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Abstract 
By solving analytically the various types of Lane-Emden equations with rotation, we have discov-
ered two new coupled fundamental properties of rotating, self-gravitating, gaseous discs in equi-
librium: isothermal discs must, on average, exhibit strict power-law density profiles in radius x on 
their equatorial planes of the form kAx −1 , where A and k − 1  are the integration constants; and 
“flat” rotation curves precisely such as those observed in spiral galaxy discs. Polytropic discs must, 

on average, exhibit strict density profiles of the form ( ) 
 

nkAxln , where n is the polytropic index; 

and “flat” rotation curves described by square roots of upper incomplete gamma functions. By “on 
average”, we mean that, irrespective of the chosen boundary conditions, the actual profiles must 
oscillate around and remain close to the strict mean profiles of the analytic singular equilibrium 
solutions. We call such singular solutions the “intrinsic” solutions of the differential equations be-
cause they are demanded by the second-order equations themselves with no regard to the Cauchy 
problem. The results are directly applicable to gaseous galaxy discs that have long been known to 
be isothermal and to protoplanetary discs during the extended isothermal and adiabatic phases of 
their evolution. In galactic gas dynamics, they have the potential to resolve the dark matter—mod- 
ified gravity controversy in a sweeping manner, as they render both of these hypotheses unneces-
sary. In protoplanetary disc research, they provide observers with a powerful new probing tool, as 
they predict a clear and simple connection between the radial density profiles and the rotation 
curves of self-gravitating discs in their very early (pre-Class 0) phases of evolution.  
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1. Introduction 
A large number of observations, mostly in the 21 cm emission line of neutral hydrogen, have firmly established 
that the rotation curves of spiral galaxy discs do not exhibit a Keplerian falloff; in fact, most of them remain flat 
or slightly increasing as far away from the centers as they can be observed [1]-[22]. The radial scales over which 
the neutral hydrogen discs can be observed reach out to ~100 kpc in the largest spiral galaxies and since the ro-
tation curves remain flat, it was postulated by many researchers that some unseen extended mass distribution 
ought to exist all the way out to hundreds of kiloparsecs from the galaxy centers. Thus the Dark Matter Hypo-
thesis was born, and soon the news leaked out to the rest of the physics community and intensive and extensive 
searches for dark matter particles and fields boomed into existence. On the other hand, some researchers who 
certainly felt uncomfortable with this new “aetherial” hypothesis proposed that Newtonian gravity should in-
stead be modified at galactic scales and beyond, in order to solve the problem of the fast rotation of HI galaxy 
discs [23]-[33]. 

The gas in spiral galaxies is distributed in centrally concentrated, vertically thin discs. For this reason, it was 
expected that the rotation curves had to turn over at some intermediate radius and begin a decline that would be 
indicative of the absence of substantial amounts of matter at large radii. This view about the luminous matter is 
nowadays considered so settled and clear that it has made its way into introductory Astronomy textbooks that 
compare and contrast the kinematics of spiral galaxies to the kinematics observed in our solar system (the Kep-
lerian falloff mentioned above). In this work, we show that this elementary perception is quite naive and totally 
wrong because it ignores the influence (in fact, the dominance) of pressure and enthalpy gradients in self-   
gravitating gaseous discs. Personally, we believe that it amounts to a blunder because, before the results de-
scribed below and even back in the 1980s when all this was unfolding, we had important clues that pointed out 
the importance of gas pressure in determining the equilibrium structures of gaseous discs. For instance, the 
sound-crossing time at 10 kpc in a 104 K cold galaxy disc is 1 Gyr, a value that lies to within 1.5 - 3 of the rota-
tion timescales at 10 kpc in all galaxies with rotation speeds of 100 - 200 km∙s−1. Gallagher et al. [34] noted that 
the star formation histories of a sample of irregular and spiral galaxies did not indicate the presence of dark 
matter in the low-mass galaxies of the sample. But the most obvious clue was the existence of the Mestel disc 
[35], a centrally concentrated potential-density pair with a flat rotation curve (see also [36]). The Mestel disc has 
always been considered just a toy model [37] and the situation did not improve when Schulz [38] showed that 
the finite Mestel disc requires significantly less mass to produce the flat rotation curve. The main argument 
against the universal adoption of the Mestel disc has been the absence of a physical law or reason that would 
make galaxy discs assume this specific surface density profile and rotation law. 

The above argument is not based on solid reasoning. When nature shows us that she has widely adopted a 
specific property (the flat rotation curves in galaxy discs), Aristotelian Logic dictates that we should search for a 
new law or reason, in order to understand the universality of this property and establish its physical meaning; not 
to create ghosts (particles and fields), aethers, and new forces that effectively facilitate our aversion to con- 
fronting the facts. 

We do not claim that the Mestel disc [35] is the answer to establishing the universality of flat rotation curves 
in galaxy discs; only that it has always been a telling clue that gravity does not pull the strings and is not in 
control in gaseous self-gravitating discs. Furthermore, we have solved the full Newtonian problem and we now 
know precisely how such universal rotation curves emerge in spiral galaxy discs. The resolution of this 
ubiquitous problem is the subject of this paper. Before we can delve into the physics of the problem, we need to 
correct some common misconceptions that appear in the theory of second-order differential equations and which 
also have made their way into the textbooks. We do so in Section 2. Then, in Section 3, we revisit the theory of 
rotating Newtonian isothermal gaseous-disc equilibrium models and we calculate analytically the mean shapes 
of their density profiles and their rotation curves. The results match precisely the shapes of the rotation curves of 
spiral galaxy discs with no additional assumptions of any kind. So these results make a strong case against both 



D. M. Christodoulou, D. Kazanas 
 

 
682 

dark matter and modified gravity and their implications have far-reaching consequences all the way to cos- 
mology. For completeness, we describe in Section 4 polytropic models that also demand monotonically increas- 
ing rotation curves because they are subject to the same physical principles. These models are also applicable to 
very young protoplanetary discs (certainly to pre-Class 0 discs and possibly to the youngest Class 0 non- 
Keplerian discs). Finally, we conclude with a discussion of all the pertinent issues and our results in Section 5. 

2. Second-Order Differential Equations and the Cauchy Problem 
In mathematical physics, the trivial solutions of the various second-order differential equations are commonly 
ignored as being uninteresting; and too much attention is paid to the Cauchy problem in determining arbitrary 
constants as opposed to the internal properties of the equations themselves that have no regard for externally im- 
posed conditions of any type. Both of these practices are damaging as they work to hinder our efforts toward 
solving the physical problems described by the differential equations in the first place. Such practices are rele- 
vant to all linear and nonlinear second-order equations of physics, so we can discuss and clarify the various 
issues involved by using any well-known equation. We choose to make use of the Bessel differential equation in 
this section. 

The Bessel equation [39] 

( )
2

2
1 1 0, const. ,my y y m
x x

 
′′ ′+ + − = = 

 
                          (1) 

has regular solutions that are called Bessel functions of order m and a trivial solution 0y = . The trivial solution 
is not singular as it can be obtained from the regular solutions by an appropriate choice of the arbitrary constants. 
Nevertheless, its name indicates that y = 0 is of no interest at all. It is also well-known that the Bessel functions 
all oscillate about the x-axis [39], but this statement is grossly inaccurate and obscures the truth: the regular 
solutions oscillate about the trivial solution which just happens to coincide with the x-axis in this case. We 
demonstrate this important point by solving numerically an inhomogeneous 0m =  Bessel equation of the form 

( )1 , const. ,y y y K K
x

′′ ′+ + = =                                 (2) 

along with nonsingular boundary conditions that attempt to initially push the regular solutions away from the 
new trivial solutions y K= : ( )1 1y = , ( )1 10y′ = −  for K = 5; and ( )2 1y = , ( )2 10y′ =  for 5K = − . The 
results are shown in Figure 1. Both regular solutions have nothing to do with the x-axis; instead, they turn 
around and settle into oscillations that clearly occur about the new trivial solutions y K= . This behaviour can 
be demonstrated for all linear second-order equations of mathematical physics with oscillatory regular solutions 
[40] and for (non)linear equations of the Lane-Emden type [41]-[45]. The lesson to be learned is that the so- 
called trivial solutions of second-order equations are not at all trivial. They are in fact favoured by the diffe- 
rential equations themselves which have no regard for the externally imposed boundary conditions. Thus, we 
will heretofore call these solutions the intrinsic solutions that are preferred and demanded by the equations 
themselves, irrespective of the externally imposed Cauchy problem. 

When the Cauchy problem is solved, as in Figure 1, the externally imposed boundary conditions are usually 
at odds with the underlying equation and the regular solutions cannot match the favoured intrinsic solution. As a 
result, the regular solutions are forced by the equation itself to oscillate about the intrinsic solution as soon as 
they intersect this favoured solution the first time. Thus, the intrinsic solutions act as attractors of the regular 
solutions which, in turn, are forced to always stay near and around the more dominant intrinsic solutions. We 
view this behaviour as a triumph of the differential equation (and its intrinsically favoured solution) over the 
Cauchy problem (and the particular solution it strives to produce). 

This striking behaviour remains intact in at least some nonlinear second-order equations. Very clear examples 
in which rotation is involved can be found in [43] and [44]. Here we provide two additional nonlinear examples 
of the dominance of intrinsic solutions over regular solutions drawn from Lane-Emden equations [46] [47] in the 
absence of rotation. The isothermal Lane-Emden equations, take the form  

1 e 0,yDy y
x
−′′ ′+ + =                                      (3) 
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Figure 1. Numerical solutions of the m = 0 inhomogeneous Bessel differential 
Equation (2) subject to the following boundary conditions: in the 5K =  case, we use 
( )1 1y =  and ( )1 10y′ = − ; in the 5K = −  case, we use ( )2 1y =  and ( )2 10y′ = . 

In both cases, the regular solutions are forced to oscillate and stay near the dominant 
intrinsic solutions y K=  (dashed lines).                                            

 
where D is the dimensionality of space ( 3D =  in spherical coordinates and 2D =  in cylindrical coordinates). 
Singular and regular solutions have been obtained in many applications [48]-[50] [37] [42] [44] and they are all 
nonoscillatory.1 The reason for this is quite obvious: Equation (3) does not have an intrinsic solution because 
e 0y ≠ . Why the latter condition precludes an intrinsic solution will become clear in the next section, where we 
describe a procedure for obtaining intrinsic solutions. 

In stark contrast, the polytropic Lane-Emden equations, take the form 
1 0,nDy y y

x
−′′ ′+ + =                                    (4) 

where n > 0 is the polytropic index, and it possesses the intrinsic solution y = 0. Although few analytic solutions 
are known [50] [52], numerical integrations show that, depending on n, this equation has both oscillatory and 
nonoscillatory solutions. For Equation (4), we have derived a precise criterion for the existence of oscillatory 
solutions [45]. This criterion predicts that for D = 2 (cylindrical form), all solutions with odd integer n-values 
are oscillatory; while for D = 3 (spherical form), only the 1n =  and 3n =  integer-n solutions are oscillatory. 
Numerical integrations (using the physical boundary conditions ( )0 1y = , ( )0 0y′ = ) easily confirm these 
results. The reason for the existence of nonoscillatory solutions is that for the corresponding choices of n, the 
differential equation is not a harmonic oscillator [40]. This is also true for the modified Bessel equation [39] that 
is known to possess only nonoscillatory solutions. Its real solutions cannot be oscillatory2 and they are then 
prohibited from intersecting the intrinsic solution 0y =  more than once [40]. 

3. Isothermal Self-Gravitating Newtonian Gaseous Discs 
In what follows, we use the arbitrary scaling constants oR  and oρ  to normalize the disc radius R and density 
( )Rρ , respectively. We thus define the dimensionless radius ox R R≡  and density ( ) ( ) ox Rτ ρ ρ≡ . Velo- 

cities ( )V R  are also normalized consistently by the constant 4πo o oV R Gρ= , where G is the Newtonian 

 

 

1The periodic solution found in [51] describes a Cartesian slab and not a disc or cylinder. 
2We note in passing that, as a result of the substitution x ix→  that produces the modified Bessel equation [39], its solutions are oscillatory 
about the imaginary axis in the complex plane. 
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gravitational constant, in which case we also define the dimensionless rotation velocity ( ) ( ) ov x V R V≡ . The 
same scaling also applies to the sound speed oC  of the gas which in this section is a constant, i.e., the dimen- 
sionless sound speed is o o oc C V≡ . 

The cylindrical isothermal Lane-Emden equation [46] [47] with rotation can then be written in dimensionless 
form as 

2
2 1 d d 1 dln .

d d do
vc x

x x x x x
τ τ⋅ + =                                    (5) 

This equation describes the radial (x) equilibrium of a rotating, self-gravitating, gaseous disc or cylinder in 
which the gas obeys the isothermal equation of state ( ) ( )2

op x c xτ= , where p is the dimensionless pressure of 
the gas. Equation (5) is valid exactly for infinite cylinders and to a high degree of approximation in the equ- 
atorial (symmetry) planes of discs (see the Appendix). This latter point has been demonstrated convincingly by 
the calculations in [42] [53] [54]. In particular, the latter two investigations of finite discs uncovered equatorial 
density profiles that were strictly oscillatory under proper boundary conditions, just as was predicted by the 
analysis of Section 2 above. 

Hayashi et al. [53] and Schmitz [55] studied also the stability of such equilibria and found that, except for the 
very flattened discs and the nearly spherical configurations, the intermediate models are stable. The very flat-
tened discs in [53], in particular, were unstable to ring formation that causes their equatorial power-law density 
profiles to become oscillatory, in agreement with the numerical solutions of Equation (5) obtained in [44]. 

Despite the exact analytic results of the researchers quoted above, an objection has been raised over the years 
concerning the validity of using cylindrical coordinates to study axisymmetric, vertically thin discs rather than 
just infinite cylinders; and this is also the major sticking point for the present work, so it needs to be addressed 
in detail. We defer the analysis of the Lane-Emden equations for vertically thin discs to an Appendix because it 
is much easier to follow the derivations after the intrinsic analytic solution has been obtained for cylinders as 
follows. 

Christodoulou & Kazanas [44] described a procedure for obtaining the intrinsic solution of Equation (5): If 
we equate the last two terms: 

( ) ( )2d1 ,
d

v x
x

x x
τ =                                        (6) 

then this is an intrinsic solution provided that the rest of the equation (the radial variation of the logarithmic gra- 
dient of the enthalpy) vanishes: 

( )d d ln 0.
d d

x x
x x

τ =                                       (7) 

Equations (6) and (7) form a system in which ( )v x  is totally dependent on ( )xτ . First we solve Equation 
(7) to obtain the radial density profile: 

( ) ( )1, , const. ,kx Ax A kτ −= =                                  (8) 

and then we solve Equation (6) to determine the rotation curve of the intrinsic solution:  

( ) ( ) ( ), const. ,v x Ag x B B= + =                               (9) 

where 

( ) ( )1 1 , if 1
.

ln , if 1

kx k k
g x

x k

+ + ≠ −
≡ 

= −
                              (10) 

The solution contains 3 free parameters, the integration constants A, B, and k. Parameter B sets the vertical 
scale of the rotation curve ( )v x ; here we choose 1B = . This choice can be made for 1k ≤ −  and it implies 
that the power-law density profile is cut off at an inner boundary 1x x= , where ( )1v x  drops to zero. 

Figures 2-4 show the shapes of the rotation curves obtained from Equations (9) and (10) for various choices 
of the constants A and k. The results are scale-invariant (a property of power-law density profiles), so the radial  
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Figure 2. Rotation curves of the intrinsic solution of the isothermal Lane-Emden 
equation for 1k = − , 1B = , and various values of A. The choice 1B =  implies the 
existence of an inner edge at which the velocity drops to zero.                           

 

 
Figure 3. As in Figure 2, but for 2k = − .                                       

 
scale is arbitrary. It is not surprising (see Section 3.1 below) that, in these Newtonian models, one sees most of 
the shapes of the “flat” rotation curves observed in spiral galaxies. 

The only shapes missing from the figures are those of the few falling rotation curves shown in [18]. Appa- 
rently, in some compact galaxies, the above equilibrium profiles did not endure (the sound-crossing time at 30 
kpc for 110 km soC −= ⋅  is 3 Gyr, so it seems that there has been enough time to achieve equilibrium); perhaps 
because of interactions with nearby galaxies; or because the “external” gravity of the massive bulges eliminates 
the intrinsic solution (see Section 4.1 and footnote 4 below). But even in these objects, the falloff is slower than 
Keplerian which implies that gas pressure is still fighting to establish its own preferred profiles. This must be the  



D. M. Christodoulou, D. Kazanas 
 

 
686 

 
Figure 4. As in Figure 2, but for 3k = − . Figures 2-4 show that the curves become 
flatter for steeper values of the power-law index k.                                    

 
case since the intrinsic solutions are favoured by the equilibrium differential equation itself (see Section 2) in the 
absence of other external forces. In the two galaxies observed by Casertano & van Gorkom [18], certain 
segments of the rotation curves are flat and that indicates to us that the radial self-gravitational equilibrium has 
fallen apart at some locations but not (yet) everywhere in these discs. 

The above results can be summarized as follows: The derived density profiles are simple power laws in radius 
and the rotation curves are flat or slightly increasing at large radii (Equations (9) and (10)) irrespective of the 
value of the index k. Spiral galaxies have always been fitted with exponential density profiles, thus we do not 
know which values of k occur in nature. Galaxy profiles will have to be fitted again, but the payoff this time will 
be substantial: when k is determined from observations, the large-scale rotation curve (away from the center) 
will also be obtained independently from the velocity measurements. Thus, the observational results will be 
tested for consistency within the same data set in each case. This also holds true for protoplanetary discs in their 
early isothermal or adiabatic (see Section 4 below) phases; but first we need to find such purely self-gravitating 
discs in a pre-Class 0 YSO (Young Stellar Object) stage, and the 21 cm HI line in emission or absorption may 
give us a chance [56]. 

3.1. Physical Interpretation 
But how can such power-law density profiles produce and support flat or slowly increasing rotation curves? The 
problem has always been that the centrifugal force remains too high in the outer regions of the disc where New- 
tonian gravity weakens substantially. How do these equilibrium models get around this discrepancy? The answer 
to these questions was given in [44] and we repeat it here: The Lane-Emden Equation (5) is a second-order 
differential equation. As such, it respects but does not rely solely on force balance. (As will be readily seen in 
Equation (12) below, force balance is guaranteed by the way that the specific enthalpy of the gas is operating.) 
This second-order equation describes locally the detailed radial ( d dx ) variation of the logarithmic gradients 
( d d ln x ) of the potentials involved in the struggle to reach equilibrium. So, initially, it is the log-gradient of the 
enthalpy (with help from rotation) that sets out to oppose the log-gradient of the gravitational potential. This 
competition can be seen by rewriting Equation (5) in the form 

( ) 21 d d 1 d ,
d d ln d

h v
x x x x x

ψ   + =    
                            (11) 

where ( ) dh x p τ≡ ∫  and ( )xψ  are the dimensionless enthalpy per unit mass and the Newtonian self-gra- 
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vitational potential, respectively. This equation is exact for cylinders and approximately valid for discs at large 
radii ( 1x , 1τ  ), where the vertical (z) gradient of the vertical gravitational force 2 2zψ∂ ∂  becomes small 
and can be neglected. 

In that case, how and why does the average intrinsic solution (Equations (8) and (9)) come into existence? 
The answer to these questions is even more illuminating: The intrinsic solution was derived above by imposing 
two separate conditions, that the centrifugal force should match the gravitational force (see Equation (6) and the 
last two terms in Equation (11)): 

( )
2

21 d d 1 d d ;
d d ln d d

vv
x x x x x x x

ψ ψ  = ⇒ = 
 

                         (12) 

while, at the same time, the log-gradient of the enthalpy should retire from the competition by assuming a con- 
stant profile (see Equation (7) and the leading term in Equation (11)): 

d d 0.
d d ln

h
x x
  = 
 

                                    (13) 

This occurs only for a power-law density profile (Equation (8)) and for a specific rotation profile (Equations 
(9) and (10)), and these profiles become internal properties characteristic of the equilibrium disc or cylinder. 
Stated more simply, up until now people believed that rotation was not related to the structure of the equilibrium 
disc and that they could adopt any arbitrary rotation profile for gaseous self-gravitating discs. We see now that 
this is not true, the radial density and rotation profiles are strongly coupled and uniquely determined through the 
intrinsic solution discussed above. 

The only surprise in this narrative is the unique way that the differential equation finds to promote and estab- 
lish the above intrinsic solution: rather than trying to simultaneously balance the variations of the three poten- 
tials involved at every single radius (not possible because the corresponding timescales vary widely at different 
radii), the disc assumes gradually a logarithmic specific-enthalpy profile determined from the solution of Equ- 
ation (13):  

( )d 1  ln  .
d
h h x x
x x
∝ ⇒ ∝                                (14) 

So it is the thermodynamic potential ( )h x  of the gas that becomes logarithmic, and not the gravitational 
potential that people have been trying to make it so for nearly 50 years! Naturally, the disc establishes such a 
logarithmic profile because this law guarantees precise force balance (Equation (12)) at all of its equatorial radii. 
The action of ( )h x  unfolds in the physical disc from inside-out over timescales of the order of the local 
sound-crossing time oR C . So the global equilibrium becomes complete after a time max~ oR C , where maxR  
is the outer radius of the disc. 

We understand physically the preceding results in the following manner: Self-gravity is a long-range force (by 
Gauss’s law, the gravitational potential at radius x depends on the entire mass interior to x) and it cannot adjust 
its potential in the disc to effect local changes to the density distribution. In other words, the density is a source 
term in the Poisson equation that determines the gravitational potential, but not the other way around. In stark 
contrast, enthalpy is a local potential whose action depends only on the local behaviour of the pressure and the 
density of the disc. When ( )h x  assumes its logarithmic radial profile (Equation (14)), it dictates that the local 
density adjust according to the local log-gradient of the pressure 

( ) ( )d
.

d ln
p x

x
x

τ ∝                                  (15) 

By doing that, the enthalpy uses the density in order to modify the sourcing of both the gravitational potential 
(via the Poisson equation 2ψ τ∇ = ) and the centrifugal potential (via Equation (6)). The result of this tactic is a 
rotation law that is entirely dependent on the distribution of the density/enthalpy (see Equation (6)) that does not 
feed back (v does not enter in Equation (7)). The rotation so produced is capable of balancing gravity at all radii 
all by itself (Equation (12)), and the enthalpy retires from the struggle for equilibrium (Equation (7)) having 
implicitly won the competition at every radius. 

It is important to keep in mind that the enthalpy wins the struggle because the two equations of the intrinsic 
equilibrium solution (Equations (6), (7) or Equations (12), (13)) and the Poisson equation ( 2ψ τ∇ = ) do not 
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allow for feedback loops and counter-sourcing by self-gravity or rotation. Thus, the state of rotation, the density 
profile, and the local self-gravity have all been manipulated unilaterally by the action of the enthalpy. 

3.2. Concluding Remarks 
The above equations give us a new probe into gaseous astrophysical disc systems (Equations (6) and (7)). For 
spiral galaxy discs, this probe ought to routinely confirm the above-described density-rotation coupling, as the 
observations already exist. At the same time, we are full of anticipation about what we can learn from the very 
early phases of purely self-gravitating protoplanetary discs (before the central protostars form and dominate the 
dynamics) for which the rotation curves have not been measured with accuracy yet, but the radial density 
profiles in Class 0 YSOs have been obtained [57] [58]. Our prediction, of course, is that, if found, such early 
discs (preferably earlier than Class 0) will be observed to have “flat” rotation curves.3 

4. Polytropic Self-Gravitating Newtonian Gaseous Discs 
The cylindrical polytropic Lane-Emden equation [46] [47] with rotation can be written in dimensionless form as  

2
2 11 d d 1 d ,

d d d
n

o
vnc x

x x x x x
τ τ⋅ + =                                   (16) 

where 0n >  is the polytropic index and the dimensionless constant sound speed oc  was defined for oρ ρ= . 
(In general, the square of the sound speed ( )2 d dc x p τ≡  varies as 1 nτ  across the medium.) This equation 
describes the radial (x) equilibrium of a rotating, self-gravitating, gaseous disc or cylinder in which the gas 
obeys a polytropic equation of state 1 1 np τ +∝ . As in Section 3, Equation (16) is valid exactly for infinite 
cylinders and to a high degree of approximation in the equatorial (symmetry) planes of discs (see the Appendix). 
This latter point is supported by the calculations in [43] [63] [64] that studied also the stability of thin-disc and 
cylindrical equilibria and found large regions of the parameter space with stable models for all values of 1n > ; 
and a sizeable region in which flattened discs with power-law density profiles were unstable to ring formation 
that causes their profiles to become oscillatory, just as was predicted by the analysis of Section 2 above. 

We repeat the procedure outlined in Section 3 in order to obtain the intrinsic solution of Equation (16): If we 
equate again the last two terms: 

( )
21 d ,

d
vx

x x
τ =                                       (17) 

then this is an intrinsic solution provided that the rest of the equation (the radial variation of the logarithmic 
gradient of the enthalpy) vanishes: 

1d d 0.
d d

nx
x x

τ =                                       (18) 

Equations (17) and (18) form a system in which ( )v x  is totally dependent on ( )xτ . First we solve Equ- 
ation (18) to obtain the radial density profile: 

( ) ( ) ( )ln , , const. ,
nkx Ax A kτ  = =                                (19) 

and then we solve Equation (17) to determine the rotation curve of the intrinsic solution:  

( )
2 2

21, ln ,
2 2

nk kA k Av x n B
x

− − − = ⋅Γ + +  
   

                          (20) 

where B is the integration constant, 0A > , 0n > , 0k < , 1kAx ≥  (i.e., 1 kx A−≤ ), and the upper incomplete 
gamma function is defined as 

( ) ( )1, e d , 0 .tt tα
ξ

α ξ ξ
∞ − −Γ ≡ ≥∫                                 (21) 

 

 

3In the case of the Class 0 young system L1527 [59] [60], the rotation curve is not flat, but we did not catch this 0.3 Myr old system early 
enough (the sound-crossing time at 100 AU for a 10 K cold gas with Co = 0.3 km∙s−1 is 1500 yr). On the other hand, Yen et al. [61] [62] re-
port several other Class 0 YSOs whose rotation is not Keplerian outside of the inner few AU. 
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The solution contains 4 free parameters, the integration constants A, B, k, and the polytropic index n. Para- 
meter B can adjust the vertical scale of the rotation curve ( )v x , but here we opted to use 0B =  in what 
follows. This choice is equivalent to the boundary condition that ( )0 0v = . 

Figures 5-8 show the shapes of the rotation curves obtained from Equation (20) for two polytropes with 
1.5n =  and 3n =  and for various choices of the constants A and k. As in the isothermal case of Section 3, the 

rotation profiles are slowly increasing or flat with radius x. In this case however, we need to obey the condition 
1 kx A−≤  ( 0ξ ≥  in Equation (21) and 0τ ≥  in Equation (19)) in the calculation of the gamma function and 

so the rotation curves terminate when x reaches its maximum value where 0τ =  as well. Two basic trends are  
 

 
Figure 5. Rotation curves of the intrinsic solution of the 1.5n =  polytropic Lane- 
Emden equation for 1k = − , 0B = , and various values of A.                           

 

 
Figure 6. As in Figure 5, but for 2k = − . Figure 5 and Figure 6 show that, for fixed 
n, the curves rise more steeply for steeper values of the index k.                              
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Figure 7. Rotation curves of the intrinsic solution of the n = 3 polytropic Lane-Emden 
equation for 1k = − , 0B = , and various values of A.                                 

 

 
Figure 8. As in Figure 7, but for 2k = − . Figure 6 and Figure 8 show that, for fixed 
k, the curves become flatter for higher values of the polytropic index n.                      

 
noted in the figure captions as well: 1) for fixed n, the curves rise more steeply for steeper values of the index 

0k < ; and 2) for fixed k, the curves become flatter for higher values of the polytropic index 0n > . 

4.1. Physical Interpretation 
The polytropic Lane-Emden equation with rotation and its intrinsic solution assume the exact same forms as in 
the isothermal case (Section 3.1) when the polytropic equation of state 1 1 np τ +∝  is used to introduce the 
specific enthalpy ( ) dh x p τ≡ ∫ . Therefore, the fundamental equations discussed in Section 3.1 also apply to 
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polytropic models with finite radial extent and the enthalpy plays the exact same role in manipulating the source 
terms of the gravitational potential and the rotational potential. 

The fact that the thermodynamic potential ( )h x  operates locally in the exact same manner (i.e., lnh x∝ ) in 
polytropic and isothermal equilibria helps us correct another common misconception: Since the time that the 
results of Hayashi et al. [53] came to light (they studied isothermal self-gravitating gaseous discs that oddly 
exhibited power-law radial density profiles and “flat” rotation curves in equilibrium), it has been often stated 
that isothermal disc models tend to exhibit flat rotation curves because they happen to have a “special” mass 
distribution (i.e., their specific angular momentum is proportional to the mass interior to radius x, or their mass 
grows linearly with x). This is not true. The above results show without a doubt that there are no special equili- 
brium models; and that the isothermal and the polytropic equilibria are both subject to the same fundamental 
physics at the local level, where the thermodynamic potential ( )h x  operates and dominates when the only 
gravity it faces is the self-gravity of the disc. As for the validity of using the cylindrical coordinate system with 
its “special” 2∇  operator for discs, this issue is addressed in detail in the Appendix. 

Furthermore, as we have seen above, a flat rotation curve does not imply and does not need a linearly increas- 
ing mass distribution. Even if the underlying density profile is decreasing in radius (as the light does in spiral 
galaxy discs), a rising rotation curve is a requirement in the equilibrium solutions derived in this section and in 
Section 3 so long as more mass is added incrementally with increasing radius (this is simply a restatement of 
Gauss’s law). Therefore, one can assume a constant mass-to-light ratio and build a Newtonian self-gravitating 
galaxy disc model with a declining mass distribution that will still be required to have a rising rotation curve 
provided that the disc may be thin, but not razor-thin; that ( ) lnh x x∝  on the equatorial plane; and that its 
volumetric density profile is a power law in radius x (see the Appendix). 

4.2. Concluding Remarks 
The polytropic intrinsic solution (Equations (17) and (18)) gives us a new probe into nonisothermal astro- 
physical disc systems. In particular, protoplanetary discs undergo various early phases of adiabatic evolution 
(figure 2 in [65]). We predict that, if found, such discs will be observed to have the same fundamental 
characteristics (Equations (19) and (20)) irrespective of the polytropic index n appropriate for each adiabatic 
phase. In fact, observations of the density profiles, fitted with Equation (19), may be able to determine, not only 
the profile constants k and A, but also the value of n, thereby deriving the equation of state of the gas in- 
dependently from theoretical models. The only problem is that we need to find such systems very early in their 
development (see footnote 3 above), and this is a difficult task [56] [57] [66]. 

5. Discussion 
In this paper, we have investigated the Lane-Emden equations with rotation that describe the equilibrium struc- 
tures of rotating, self-gravitating, gaseous discs and cylinders (Sections 3 and 4; see also the Appendix). We 
have obtained new analytic singular solutions that we call intrinsic solutions because they are dictated and 
favoured by the differential equations themselves with no regard to physical boundary conditions that are 
externally imposed and that shape up the regular solutions of the equations (the Cauchy problem). In Sections 
2-4, we have effectively shown that second-order differential equations (both linear and nonlinear) are at odds 
with the Cauchy problem because the equations show a strong preference for their own intrinsic solutions that, 
for inhomogeneous equations of the Lane-Emden type, cannot be obtained by solving the boundary-value 
problem (hence they are singular). The regular Cauchy-type solutions are then attracted to and forced to oscillate 
about the intrinsic solutions, which means that they do their best to match those dominant solutions. This results 
in “regular” oscillatory density and rotation profiles whose averages are precisely the underlying intrinsic solu- 
tions [40] [44] [45]. In this sense, the differential equations succeed in imposing their preferences to the Cauchy 
problem. This, by itself, is an important conclusion that has ramifications beyond astrophysics for the theory of 
second-order differential equations of mathematical physics. 

The intrinsic solutions are very much related to the so-called trivial solutions of differential equations [44]. 
We now understand that there are no trivial solutions; in fact such solutions of second-order equations are quite 
dominant (Section 2): in many cases of interest, knowing the trivial solution of an equation implies that we 
know the average behaviour of all the regular solutions that depend on various types of boundary conditions but, 
nevertheless, end up oscillating about the intrinsic solution, provided that the differential equation is a harmonic 
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oscillator (as the ordinary Bessel equations in Section 2; the nonisothermal Lane-Emden equations without 
rotation in Section 2; and the Lane-Emden equations with rotation in Sections 3 and 4). 

The mean density and rotation profiles that we have derived analytically in Sections 3 and 4 are dominated by 
natural logarithms and power laws. This is the implicit reason that Marr [67] has recently suceeded in matching 
the shapes of the rotation curves of a sample of 37 spiral galaxies by using the log-normal probability distri- 
bution (and no dark matter or modified gravity) to describe the density profiles in the equatorial planes of the 
discs. This surface density distribution (Equation (2) in [67]) is equivalent to a variable power law of the form 

( )k xx  in normalized radius x in which the index ( )k x  varies slowly across the disc as 

( ) 2
11 ln ,

2
k x x

σ
= − −                                 (22) 

where 2σ  is the variance of the distribution, a free parameter to be fitted for each spiral galaxy model. In 
principle, a slowly varying ( )k x  is permitted by our analytic solution because the specific enthalpy ( )h x  is a 
strictly local potential function (Equation (13) in Section 3.1); and if the power-law index k has to vary radially 
in order for the equilibrium disc to obey some other fundamental law (e.g., as Marr states, the total entropy of 
the overall configuration should be maximized), then such adjustment may occur on timescales determined by 
the local sound speed. 

Returning to the astrophysical context, the intrinsic solutions of the various types of the Lane-Emden equation 
with rotation have, for the first time, succeeded in explaining the flat rotation curves of spiral galaxy discs 
without the need of invoking dark matter or modified gravity. Flat rotation curves are a rigorous requirement of 
Newtonian gravity in gaseous self-gravitating astrophysical discs (Sections 3.1 and 4.1). The only fair way to 
describe the results of Sections 3 and 4 is that Sir Isaac Newton [68] is vindicated once again, and our searches 
for dark matter in the universe and our attempts to modify Newtonian gravity (references are listed in Section 1) 
have sadly amounted to just a “wild-goose chase”. In fact, since the flat rotation curves of spiral galaxies can 
now be explained at such a fundamental level, the massive observational results collected over the years must be 
considered as yet another test that Newtonian gravity has successfully passed on scales of ~10-100 kpc and at 
nonrelativistic velocities. This is an impressive achievement when compared to previous tests conducted on and 
limited to scales no larger than that of our solar system. 

Our results render the Dark Matter Hypothesis unnecessary on galaxy scales. This removes the largest pillar 
of this hypothesis (flat rotation curves have remained to this day the “strongest piece of evidence” in favour of 
dark matter, but not any longer). But this “aetherial” hypothesis is not about to roll over and die without a fight. 
The next areas of confrontation will be larger than galaxy scales and cosmology. We are very much encouraged 
from a recent report of the absence of dark matter on larger than galaxy-disc scales: Magain & Chantry [69] 
analyzed 25 gravitational lenses and found that their mass determinations indicate the absence of extended dark 
matter haloes all the way out to distances comparable to the Einstein ring (the separation between lensed quasar 
images). 

On the other hand, we do not anticipate any serious problems materializing in cosmology because we do not 
believe that there currently is any credible observational evidence in favour of dark matter or modified gravity 
on those largest scales. In fact, some results that argue against the necessity for dark matter on various scales 
have timidly begun to appear [70]-[76]. For these reasons, here is how we approach the issue of dark matter now: 
Christiaan Huygens presented his theory of elastic longitudinal light waves propagating in “aether” to the Paris 
Academy of Sciences in 1678 and published his views a few years later [77]. That year, the physics world 
entered a Dark Age that lasted nearly 200 years, until the genious of Michelson & Morley [78] finally showed 
that the universe is not filled with aether. It seems that we also live in another Dark Age, the “Dark Matter Dark 
Age”, that commenced in the 1970s when K. C. Freeman [1] and others [2]-[22] reported that the rotation curves 
of spiral galaxies were not falling with radius. By all accounts, the current Dark Age has lasted for nearly 50 
years; and the sooner we get out of it, the better for our understanding of the large scales of the universe around 
us. 

The analytic solutions that we have derived in this work should also find applications in the field of proto- 
planetary disc research (Sections 3.2 and 4.2), especially if very young, purely self-gravitating discs could be 
found in the future [56]. At present, only observations of Class 0 YSOs are widely available [57] [58], but these 
systems are not young enough and do not have flat rotation curves; their protostars have formed and they are 
changing the dynamics and kinematics of the discs.4 We are encouraged however by the report of Tsitali et al. 
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[66] who discovered a rising rotation curve in the inner 2000-8000 AU of the “first hydrostatic core” candidate 
Cha-MMS1. 
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Appendix: Vertically Thin Discs Versus Infinite Cylinders 
When applied to the equatorial planes ( 0Z = ) of thin discs, Equations (5) and (16) do not include the specific 
enthalpy term  

( )2

2
0

d ,
,

d
z

h x z
z

=

                                    (23) 

where oz Z R≡ . This term is small for cold gases since it scales as the sound speed squared 2
oc . Nevertheless, 

strong objections have been raised about the validity of this approximation. Here we address such objections as 
follows. 

The analysis presented in Sections 3 and 4 shows that the specific enthalpy in cylinders assumes a logarithmic 
radial profile (Equation (14)). Now, pressure is an isotropic force and its nature is to push spherically out in self- 
gravitating gases. Therefore, Equation (14) suggests that, in axisymmetry, the specific enthalpy of the gas could 
assume the spherical form 

( ) ( )2 21ln ln ,
2

h r r x z∝ = +                              (24) 

where r is the spherical radius normalized by oR . Such behaviour is suppressed in cylinders by dropping the 
dependence on z from the equations. But, in principle, it should not be suppressed off-hand in discs, so the 
influence of the terms (23) and (24) should at least be quantified in the equatorial planes of discs: 

1) Applying the radial (x) component of the cylindrical Laplacian to Equation (24) and then setting 0z = , we 
confirm Equation (14); that is, this term of the Lane-Emden equations vanishes on the equatorial plane, as was 
also found in the intrinsic solutions of Sections 3 and 4. 

2) Taking the derivative with respect to z in Equation (24) and then setting 0z = , we obtain the correct 
symmetry condition that d d 0h z =  on the equatorial plane of the disc. Then, using the equation for vertical 
hydrostatic balance, d d d d 0h z zψ+ = , we also obtain the correct boundary condition for the self-gravita- 
tional potential, that is d d 0zψ =  at 0z = . 

3) Combining Equations (23) and (24), we find that 

( )2

2 2
0

d , 1 .
d

z

h x z
z x

=

∝                                    (25) 

This is the term that was ignored for discs in the radial force balance described by Equation (12). But it makes 
only a minor contribution to the force balance over all radii where ( )oc v x . Specifically, it modifies Equ- 
ations (6) and (17) to  

( )
2

2
1 d ,

d
vx

x x x
τ = −

                                    (26) 

where 0<  is a proportionality constant of order 2
oc . For our models, ( ) 21 ok c= −  for isothermal discs and 

2
oknc=  for polytropic discs. Since 0<  (because 0k < ), the last term in Equation (26) opposes self- 

gravity. By integration of this equation, we find that its contribution to the rotation profile ( )2v x  is logarith- 
mic:  

( ) ( )2 d ln ,v x x x x x Bτ= + +∫                              (27) 

where B is the integration constant. We see now that the dimensionless mass per unit length 

( ) ( ) d ,m x x x xτ≡ ∫                                     (28) 

makes the largest contribution to the rotation curve. Neglecting the term ln x , we can write 

( ) ( )2 .v x B m x≈ +                                     (29) 

For 0B =  (i.e., ( )0 0v = ) and ( )2 d dv x xψ= , this equation reduces to the cylindrical Gauss’s law 
applied onto the equatorial plane of the disc in the limit of 0z → . This result differs conclusively from the con- 
ventional thinking that is responsible for the acceptance of dark matter in galaxies; that 2 2v r Gm r= , thus a 
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constant v requires m r∝ . Odd as it may seem, Equation (29) makes sense for discs because their equatorial 
planes do possess cylindrical symmetry in the limit of 0z → , no matter which coordinate system is used. For 
this reason, Equation (27) can also be derived by using the Laplacian in spherical coordinates in the limit of 

0z → , r x→ , and for 1x , where the inertial terms of the two coordinate systems become unimportant. 
Similar results can also be obtained for Equations (3) and (4) in which the inertial terms ( )1 0D y x′− →  

for 1x  in both coordinate systems with 2D =  and 3D = ; and from some of the finite razor-thin disc/ring 
models of Huré et al. [79] with power-law indices 1> −  (their Figure 4) in which the rotation curves can be 
calculated and turn out to be slowly increasing functions of radius. For power-law indices 1< − , edge effects 
become important and blur the picture. But in the absence of radial boundaries, the infinitely extended discs 
show a self-similar power-law potential (their Equation (66)) capable of generating flat and slowly increasing 
rotation curves for shallow surface density profiles. These models support our results because the radial dis- 
tribution of their equatorial surface densities is a shallow power law that places sufficient mass at all radii to 
keep the rotation curves rising. 

On the other hand, the models in [79] with steep power-law surface densities ( 1k < − ) exhibit falling rotation 
curves. This observation helps us understand a problem that plagues such two-dimensional models and that has 
been summarized in [37]. In all of these models, the surface densiy profiles were obtained by collapsing spheroi- 
dal homoeoids down to an equatorial plane. Then, when the surface densities decline steeply with radius x, there 
is not enough mass interior to x at large radii to cause the rotation curves to continue rising with radius. This is 
because some of the interior mass comes from homoeoids exterior to x and this mass does not attract at x. The 
Mestel disc [35] [79] [38] is the marginal collapsed model among all classical potential-surface density pairs in 
which all mass interior to x attracts, while the exterior mass does not contribute to radius x. So this model has 
barely enough mass at all radii to maintain a flat rotation curve. This explains also the peculiar property of the 
Mestel disc [35] to be the only two-dimensional model that obeys the cylindrical Gauss’s law at 0Z =  for 
every radius R [37]: 

( ) ( )2 d ,
d

GM R
V R R

R R
Φ

= =                              (30) 

where ( )M R  is the mass enclosed within radius R and ( )RΦ  is the self-gravitational potential. 
We argue that all other razor-thin models that do not satisfy Gauss’s law at 0Z =  are physically question- 

able. This is because the homoeoids from which they were constructed do satisfy Gauss’s law over similar 
Gaussian surfaces. Our models do not suffer from such questionable behaviour because they follow the three- 
dimensional density distribution ( ), 0Rρ  in the equatorial plane of a thin (or thick) disc; and these models 
obey Gauss’s law at every radius R in the limit of 0Z →  for a Gaussian surface that matches their symmetry 
(an infinitesimally tall cylindrical surface of radius R). 

Rising rotation curves were also found by Marr [67] who studied models in which 1/x surface density profiles 
were truncated at a radius near the last observed point. By not being there to pull outward, the exterior mass 
allowed the inward force due to the interior mass to amplify, and this caused the rotation curves to turn up near 
the peripheries of the discs, despite the fact that these were essentially Mestel discs. In any case, our analytic 
solutions (Sections 3 and 4) avoid the above pitfalls (mixing of homoeoids of different sizes, truncation creating 
sharp edges); and they show that the volumetric density at all equatorial radii is always sufficient to continue 
pulling the rotation curves higher. 

For 0B ≥  in Equation (29), the term B m+  determines the rotation curves of the models. Hidden in this 
term are the two different types of Newtonian models that we have discovered and that require monotonically 
rising (not flat) rotation curves in discs and cylinders: 

1) In all isothermal models with 1k > −  and in all polytropic models (Figures 5-8), the indefinite integral in  
Equation (27) is positive definite. Then 0B =  implying that ( )0 0v = , ( ) ( )v x m x= , and the rotation  

curves rise at all radii as more interior mass is added incrementally by the radial integration with increasing x. 
2) On the other hand, in the isothermal models with 1k < −  (Figure 3 and Figure 4), the indefinite intergal 

in Equation (27) is negative definite (although the integral for the mass is still positive). Then, in effect, 
( )2v B m x= −  (where now it is necessary that 0B > ), and the rotation curves approach asymptotically the 

constant value v B=  as ( )m x  decreases toward zero with increasing x. Because ( )xτ  is a very steeply 
decreasing function of x in such cases, then ( ) 0m x →  from below quite fast, and that makes the rotation 
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curves appear quite flat over most radii in Figure 3 and Figure 4. Here, 0B >  implies the inner boundary 
condition that ( )1 0v x =  at a cutoff radius 1x . 

Returning to the pressure term ( ln x ) in Equation (27), if it is included in ( )2v x  in future models, this 
term has the potential to drive some rotation curves down at large radii because it is negative for 1x >  (since 

0< ). This behaviour can occur only in discs since this term is not present in infinite cylinders. So, unlike discs, 
cylindrical star-forming filaments [80] [81] can never exhibit falling rotation curves in equilibrium; except for 
the unlikely case that their age would be smaller than the sound-crossing time, a sign of extreme youth 
indicating that a global equilibrium has not been established yet. 

Our analysis in Sections 3 and 4 was carried out without the ln x  term of Equation (27) in order to bring 
out the physics of such Newtonian systems. Nevertheless, the pressure term in Equation (27) or some similar 
approximation may be of interest to researchers planning to remodel the rotation curves of spiral galaxies. But it 
does not appear to be necessary to modeling the rotation of pre-Class 0 protoplanetary discs because such 
starless discs are subject to extended infall of matter [58] that ought to create cylindrical, vertically thick quasi- 
equilibria to a good approximation. 
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