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Abstract 
We here present a relativistic model for a spherically symmetric anisotropic fluid to study the 
various factors of physical and thermal phenomenon during the evolution of a collapsing star dis-
sipating energy in the form of radial heat flow. We also proposed a table of some new parametric 
class of solutions which will be useful for constructing the new compact star models. The con-
structed algorithm obeys all the relevant requirements of a realistic model and matched with 
Vaidya exterior metric over the boundary. At the initial stage the interior solutions represent a 
static configuration of perfect fluid which then gradually starts evolving into radiating collapse. 
The apparent luminosity as observed by the distant observer at rest at infinity and the effective 
surface temperature are zero in remote past at the instant when collapse begins and at the stage 
when collapsing configuration reaches the horizon of the black hole. 
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1. Introduction 
In modern Astrophysics and Cosmology, a detailed description of gravitational collapse of massive stars and the 
modeling of the structure of compact objects such as Neutron star, Quasar, Supernovae, Black hole etc. under 
various conditions is the most interesting phenomena. The final outcome of the gravitational collapse is an 
important open issue in relativistic astrophysics (Joshi and Malafarina [1] and references therein). There is no 
iron-clad evidence that black hole candidates are indeed black holes. There is no logic that prevents existence of 
naked singularities and as per Cosmic Censorship Conjecture Penrose [2]; himself considers this an open 
question. Understanding the characteristics and features of final fate of a collapsing system is important from 
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both the perspectives theoretical as well as observational (Virbhadra [3] and references therein). 
In order to construct the new realistic models, it is desirable to solve the Einstein's field equations but due to 

non linear character of the equations it is a very difficult task; various efforts have been made in this direction. 
The maiden exact solution of spherical gravitational collapse was due to Oppenheimer and Snyder [4] and which 
apparently suggested that such a collapse results in formation of Black Holes. Taking into account the outgoing 
radiation from collapsing spherical fluid Vaidya [5] [6] initiated the problem describing the exterior field and 
Santos [7] presented the junction conditions of collapsing spherically symmetric shear-free non-adiabatic fluid 
with radial heat flow. 

Herrera and Santos [8] and Mitra [9] established the fact that gravitational collapse is a high energy 
dissipating process which plays a dominant role in the formation and evolution of stars. Historically the dissi- 
pation of energy from collapsing fluid distribution is described in two limiting cases. The first case describes the 
free streaming approximation (pure radiation) while second one is diffusion approximation (heat flow). The 
prominent work in pure radiation is due to Tewari and he solved the Einstein’s field equations with a new 
approach and developed the Quasar models [10]-[13]. While a number of realistic models in diffusion 
approximation with the impact of various factors such as inhomogeneity, anisotropy, viscosity, electromagnetic 
field and various dissipative processes on the evolution are critically discussed by de Oliveira et al. [14]; Bonnor 
et al. [15]; Herrera et al. [16]; Maharaj and Govender [17]; Ivanov [18]; Tewari [19] [20]; Pinheiro and Chan 
[21]; Tewari and Charan [22] [23]; Sharif and Iftikhar [24]. 

Bowers and Liang [25] did the pioneering work in the field of anisotropic fluid models which enabled 
researchers to study the effect of anisotropy on the physical behavior of a star undergoing gravitational collapse. 
Herrera and Santos [26] explored the properties of anisotropic self-gravitating spheres using the perturbation 
method. Herrera et al. [27] investigated that the local pressure anisotropy is one of the responsible factors for 
inhomogeneities in energy density and in this series some interesting noticeable work is reported by Ivanov [28] 
[29]; Reddy et al. [30]; Tewari and Charan [31] [32]; Govender et al. [33] and a different approach with a new 
concept Horizon function is very recently introduced for anisotropic fluids by Ivanov [34] [35]. 

The main objective of this work is to present a simple anisotropic collapsing radiating fluid model and discuss 
all the relevant thermal and physical conditions by taking Tewari and Charan [31] solution as seed solution and 
we propose some new exact solutions for this parametric class of solution which are useful in construction of the 
compact stars models. The interior metric is spherically symmetric, shear-free, anisotropic radiating away its 
energy in the form of radial heat and contracting in size during the process of collapse. The interior metric 
matched with the Vaidya exterior metric [6] over the boundary. Final fate of our model is the formation of a 
black hole. The paper is organised as: In Section 2 the space-times and the junction conditions for collapsing 
system are given. In Section 3 solution of Einstein’s field equations is presented. Section 4 describes a 
parametric class of solution and some new solutions. In Section 5 detailed study of the model in which we have 
obtained expressions of various physical parameters is described. Section 6 contains the temperature profile of 
the collapsing body. Finally in Section 7 some concluding remarks have been made.  

2. The Space-Times and Junction Conditions  
The interior space-time of a shear-free spherically symmetric fluid with the coordinates ( ), , ,θ φt r  is given by  

( ) ( ) ( ){ }2 2 2 2 2 2 2 2 2d , d , d d sin dθ θ φ− = − + + +s A r t t B r t r r                  (1) 

The energy-momentum tensor for the matter distribution with anisotropy in pressure is  

( ) ( )µν µ ν µν µ ν µ ν ν µ= + + + − + + t t r tT p w w p g p p x x q w q w                  (2) 

where   is the energy density of the fluid, rp  the radial pressure, tp  the tangential pressure, µw  is the four- 
velocity, µq  the radial heat flow vector and µx  is a unit space like four vector along the radial direction. 

Assuming comoving coordinates, we have 0
1µ µδ=w
A

. The heat flow vector µq  is orthogonal to the 

velocity vector so that 0µ
µ =q w  and takes the form 1

µ µδ=q q . 
Since the interior fluid is radiating energy in the form of heat therefore the exterior space-time of a collapsing 

radiating star is described by Vaidya’s outgoing exterior metric [6] 
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( ) ( )2 2 2 2 2 22
d 1 d 2d d d sin dθ θ φ+

 
= − − − + + 

 

M v
s v R v R

R
                    (3) 

where v is the retarded time and ( )M v  is the Vaidya mass. 
The junction conditions for radiating star matching two line elements (1) and (3) at the boundary continuously 

across a spherically symmetric time-like hyper surface Σ  are very well known and given by Santos [7]  

( ) ( )ΣΣ
=rB R v                                      (4) 

( ) ( )Σ Σ
=rp qB                                      (5) 

( ) ( )
3 2 3 2

2
2,

22Σ
Σ

 ′
′= = − − 

 

r BB r Bm r t M v r B
BA

                        (6) 

where Σm  is the mass function calculated in the interior at Σ=r r  (Cahill et al. [36]; Misner and Sharp [37]). 
The primes and dots stand for differentiation with respect to r and t respectively. 

Some other physical and thermal features of the collapsing matter are the surface luminosity and the boundary 
redshift Σz  observed on Σ  are  

{ }2 3

2
κ

Σ Σ
=L r B q                                   (7) 

1

1 1
−

Σ
Σ

′ 
= + + − 
 

rB rBz
B A

                               (8) 

The total luminosity for an observer at rest at infinity is  

( )2
d
d 1

Σ
∞

Σ

= − =
+

LML
v z

                                (9) 

3. Solution of Einstein’s Field Equations 
In order to solve the Non-trivial Einstein’s field equations which are generated by (1) and (2), we choose a 
separable form of the metric coefficients given in (1) into functions of r and t coordinates as ( ) ( ) ( )0, =A r t A r g t  

and ( ) ( ) ( )0, =B r t B r f t . The coupling constant in geometrized units is taken as ( )8π . . 1κ = = =i e G c  and in 
view of (1) and (2) with the help of separable metric coefficients we get the following expressions for field 
equations  

2
0
2 2 2 2

0

3 f
f A g f

κ = +


                                    (10) 

( ) 2
0

2 2 2 2
0

1 2 2κ
 

= + − − + 
 

  

r
r

p f f fgp
f fgf A g f

                         (11) 

( ) 2
0

2 2 2 2
0

1 2 2κ
 

= + − − + 
 

  

t
t

p f f fgp
f fgf A g f

                           (12) 

0
2 2 3
0 0

2κ
′

= −
A fq

A B gf
                                    (13) 

where  
2

0 0 0
0 2 2

0 00 0

2 41  ′′ ′ ′
= − − + 

 


B B B
B rBB B

                                (14) 
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( )
2

0 0 0 0 0
2 20

0 0 0 00 0

2 2 21  ′ ′ ′ ′ ′
= + + + 

 
r

B B A B Ap
rB A B rAB B

                         (15) 

( )
2

0 0 0 0 0
2 20

0 0 0 00 0

1  ′′ ′ ′ ′′ ′
= − + + + 

 
t

B B B A Ap
B rB A rAB B

                          (16) 

Here the quantities with the suffix 0 corresponds to the static star model with metric components 
( ) ( )0 0, A r B r . 

In the absence of non-adiabatic dissipative forces the Equation (5), ( ) ( )Σ Σ
=rp qB , reduces to the condition 

( )0 0
Σ

  = rp  and yields at Σ Σ= =r r R  

2

2 2
2 2 2α

+ − =
   

f f gf gf
f gff f

                             (17) 

where  

0

0

α
Σ

′ 
=  
 

A
B

                                    (18) 

Tewari [20] by assuming ( ) ( )=g t f t  solved the Equation (17) and the solution so obtained is identical to 

the solution presented by de Oliveira et al. [14] and Bonnor et al. [15] with ( ) 1=g t .  

( )2 1α= − −f f f                                 (19) 

( )1 ln 1
α

= −t f                                   (20) 

Here we observed that the function ( )f t  decreases monotonically from the value ( ) 1=f t  at = −∞t  to 

( ) 0=f t  at 0=t . It interpret that the collapse begins in the remote past and gradually starts evolve into 
radiating collapse. 

4. The New Parametric Class of Solution and Some Proposed Solutions  
To find a new parametric class of exact solutions of pressure anisotropy equation which is created by the Equa- 
tions (11) and (12), Tewari and Charan [31] assumed that the anisotropy evolves  

( ) ( ) ( )
( ) ( )2 2

0

,
δ

κ − = ∆ =t r
r

p p r t
B r f t

 and got the following time independent differential equation  

( )
2

0 0 0 0 0 0 0
2

0 0 0 0 0 00

2 2 0δ
′′ ′′ ′ ′ ′ ′ ′
+ − − − − − =

A B A B B A B r
A B rA rB A BB

                     (21) 

Making an adhoc relationship between the variables in (21), the above mentioned authors obtained the 
following solution  

( ) ( )2 2 1
0 2 1 11 1 += + +

n
lA D D r C r                             (22) 

( )
1

2 1
0 2 11 += + lB C C r                                  (23) 

( ) ( )
( ) ( ) ( )

2
1 1

2 2
1 1

2 2 4
1 1 1

δ
−

=
+ + +

n D C rr
l D r C r

                          (24) 

where 1 2 1, , , ,n l C C D  and 2D  are constants and  
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( ) ( )
1

2 21 3 10 17
2
  = + ± + + 
  

n l l l                              (25) 

where n is real if 5 2 2≥ − +l  or 5 2 2≤ − −l . 
For different values of n or l Equations (22) and (23) give a variety of solutions and they are categorized as 

isotropic pressure and homogeneous density, isotropic pressure and inhomogeneous density while some 
inhomogeneous density and anisotropic pressure. For 0=n  we get the homogeneous density and anisotropic 
pressure, for 1= −n  we get the isotropic pressure and homogeneous density and in this case solution reduces to 
Banerjee et al. [38] and for 1=n  we get isotropic pressure and inhomogeneous density. In order to maintain 
the inhomogeniety and anisotropy for a collapsing radiating star, a Horizon-free case has been studied by Tewari 
and Charan [31] for 1 2= − −n  and in an other study the same authors presented a Black hole model for 

2= −n  [32]. Since a number of solutions can be obtained with the above mentioned parametric class of 
solution, so keeping this point in mind we here find some exact solutions and listed them in a table and they will 
be fruitful for further study to construct the various models of radiating and static stars. 

5. Physical and Thermal Analysis of a Specific Model  
To construct a new relativistic model, in the present study we assume 0=n , to maintain the anisotropy for a 
collapsing radiating star and using (22)-(24) we get  

( )2
0 2 11= +A D D r                                   (26) 

( ) 12
0 2 11

−
= +B C C r                                   (27) 

( ) ( ) ( )
2

1 1
2 2

1 1

8
1 1

δ =
+ +

D C rr
D r C r

                               (28) 

1
0 2

2

12
=

C
C

                                      (29) 

( )
( )
( )

2 4
1 11

20 2
2 1 1

14 1
1

 −
 = −
 + 

r

D C rCp
C C D r

                             (30) 

( ) ( )
( )

22
1 11

20 2
2 1 1

14 1
1

 + = −
 +
 

t

D C rCp
C C D r

                             (31) 

The junction condition ( ){ }0 0
Σ
=rp  gives  

1
1 2 2 4

1 11 Σ Σ

=
− −

CD
C r C r

                                    (32) 

Here from (30) and (31), we are seeing that at the centre radial and transverse pressures are equal and 
anisotropy vanishes there. 

A physically reasonable solution should satisfy certain energy conditions and they are: 
The central values of both the pressures, energy density and gravitational potential should be non-zero 

positive definite and the solution should have monotonically decreasing expressions for the pressures and 
density with the increase of r. Thus in view of these conditions, we write the bounds of model parameters 

1 2 20, 0, 0> > >C C D  and 1 1 12 4< <C D C . 
Now using (10)-(13), (19), (26) and (27) the expressions for , , r tp p  and q reduce the following  

( )
( )

2

0
2 23 2

2 1

12 1

1

α
κ

−
= +

 + 




f

f f D D r
                               (33) 
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( ) ( )
( )

2

0
2 5 222

2 1

4 1

1

α
κ

−
= +

 + 

r
r

fp
p

f
f D D r

                              (34) 

( ) ( )
( )

2

0
2 5 222

2 1

4 1

1

α
κ

−
= +

 + 

t
t

fp
p

f
f D D r

                              (35) 

( )
( )

( )22
1 1

2 72 2
22 2 1

2 18 1

1

α
κ

−+
=

+

fD r C r
q

D C D r f
                              (36) 

We can see the physical parameters , , r tp p  are finite, positive, monotonically decreasing at any instant 
with respect to radial coordinate for 0 Σ≤ ≤r r . 

The fluid collapse rate ;
µ
µΘ = w  with the help of (1), (19), (26) and (27) is  

( )
( )

3
22

2 1

6 1

1

α− −
Θ =

 + 

f

f D D r
                                   (37) 

where by using (18), (26) and (27) we have  

( )
( )

2
1 2 1

2 2 4
2 1 1

2 1

1
α Σ Σ

Σ Σ

+
=

− −

C D r C r

C C r C r
                                   (38) 

The constant α  is positive for the given range of the parameters 1 2,C C  and 2D . 
The total energy entrapped inside the surface Σ  is given by using (6), (18), (26), (27) and (38)  

( )
( )

( ) ( )

22 5
1 2

03 22 2
1 1

8 1

1 1

Σ

Σ Σ
Σ

 − = + + −  

C C r f
M v m f

C r C r
                            (39) 

where  

( )
3

1 2
0 32

1

2

1
Σ

Σ

=
+

C C rm
C r

                                      (40) 

Using (4) and (27), we get the physical radius of the collapsing radiating star as  

( ) ( ) 12
2 11

−

Σ Σ Σ= +R v r C C r f                                   (41) 

Using (7)-(9), (18), (26), (27) and (38) the expressions for the surface luminosity, the boundary redshift on Σ  
and the luminosity for distant observer at rest at infinity respectively are  

( )
( )2

2
1

2 4
1

1
8

1
Σ

Σ
Σ

  −
 =
 − 

fC rL
fC r

                                (42) 

( )21
Σ

∞

Σ

=
+

LL
z

                                    (43) 

( )
( )

122 2
1 1

2 4
1

1 4
1

1

−

Σ Σ
Σ

Σ
Σ

 + − = −
 −
 

f C r C r
z

f C r
                             (44) 
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To obtain the black hole formation time, the surface redshift goes to infinity, for this the term in the 
parentheses of (44) goes to zero and we have  

( )
2

1
22

1

4

1
Σ

Σ

=
+

BH
C rf
C r

                                    (45) 

( )

2
2

1
2

1

11 ln
1α

Σ

Σ

 − =
 + 

BH
C rt
C r

                                  (46) 

6. Temperature Profile for Collapsing Radiating Star  
To investigate the temperature inside and on the boundary surface, we utilize temperature gradient law (Israel et 
al. [39]; Maartens [40]; and Martinez [41])  

( ) ( ); ,
µν µ ν α µ µν µ ν

ν α ν ντ  + + = − + + g w w w q q g w w T Tw                     (47) 

where   is the thermal conductivity and τ  is the relaxation time. To get a simple estimate of the temperature 
evolution, we set relaxation time as zero in above expression and obtained  

0 0
2 2 2 2 4

00 0 0

21 ′ ′ 
′= − + = − 

 



 A A fq T T
AB f A B f

                           (48) 

The effective surface temperature observed by external observer can be calculated from the expression 
(Schwarzschild [42])  

( ) ( )
( )

( )

2 2
4 1

2 2 5 2 22 2
0 2 1

1161 1
1π π 1δ δ

Σ
Σ ∞

ΣΣΣ

−  = = 
+−  

fC rT L
f zrB f C C r

                    (49) 

where for photons the constant δ  is given by ( ) ( )2 4 3π 15δ = k , here k and   denoting respectively 
Boltzmann and Plank constants. Choosing 3Ω =  which represents radiation interaction with matter through 
the diffusive approximation (Misner and Sharp [43]. 

The arbitrary function ( )0T t  is determined by using (48) and (49) as  

( )
( ) ( ) ( )

( )

3 22 2 2
2 1 2 1

0 3 2 2 5 2 2

1 1 2 1 116 1
3 π 1

αα
γ δ

Σ
Σ Σ

      + − + −      = +   
+   

   

D D r f D D r f
T t

k f r f z
        (50) 

Temperature distribution throughout the interior of the collapsing radiating star is given by  

( )
( ) ( )

( )04
4 3 222

2 12 1

116
3 11

α
γ

 − = −  + +     

fT t
T

fD D rD D r
                     (51) 

It follows that the surface temperature of the collapsing star tends to zero at the beginning of the collapse 
[ ]1→f  and the stage of formation of black hole [ ]Σ → ∞z . 

7. Conclusion  
We here presented a new radiating fluid model collapsing in the influence of its own gravity using Tewari and 
Charan [31] solution as seed solution. The interior fluid is spherically symmetric shear-free anisotropic and 
radiating away its energy in the form of radial heat flow. We have obtained a class of exact solutions by 
assigning different values to the parameter n and proposed solutions are listed in the Table 1. Keeping in mind 
pressure anisotropy a simple radiating star model for 0=n  studied in detail. Physical and thermal features of 
the model are significantly sound as it corresponds to well-behaved nature for the fluid density, both the radial  



B. C. Tewari et al. 
 

 
162 

Table 1. Parametric class of solutions.                                                                       

S.N. n l 0A  0B  ( )δ r  

1 5 41
2

±  2 ( )( )
5 41

2 2 6
2 1 11 1

±

+ +D D r C r  ( )
1

2 3
2 11+C C r  ( )( )

2
1 1

2 2
1 1

43 41
3 1 1

 ±
   + + 

D C r
D r C r

 

2 2 7±  1 ( )( )
2 7

2 2 2
2 1 11 1

±

+ +D D r C r  ( )
1

2 2
2 11+C C r  ( ) ( )( )

2
1 1

2 2
1 1

4
1 7

1 1
±

+ +
D C r

D r C r
 

3 3 17
2

±  0 ( )( )
3 17

2 2 2
2 1 11 1

±

+ +D D r C r  ( )2
2 11+C C r  ( ) ( )( )

2
1 1

2 2
1 1

4
1 17

1 1
±

+ +
D C r

D r C r
 

4 1 2− +  5 2 2− +  ( )( )
2

2 2 4
2 1 11 1

−

+ +D D r C r  ( )
( )2 2

2 4
2 11

− +

+C C r  ( )( )
2

1 1
2 2

1 1

4
1 1+ +

D C r
D r C r

 

5 0 −2 ( )2
2 11+D D r  ( ) 12

2 11
−

+C C r  ( )( )
2

1 1
2 2

1 1

8
1 1+ +

D C r
D r C r

 

6 1 −2 ( )( ) 12 2
2 1 11 1

−
+ +D D r C r  ( ) 12

2 11
−

+C C r  0 

7 1 2− −  5 2 2− −  ( )( )
2

2 2 4
2 1 11 1+ +D D r C r  ( )

( )2 2
2 4

2 11
− +

+C C r  ( )( )
2

1 1
2 2

1 1

4
1 1+ +

D C r
D r C r

 

8 −2 −8 ( )( )
2

2 2 7
2 1 11 1+ +D D r C r  ( )

1
2 7

2 11
−

+C C r  ( )( )
2

1 1
2 2

1 1

24
7 1 1+ +

D C r
D r C r

 

9 −3 −8 ( )( )
3

2 2 7
2 1 11 1+ +D D r C r  ( )

1
2 7

2 11
−

+C C r  ( )( )
2

1 1
2 2

1 1

32
7 1 1+ +

D C r
D r C r

 

10 −4 26
3

−  ( )( )
12

2 2 23
2 1 11 1+ +D D r C r  ( )

3
2 23

2 11
−

+C C r  ( )( )
2

1 1
2 2

1 1

120
23 1 1+ +

D C r
D r C r

 

11 5
3

−  26
3

−  ( )( )
5

2 2 23
2 1 11 1+ +D D r C r  ( )

3
2 23

2 11
−

+C C r  ( )( )
2

1 1
2 2

1 1

64
23 1 1+ +

D C r
D r C r

 

12 −5 19
2

−  ( )( )
10

2 2 17
2 1 11 1+ +D D r C r  ( )

2
2 17

2 11
−

+C C r  ( )( )
2

1 1
2 2

1 1

96
17 1 1+ +

D C r
D r C r

 

13 3
2

−  19
2

−  ( )( )
3

2 2 17
2 1 11 1+ +D D r C r  ( )

2
2 17

2 11
−

+C C r  ( )( )
2

1 1
2 2

1 1

40
17 1 1+ +

D C r
D r C r

 

14 −6 52
5

−  ( )( )
30

2 2 47
2 1 11 1+ +D D r C r  ( )

5
2 47

2 11
−

+C C r  ( )( )
2

1 1
2 2

1 1

280
47 1 1+ +

D C r
D r C r

 

15 7
5

−  52
5

−  ( )( )
7

2 2 47
2 1 11 1+ +D D r C r  ( )

5
2 47

2 11
−

+C C r  ( )( )
2

1 1
2 2

1 1

96
47 1 1+ +

D C r
D r C r

 

16 −7 34
3

−  ( )( )
21

2 2 31
2 1 11 1+ +D D r C r  ( )

3
2 31

2 11
−

+C C r  ( )( )
2

1 1
2 2

1 1

192
31 1 1+ +

D C r
D r C r

 

17 4
3

−  34
3

−  ( )( )
4

2 2 31
2 1 11 1+ +D D r C r  ( )

3
2 31

2 11
−

+C C r  ( )( )
2

1 1
2 2

1 1

56
31 1 1+ +

D C r
D r C r

 

18 −8 86
7

−  ( )( )
56

2 2 79
2 1 11 1+ +D D r C r  ( )

7
2 79

2 11
−

+C C r  ( )( )
2

1 1
2 2

1 1

504
79 1 1+ +

D C r
D r C r

 

19 9
7

−  86
7

−  ( )( )
9

2 2 79
2 1 11 1+ +D D r C r  ( )

7
2 79

2 11
−

+C C r  ( )( )
2

1 1
2 2

1 1

128
79 1 1+ +

D C r
D r C r
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Continued 

20 −9 53
4

−  ( )( )
36

2 2 49
2 1 11 1+ +D D r C r  ( )

4
2 49

2 11
−

+C C r  ( )( )
2

1 1
2 2

1 1

320
49 1 1+ +

D C r
D r C r

 

21 5
4

−  53
4

−  ( )( )
5

2 2 49
2 1 11 1+ +D D r C r  ( )

4
2 49

2 11
−

+C C r  ( )( )
2

1 1
2 2

1 1

72
49 1 1+ +

D C r
D r C r

 

22 −10 128
9

−  ( )( )
90

2 2 119
2 1 11 1+ +D D r C r  ( )

9
2 119

2 11
−

+C C r  ( )( )
2

1 1
2 2

1 1

792
119 1 1+ +

D C r
D r C r

 

23 11
9

−  128
9

−  ( )( )
11

2 2 119
2 1 11 1+ +D D r C r  ( )

9
2 119

2 11
−

+C C r  ( )( )
2

1 1
2 2

1 1

160
119 1 1+ +

D C r
D r C r

 

24 −11 76
5

−  ( )( )
55

2 2 71
2 1 11 1+ +D D r C r  ( )

5
2 71

2 11
−

+C C r  ( )( )
2

1 1
2 2

1 1

480
71 1 1+ +

D C r
D r C r

 

25 6
5

−  76
5

−  ( )( )
6

2 2 71
2 1 11 1+ +D D r C r  ( )

5
2 71

2 11
−

+C C r  ( )( )
2

1 1
2 2

1 1

88
71 1 1+ +

D C r
D r C r

 

 
and tangential pressures and the flux density throughout the fluid sphere. We observed that the function ( )f t  

decreases monotonically from the value ( ) 1=f t  at = −∞t  to ( ) 0=f t  at 0=t . The apparent luminosity  
as observed by the distant observer at rest at infinity is zero in remote past at the instance when the collapse 
begins and at the stage of black hole formation. 

Particularly we have constructed a radiating star model by taking suitable parameters 1 0.01=C , 2 4=C , 

2 0.5=D , 1 13=D C . Initially when ( ) 1→f t  both the mass and physical radius of a core of pre Supernovae 
were 5 ΘM  and 15.8 km and they remain 2.6 ΘM  and 6.30 km respectively at the time of black hole formation.  
The time of black hole formation is observed as 0.62996 S. We observed that the model is well behaved for the 
chosen constraints and there are a number of such sets for which the solution is well behaved. Thus the 
parametric class of solution and constructed table is very fruitful for further study of radiating and static compact 
star’s modeling. The surface temperature of the collapsing radiating star tends to zero at the beginning of the  
collapse [ ]1→f  and the stage of formation of black hole [ ]Σ → ∞z . 
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