
Circuits and Systems, 2016, 7, 551-561
Published Online April 2016 in SciRes. http://www.scirp.org/journal/cs
http://dx.doi.org/10.4236/cs.2016.75047

How to cite this paper: Indumathi, G., Ananthakirupa, V.P.M.B.A.A. and Ramesh, M. (2016) Architectural Design of 32 Bit
Polar Encoder. Circuits and Systems, 7, 551-561. http://dx.doi.org/10.4236/cs.2016.75047

Architectural Design of 32 Bit Polar Encoder
G. Indumathi1, V. P. M. B. Aarthi Alias Ananthakirupa1*, M. Ramesh2
1Department of Electronics and Communication Engineering, Mepco Schlenk Engineering College, Sivakasi,
India
2Department of Electronics and Communication Engineering, Kamaraj College of Engineering and Technology,
Virudhunagar, India

Received 18 February 2016; accepted 26 April 2016; published 29 April 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract

The rapid development in the digital circuit design enhances the applications on very large scale
integration era. Encoders are one among the digital circuits found in all communication systems.
The polar encoding is mainly meant for its channel achieving property. It finds its application in
communications, sensing and information theory. This coding proposed by Erdal Arikan is signif-
icant because of its zero error floors and simple architecture for hardware implementation. In this
paper, a folded polar encoder is designed to start from the fully parallel architecture and proceeds
with its data flow graph, delay requirement calculation, lifetime analysis and register allocation,
which results in a very large scale integration architecture with minimum hardware utilization.
The results are simulated for 4 and 8 parallel folded 32-bit polar encoder using Xilinx 14.6 ISIM
and implemented in Virtex 5 field programmable gate array. A comparison is made on fully paral-
lel and various folding techniques based on their resource utilization.

Keywords

Polar Encoder, Folding, Very Large Scale Integration (VLSI) Architecture,
Field Programmable Gate Array (FPGA)

1. Introduction
The polar code belongs to the class of linear block codes. The encoding process can be characterized by the ge-
nerator matrix. The generator matrix GN for code length N or 2 is obtained by applying the nth kronecker power
of the kernel matrix [1].

*Corresponding author.

http://www.scirp.org/journal/cs
http://dx.doi.org/10.4236/cs.2016.75047
http://dx.doi.org/10.4236/cs.2016.75047
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/

G. Indumathi et al.

552

1 0
1 1

F
=

 (1)

Given the generator matrix, the code word x is computed by x = u∙GN, where u denotes the information. The
information vector u is arranged in natural order, whereas the code vector x is in a bit reversed order. The en-
coding complexity of straight forward fully parallel encoder architecture is in the order of (NlogN) for the polar
code of length N and takes n stages. When N = 2n, polar code with the length of 32 bit is implemented with 80
ex-or gates and processed in five stages as shown in Figure 1.

In VLSI architecture, reduction focuses on the minimization of the size of the components. Many techniques
are involved in the minimization process. Some of the addressable techniques are k-map based Boolean expres-
sion method and block optimization method. In general, pipelining can be used in the context of architecture de-
sign [2]-[4]. The pipelining transformation leads to a reduction in the critical path, which can be exploited to

Figure 1. Fully parallel architecture of 32 bit polar encoder.

G. Indumathi et al.

553

either increase the clock speed or sample speed or to reduce the power consumption at the same speed. This in
turn reduces the effective critical path by introducing pipelined latches along the data path. The pipelined tech-
nique can be broadly classified as feed forward and feedback path. The feed forward pipelined encoder structure
consists of 2D commutator followed by ex-or and pass gates for achieving high throughput [5].

The feedback pipelined polar encoder favors for high hardware efficiency rather than high throughput. The
number of ex-or gate is equal to the number of processing stages, whereas the number of delay elements gets
reduced. In parallel processing, multiple outputs are computed in parallel in a clock period. Therefore, the effec-
tive sampling speed is increased by the level of parallelism [6]. This increases the sampling rate by replicating
the hardware so that the several inputs can be processed in parallel and several outputs can be produced at the
same time.

The polar code architecture is discussed [7] using channel combining phase and channel splitting phase. It in-
corporates punctured encoding to shorten the length of polar codes. It is observed that reduction of the memory
constraints can be achieved during practical applications. The application of polar codes and polarization phe-
nomenon for various problems like wire tap channels [8], multiple access channels [9] [10], data compression
[11], and broadcast channels [12] were successful. In addition to the capacity achieving capability, polar codes
have interesting properties like good error floor performance [13]. This suggests that the combination of polar
coding with other coding schemes could eliminate the shortcomings of both, resulting in a powerful coding pa-
radigm. Furthermore, there are many applications for concatenated codes like deep-space communications, opt-
ical transport systems, and magnetic recording channels [14].

In this paper, the parallelism and pipelining have been combined to achieve an effective encoder structure
with minimum registers. This implementation proceeds from the conventional fully parallel 32 bit architecture
and transforming as a data flow graph (DFG), delay requirement table, linear lifetime chart and register alloca-
tion [15]. The flow of this paper proceeds as follows. Section 2 describes the design of four folded 32 bit polar
encoder architecture with each step in detail. Section 3 discusses the architectural design of eight folded polar
encoder. Finally the comparative results for fully parallel, four and eight folded architectures with respect to re-
source utilization are discussed.

2. Four Parallel Folded 32 Bit Polar Encoder
The polar encoder relies on the principle of channel polarization. It is a recursive method used to define the po-
lar codes. A class of codes that can provably achieve the capacity of several classes of channels. It comes under
linear codes. The phenomenon of channel polarization includes channel combining and channel splitting. The
channel WN can be measured up with two parameters namely mutual information which defines the information
capacity and Bhattacharya parameter measures the reliability of the channel.

In synthesizing DSP architectures, it is important to minimize the silicon area of the integrated circuits, which
is achieved by reducing the number of functional units, multiplexers, interconnection wires. This in turn may
lead to an architecture that uses a large number of registers. To avoid this, various techniques can be used to mi-
nimize the number of registers. Folding transformation reduces the hardware utilization by time multiplexing
several operations of the functional unit [16]. The DFG of the 32 bit fully parallel polar encoder can be given as
shown in Figure 2.

3. Folding Transformation
The DFG of the 32 bit polar code is similar to Fast Fourier Transform (FFT), and it uses the kernel matrix in-
stead of butterfly operation. The 4-parallel folded architecture can be realized by placing 2 functional units in
each stage, since each of the functional units compute two bits at a time. Let us consider the four parallel input
sequences in natural order. The initial folding sets can be given as: For stage 1: {P0, P2, P4, P6, P8, P10, P12, P14},
{P1, P3, P5, P7, P9, P11, P13, P15}. In this, the two functional units of stage 1 namely P0 and P1 execute simulta-
neously at the beginning and P2 and P3 at the next cycle. The stage whose index s is less than or equal to log2P,
where P is the level of parallelism and has the same folding set as that of the previous one. The stage 2 has the
same order as those of stage 1, since it performs the operation within the same four inputs. At later stages, the
folding sets are computed by, the property that the functional unit that process a pair of inputs whose indices
differ by 2(s−1) is exploited [15]. Thus the folding set of stage 2 can be given as {Q0, Q2, Q4, Q6, Q8, Q10, Q12,
Q14}, {Q1, Q3, Q5, Q7, Q9, Q11, Q13, Q15}. In the stage 3, the indices of the two data differ by a factor of four,

G. Indumathi et al.

554

Figure 2. Data flow graph of 32 bit polar encoder.

thus cyclic shifting of four bits right by one can be done by inserting a delay of one time unit. Thus the folding
sets of stage 3 are given by {R14, R0, R2, R4, R6, R8, R10, R12}, {R15, R1, R3, R5, R7, R9, R11, R13}. The folding
sets of stage 4 and stage 5 can be obtained by cyclic shifting of stage 3 by two in order to enable full utilization
of functional units with adjacent iterations. The folding sets of stage 4 and stage 5 can be given as {S10, S12, S14,
S0, S2, S4, S6, S8}, {S11, S13, S15, S1, S3, S5, S7, S9} and {T2, T4, T6, T8, T10, T12, T14, T0}, {T3, T5, T7, T9, T11, T13,
T15, T1} respectively.

4. Delay Requirement Calculation
The number of delay element required in the folded architecture [3] can be computed

()ijD W Fd t s= + − (2)

where Wij is an edge from the functional unit S to the functional unit T, having the delay d where t and s denote
the position in the folding set corresponding to T and S respectively. The delay requirement of four folded 32 bit
polar encoder can be given as shown in Table 1.

G. Indumathi et al.

555

Table 1. Original delay requirement D(Wij) for 4-parallel folded Polar encoder.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

D(W1j) 0

D(W2j) 1 1 2 2 0 0 1 1 1 1 2 2 0 0 1 1 1 1 2 2 0 0 1 1 1 1 −6 −6 0 0 −7 −7

D(W3j) 2 2 2 2 4 4 4 4 0 0 0 0 2 2 2 2 2 2 −6 −6 −4 −4 −4 −4 0 0 0 0 −6 −6 2 2

D(W4j) 4 4 −4 −4 −4 −4 −4 −4 −0 −0 −0 −0 −0 −0 −0 −0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4

In Table 1, some edges have negative delays. To have a feasible folded architecture the delay should be

greater than or equal to zero for all the edges. Thus we prefer re-timing or pipelining methods for the fully pa-
rallel structure to ensure non negative delays. In this, the negative delay should be compensated by inserting at
least one delay element to make the value of Equation (2) non negative. The polar encoder utilizes the ex-or op-
eration, and the two inputs should pass through the same number of delay elements. If they are different, addi-
tional delays are included to match them. The DFG is pipelined by inserting delay elements, and the red line in-
dicates the pipeline cut-set associated with 4-folded architecture. Thus the recalculated delay is shown in Table
2.

The 32 bit polar encoder with four parallel folded structure can be implemented with 10 functional units and
28 delay elements.

5. Lifetime Analysis
The number of delay elements can be reduced by implementing lifetime analysis for the folded architecture [16].
The linear variable chart represents the lifetime of every variable as in Figure 3. In this, all the edges starting
from stage 1 have zero delay. Therefore W2j, W3j and W4j are presented. Here W3,0 is alive for two cycles. Hence,
they are produced at stage 1 and consumed in stage 3. The W2j starts at time 0 and proceeds so on. It is taken in
the same order as that in DFG. The W3j starts at the next cycle at time 1 and proceeds as j = 0, 1, 4, 5, etc. The
next stage W4j starts at time 2 and proceeds as j = 0, 1, 8, 9, etc. in the forward manner. The number of variables
alive in each cycle is given at the right side of the chart. Thus the maximum number of live variables is 28,
which implies that the four folded 32 bit polar encoder can be implemented with 28 delay elements.

6. Register Allocation
In computing the minimum number of registers required, each variable is allocated to a register. The register al-
location table is utilized [17] to verify the allocation in all the 28 registers, and every row describes how regis-
ters are allocated at each cycle. The indication in bold font implies that the variable gets consumed at the partic-
ular stage. The register allocation for 32 bit four parallel folded polar encoder is shown in Table 3.

7. Proposed Architecture
The four folded parallel pipelined structure for 32 bit polar encoder is shown in Figure 4. It consists of 10 func-
tional units and 28 delay elements. Each stage has two functional units. Stages 1 and 2 include no delay ele-
ments. Stages 3, 4 and 5 have several multiplexers placed in front of each functional unit to configure the inputs
of the functional units. The proposed architecture continuously processes four samples/cycle, according to fold-
ing sets and register allocation table. In this, the inputs are in the natural order and the outputs are in the bit re-
versed order.

8. Eight Parallel Folded 32 Bit Polar Encoder
The design of eight parallelism considers eight inputs at a time. Hence the stages are split up into four folding
sets. The same procedure is applied for eight folded parallelism with the stages depicted below.

Stage 1: {P0, P4, P8, P12} {P1, P5, P9, P13} {P2, P6, P10, P14} {P3, P7, P11, P15}
Stage 2: {Q0, Q4, Q8, Q12} {Q1, Q5, Q9, Q13} {Q2, Q6, Q10, Q14} {Q3, Q7, Q11, Q15}

G. Indumathi et al.

556

Figure 3. Linear lifetime chart for W2j, W3j and W4j.

Table 2. Recalculated delay requirement D' (Wij) for 4-parallel folded polar encoder.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

D'(W1j) 0

D'(W2j) 1 1 2 2 0 0 1 1 1 1 2 2 0 0 1 1 1 1 2 2 0 0 1 1 1 1 2 2 0 0 1 1

D'(W3j) 2 2 2 2 4 4 4 4 0 0 0 0 2 2 2 2 2 2 2 2 4 4 4 4 0 0 0 0 2 2 2 2

D'(W4j) 4 4 4 4 4 4 4 4 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4

Table 3. Register allocation table for W2j, W3j and W4j.

Cycle Stage 2 R1 R2 R3 R4 Stage 3 R5 R6 R7 R8 R9 R10 R11 R12 Stage 4 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28

0 W2,0 W2,2 W2,1 W2,3

1 W2,4 W2,6 W2,5 W2,7 W2,2 W2,0 W2,3 W2,1 W3,0 W3,4 W3,1 W3,5

2 W2,8 W2,10 W2,9 W2,11 W2,6 W2,2 W2,7 W2,3 W3,2 W3,6 W3,3 W3,7 W3,4 W3,0 W3,5 W3,1 W4,0 W4,8 W4,1 W4,9

3 W2,12 W2,14 W2,13 W2,15 W2,10 W2,8 W2,11 W2,9 W3,8 W3,12 W3,9 W3,13 W3,6 W3,4 W3,2 W3,0 W3,7 W3,5 W3,3 W3,1 W4,2 W4,10 W4,3 W4,11 W4,8 W4,0 W4,9 W4,1

4 W2,16 W2,18 W2,17 W2,19 W2,14 W2,10 W2,15 W2,11 W3,10 W3,14 W3,11 W3,15 W3,12 W3,6 W3,4 W3,2 W3,13 W3,7 W3,5 W3,3 W4,4 W4,12 W4,5 W4,13 W4,10 W4,8
 W4,2 W4,0 W4,11 W4,9 W4,3 W4,1

5 W2,20 W2,22 W2,21 W2,23 W2,18 W2,16 W2,19 W2,17 W3,16 W3,20 W3,17 W3,21 W3,14 W3,12 W3,6 W3,4 W3,15 W3,13 W3,7 W3,5 W4,6 W4,14 W4,7 W4,15 W4,12 W4,10 W4,8 W4,4 W4,2 W4,0 W4,13 W4,11 W4,9 W4,5 W4,3 W4,1

6 W2,24 W2,26 W2,25 W2,27 W2,22 W2,18 W2,23 W2,19 W3,18 W3,22 W3,19 W3,23 W3,20 W3,14 W3,16 W3,6 W3,21 W3,15 W3,17 W3,7 W4,16 W4,24 W4,17 W4,25 W4,14 W4,12 W4,10 W4,8 W4,6 W4,4 W4,2 W4,0 W4,15 W4,13 W4,11 W4,9 W4,7 W4,5 W4,3 W4,1

7 W2,28 W2,30 W2,29 W2,31 W2,26 W2,24 W2,27 W2,25 W3,24 W3,28 W3,25 W3,29 W3,22 W3,20 W3,18 W3,16 W3,23 W3,21 W3,19 W3,17 W4,18 W4,26 W4,19 W4,27 W4,24 W4,14 W4,12 W4,10 W4,8 W4,6 W4,4 W4,2 W4,25 W4,15 W4,13 W4,11 W4,9 W4,7 W4,5 W4,3

8 W2,30 W2,26 W2,31 W2,27 W3,26 W3,30 W3,27 W3,31 W3,28 W3,22 W3,20 W3,18 W3,29 W3,23 W3,21 W3,19 W4,20 W4,28 W4,21 W4,29 W4,26 W4,24 W4,14 W4,12 W4,10 W4,8 W4,6 W4,4 W4,27 W4,25 W4,15 W4,13 W4,11 W4,9 W4,7 W4,5

9 W3,30 W3,28 W3,22 W3,20 W3,31 W3,29 W3,23 W3,21 W4,22 W4,30 W4,23 W4,31 W4,28 W4,26 W4,24 W4,14 W4,12 W4,10 W4,8 W4,6 W4,29 W4,27 W4,25 W4,15 W4,13 W4,11 W4,9 W4,7

10 W3,30 W3,22 W3,31 W3,23 W4,30 W4,28 W4,26 W4,24 W4,14 W4,12 W4,10 W4,8 W4,31 W4,29 W4,27 W4,25 W4,15 W4,13 W4,11 W4,9

11 W4,30 W4,28 W4,26 W4,14 W4,12 W4,10 W4,31 W4,29 W4,27 W4,15 W4,13 W4,11

12 W4,30 W4,28 W4,14 W4,12 W4,31 W4,29 W4,15 W4,13

13 W4,30 W4,14 W4,31 W4,15

G. Indumathi et al.

557

Figure 4. Proposed 4-parallel folded architecture for encoding the (32, k) polar codes.

Stage 3: {R0, R4, R8, R12} {R1, R5, R9, R13} {R2, R6, R10, R14} {R3, R7, R11, R15}
Stage 4: {S12, S0, S4, S8} {S13, S1, S5, S9} {S14, S2, S6, S10} {S15, S3, S7, S11}
Stage 5: {T4, T8, T12, T0} {T5, T9, T13, T7} {T6, T10, T14, T2} {T7, T11, T15, T3}
The corresponding cut-set is shown in Figure 2, with blue connected lines. The delay requirement table D

(Wij) is filled up using Equation (2). This table contains negative delays; it can be set right by using the recalcu-
lated delay requirement for eight parallelisms as depicted in Table 4.

The linear lifetime chart is drawn for W3j and W4j, since there exists no cross over with other stage inputs on
the W2j stage. This chart minimizes the registers to a count of 24 as shown in Figure 5.

This register count has been used to perform register allocation as illustrated in Table 5.
In the folded architecture the stages 1 and 2 include zero delay and hence no registers are needed. The stage 3

requires eight registers as shown in the linear lifetime chart. The stage 4 requires sixteen registers to obtain the
encoded output. Figure 6 depicts the pipeline implementation of the proposed architecture.

9. Results and Discussion
The above designs of 32 bit polar encoder for fully parallel, eight and four folded architectures are simulated
using Xilinx 14.6 ISE and implemented in Virtex 5 FPGA and the corresponding outputs are obtained.

The simulation of 32 bit fully parallel architecture for a polar encoder with the input of 32’h FFFFFFFF using
Xilinx 14.6 ISIM results in an output of 32’h 80008000 as depicted in Figure 7.

The four parallel folded architecture is simulated with the same input stream as given for fully parallel and
verifies the same results as shown above in Figure 8. The synthesis results for 32 bit polar encoder using four
folded structure can be done by eight successive executions on the same architecture utilizes 224 registers for
execution.

The 8-parallel folded architecture is simulated with the same input stream given in fully parallel results in the
same output verifying the functionality of polar code as in Figure 9. The synthesis results for 32 bit polar en-
coder using eight folded structure can be done by four successive executions on the same architecture utilizes 96
registers.

The partially parallel implementation in [15] concludes that P parallelism of (N, K) polar encoder will arrive

at ex-or gates formulated as 2log
2
P N

.

In addition, there exist N-P delay elements with the throughput of P bits/cycle. Thus the 32 bit polar encoder
design for four and eight folding matches exactly with the same criteria. The comparison of resource utilization
for the 32 bit polar encoder for fully parallel, four and eight folded architectures is depicted in Table 6.

10. Conclusion and Future Scope
This paper is focused to minimize the hardware resources for the 32 bit polar encoder. Many optimization tech-
niques are implemented in steps to arrive at the proposed architecture for various folding levels. The simulation
results show that the folded structure abides the polar encoder functionality. The implementation in Virtex 5

G. Indumathi et al.

558

Figure 5. Linear lifetime chart for W3j and W4j.

Figure 6. Proposed 8-parallel folded architecture for encoding the polar (32, k) codes.

Table 4. Original D(Wij) and recalculated D'(Wij) delay requirement table for 8-parallel folded polar encoder.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

D(W1j) 0

D(W2j) 0

D(W3j) 1 1 1 1 2 2 2 2 0 0 0 0 1 1 1 1 1 1 1 1 −2 −2 −2 −2 0 0 0 0 −3 −3 −3 −3

D(W4j) 2 2 2 2 −2 −2 −2 −2 −0 −0 −0 −0 −0 −0 −0 −0 0 0 0 0 0 0 0 0 −2 −2 −2 −2 2 2 2 2

D'(W1j) 0

D'(W2j) 0

D'(W3j) 1 1 1 1 2 2 2 2 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 0 0 0 0 1 1 1 1

D'(W4j) 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

G. Indumathi et al.

559

Figure 7. Simulation result for fully parallel architecture.

Figure 8. Simulation result for 4-parallel folded architecture.

Figure 9. Simulation result for 8-parallel folded architecture.

G. Indumathi et al.

560

Table 5. Register allocation table for W3j and W4j.

Cycle Stage 3 R1 R2 R3 R4 R5 R6 R7 R8 Stage 4 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24

0 W3,0 W3,2 W3,4 W3,6 W3,1 W3,3 W3,5 W3,7

1 W3,8 W3,10 W3,12 W3,14 W3,9 W3,11 W3,13 W3,15 W3,4 W3,0 W3,6 W3,2 W3,5 W3,1 W3,7 W3,3 W4,0 W4,2 W4,8 W4,10 W4,1 W4,3 W4,9 W4,11

2 W3,16 W3,18 W3,20 W3,22 W3,17 W3,19 W3,21 W3,23 W3,12 W3,4 W3,14 W3,6 W3,13 W3,5 W3,15 W3,7 W4,4 W4,6 W4,12 W4,14 W4,5 W4,7 W4,13 W4,15 W4,8 W4,0 W4,10 W4,2 W4,9 W4,1 W4,11 W4,3

3 W3,24 W3,26 W3,28 W3,30 W3,25 W3,27 W3,29 W3,31 W3,20 W3,16 W3,22 W3,18 W3,21 W3,17 W3,23 W3,19 W4,16 W4,18 W4,24 W4,26 W4,17 W4,19 W4,25 W4,27 W4,12 W4,8 W4,4 W4,0 W4,14 W4,10 W4,6 W4,2 W4,13 W4,9 W4,5 W4,1 W4,15 W4,11 W4,7 W4,3

4 W3,28 W3,20 W3,30 W3,22 W3,29 W3,21 W3,31 W3,23 W4,20 W4,22 W4,28 W4,30 W4,21 W4,23 W4,29 W4,31 W4,24 W4,12 W4,8 W4,4 W4,26 W4,14 W4,10 W4,6 W4,25 W4,13 W4,9 W4,5 W4,27 W4,15 W4,11 W4,7

5 W4,28 W4,24 W4,12 W4,8 W4,30 W4,26 W4,14 W4,10 W4,29 W4,25 W4,13 W4,9 W4,31 W4,27 W4,15 W4,11

6 W4,28 W4,12 W4,30 W4,14 W4,29 W4,13 W4,31 W4,15

Table 6. Comparison of various folding with fully parallel architecture.

Design/features Fully parallel Eight parallel folding Four parallel folding

No. of ex or gates 80 20 10

No. of delay elements 0 24 28

No. of registers 0 96 224

Timing report (CPU to XST) 4.09 s 5.73 s 8.77s

Memory usage 164,328 KB 168,424 KB 169,448 KB

FPGA shows that the folding decreases the functional blocks (ex-or) operations, but needs trade off in the num-
ber of delay elements, registers and speed of execution.

References
[1] Arikan, E. (2009) Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-

Input Memoryless Channels. IEEE Transactions on Information Theory, 55, 3051-3073.
http://dx.doi.org/10.1109/TIT.2009.2021379

[2] Hennessy, D.J. (1996) Computer Architecture: A Qualitative Approach. Morgan Kaufmann, USA.
[3] Hwang, F.K. (1984) Computer Architecture and Parallel Processing. McGraw-Hill, USA.
[4] Kogge, P. (1981) The Architecture of Pipelined Computers. McGraw-Hill, USA.
[5] Zhang, C., Yang, J., You, X. and Xu, S. (2015) Pipelined Implementations of Polar Encoder and Feed-Back Part for

SC Polar Decoder. IEEE International Conference Proceedings, Lisbon, 24-27 May 2015, 3032-3035.
http://dx.doi.org/10.1109/iscas.2015.7169326

[6] Parhi, K.K. (1999) VLSI Digital Signal Processing Systems: Design and Implementation. Wiley, USA.
[7] Oommen, M.S. and Ravishankar, S. (2015) FPGA Implementation of an Advanced Encoding and Decoding Architec-

ture of Polar Codes. International Conference on VLSI Systems, Architecture, Technology and Applications (VLSI-
SATA), 1-6. http://dx.doi.org/10.1109/VLSI-SATA.2015.7050456

[8] Mahdavifar, H. and Vardy, A. (2011) Achieving the Secrecy Capacity of Wiretap Channels Using Polar Codes. IEEE
Transactions on Information Theory, 57, 6428-6443. http://dx.doi.org/10.1109/TIT.2011.2162275

[9] Sasoglu, E., et al. (2010) Polar Codes for the Two-User Binary-Input Multiple-Access Channel. IEEE Information
Theory Workshop on Information Theory, Cairo, 6-8 January 2010, 1-5.
http://dx.doi.org/10.1109/itwksps.2010.5503184

[10] Mahdavifar, H., et al. (2014) Achieving the Uniform Rate Region of General Multiple Access Channels by Polar Cod-
ing. arXiv preprint arXiv1407.2990.

[11] Arikan, E. (2010) Source Polarization. IEEE International Symposium on Information Theory Proceedings (ISIT), 899-
903. http://dx.doi.org/10.1109/isit.2010.5513567

[12] Goela, N., Abbe, E. and Gastpar, M. (2013) Polar Codes for Broadcast Channels. IEEE International Symposium on
Information Theory, Istanbul, 7-12 July 2013, 1127-1131. http://dx.doi.org/10.1109/isit.2013.6620402

http://dx.doi.org/10.1109/TIT.2009.2021379
http://dx.doi.org/10.1109/iscas.2015.7169326
http://dx.doi.org/10.1109/VLSI-SATA.2015.7050456
http://dx.doi.org/10.1109/TIT.2011.2162275
http://dx.doi.org/10.1109/itwksps.2010.5503184
http://dx.doi.org/10.1109/isit.2010.5513567
http://dx.doi.org/10.1109/isit.2013.6620402

G. Indumathi et al.

561

[13] Eslami, P.N. (2011) A Practical Approach to Polar Codes. IEEE International Symposium on Information Theory Pro-
ceedings, 16-20. http://dx.doi.org/10.1109/isit.2011.6033837

[14] Mizuochi, T., et al. (2009) Experimental Demonstration of Concatenated LDPC and RS Codes by FPGAs Emulation.
IEEE Photonics Technology Letters, 21, 1302-1304. http://dx.doi.org/10.1109/LPT.2009.2025867

[15] Yoo, H. and Park, I.C. (2015) Partially Parallel Encoder Architecture for Long Polar Codes. IEEE Transactions on
Circuits and Systems II: Express Briefs, 62, 306-310. http://dx.doi.org/10.1109/TCSII.2014.2369131

[16] Parhi, K.K. (1995) Calculation of Minimum Number of Registers in Arbitrary Life Time Chart. IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing, 41, 434-436. http://dx.doi.org/10.1109/82.300209

[17] Wang, C. and Parhi, K.K. (1995) High Level DSP Synthesis Using Concurrent Transformations, Scheduling, Alloca-
tion. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 14, 274-295.
http://dx.doi.org/10.1109/43.365120

http://dx.doi.org/10.1109/isit.2011.6033837
http://dx.doi.org/10.1109/LPT.2009.2025867
http://dx.doi.org/10.1109/TCSII.2014.2369131
http://dx.doi.org/10.1109/82.300209
http://dx.doi.org/10.1109/43.365120

	Architectural Design of 32 Bit Polar Encoder
	Abstract
	Keywords
	1. Introduction
	2. Four Parallel Folded 32 Bit Polar Encoder
	3. Folding Transformation
	4. Delay Requirement Calculation
	5. Lifetime Analysis
	6. Register Allocation
	7. Proposed Architecture
	8. Eight Parallel Folded 32 Bit Polar Encoder
	9. Results and Discussion
	10. Conclusion and Future Scope
	References

