma. For every positive integer k , ( 1)
2

( 1,..., )k k
jG j k+ ℘

℘ =  is described by some polynomial of ℘ , and 

its degree is as follows: 

( 1)
2

1

1

( ) for 1 1,
( ) for .k k

j
j

j

O j kG
O j k+

+

−℘

 ℘ ≤ ≤ −
℘ = 

℘ =
 

Proof. Using 2 3
2 34 g g′℘ = ℘ − ℘−  and 2

26 / 2g′′℘ = ℘ − ,  

( 1)
2

1 1 2
2 3

1 1{4 ( 1) 6 4 ( 1)(1 )} ( ) ( 1) const.
2( 1) 2k k

j j j jG j j j k k j j g j j g
j+

+ − −

℘
℘ = − + − + − ℘ − − ℘ − − ℘ +

+
 

So, if j k= , the coefficient of 1k+℘  vanishes as follows:  
14 ( 1) 6 4 ( 1)(1 ) 4 ( 1) 6 4 ( 1) 2 0.

2( 1)
k k k k k k k k k k k

k
− + − + − = − + − + + =

+
 

Thus, we have  

( 1)
2

1( ).k k
k kG O+

−

℘
℘ = ℘                                      

Note that 1
( 1)[ ]

2n
k kd +

+
℘  is a polynomial in ℘  of degree n , and all terms but one of top degree have 
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integral constants. Therefore, if the term of top degree vanishes, we can make all terms vanish with suitable se-
lection of integral constants. Thus, Theorem 1.4 is established.  

3. Discussion 
The results of this article are summarized as follows: we obtained the autonomous limit of the string equation of 
type (2, 2 1)n +  with a first integral 1[ ]nc w+ , and gave its special solutions written by Weierstrass’ elliptic 

function as ( 1)( ) ( )
2

k kw z z+
= ℘  for 1 k n≤ ≤ .  

Of course, poles of these solutions are uniform, i.e. every pole 0z z=  of ( 1)( ) ( )
2

k kw z z+
= ℘  gives the 

Laurent expansion with the same dominant term 2
0

( 1) / 2( ) (1)
( )

k kw z O
z z
+

= +
−

. However, the possibility of the ex-

istence of solution without uniformity is not excluded. Even two types of poles allow us infinitely many patterns. 
So, we have problems on the patterns of poles. Can we construct elliptic function solutions to the autonomous 

limit of the string equation of type (2,5)  (or type (2, 2 1)n +  for 2n ≥ ) with both types of pole 2
0

1 (1)
( )

O
z z

+
−

 

and 2
0

3 (1)
( )

O
z z

+
−

? Is any distribution of the two (or more) kinds of poles admitted? If not, how many or 

what kind of patterns are admitted? 
Another remark should be given. T. Oshima and H. Sekiguchi [21] studied the commutator equation 

[ , ] 0Q P =  of partial differential operators ,Q P  invariant under the action of a Weyl group, and obtained 
many of elliptic function solutions. Note that the autonomous limit of [ , ] 1Q P =  means [ , ] 0Q P = . The fact  
implies that, in view of the string theory, the first Painlevé equation is not only a nonautonomization but also a 
quantization of the Weierstrass’ elliptic function. Relation between their solutions and our special solutions 
should be studied in the future. It may yield a new kind of quantization of KdV equation or hierarchy. Auto-
nomous limit is a kind of approximation of the differential equation. Therefore, the solutions of the autonomous 
limit equation gives us information on the asymptotics of the nonautonomous equation, as well as does on the 
first Painlevé equation. Moreover, if all of the solutions to the autonomous limit equation are determined, it con-
tributes the argument on the irreducibility of the string equation in the sence of the differential Galois theory, as 
well as on the irreduciblity of the first Painlevé equation.  
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