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Abstract 
This paper continues the author’s work [1], where a new framework of the matter-induced physi-
cal geometry was built and an intrinsic nonlinearity of the Dirac equation was discovered. Here, 
the nonlinear Dirac equation is solved and the localized configurations are found analytically. Of 
the two possible types of the potentially stationary localized configurations of the Dirac field, only 
one is stable with respect to the action of an external field and it corresponds to a positive charge. 
A connection with the global charge asymmetry of matter in the Universe and with the recently 
observed excess of the cosmic positrons is discussed. 
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1. Introduction 
This paper continues the author’s study of the long-standing question of how the physical Dirac field of a real 
matter becomes a finite-sized particle, and it is approached here as a practical problem. The problem is posed 
and solved in a new framework of the matter-induced affine geometry [1], which deduces the geometric 
relations in the space-time continuum from the dynamic properties of the Dirac field. The intuitive argument of 
a possible auto-localization of the Dirac field followed from an observation [1] that the local time flows slower 
at higher invariant density, and then from the wave nature of the Dirac equation. Its further consequence must be 
the (well-known but not clearly understood) charge asymmetry of the observed localized matter. In the present 
work, these qualitative expectations are confirmed by explicit calculations. 

The earlier developed [1] mathematical background for the present work is based on the following ideas and 
results. It is observed that if at a point in spacetime continuum (the principal differentiable manifold  ) a 
physical Dirac field is defined, then the latter determines the tetrad of Dirac currents. These are linearly in- 
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dependent and Lorentz-orthogonal and can serve as local algebraic basis for any four-dimensional vector space, 
including the infinitesimal displacements in coordinate space. 

The Dirac currents are employed as the Cartan’s moving frame in spacetime which, in its turn, results in the 
technique of covariant derivatives for the vector and spinor fields. The physics is naturally brought into this 
mathematical picture by the equations of motion of the Dirac field, which made an artificial tangent (pseudo) 
Euclidean space unnecessary. Differential identities derived from equations of motion fully determine all the 
components of the matter-induced affine connection (the Ricci coefficients of rotation of the tetrad) in   and 
without resorting to a particular coordinate system. Thus determined connections completely define an affine 
geometry (endowed with the connection but with no metric). Thus defined connection depends on the Dirac field 
which makes the Dirac equation nonlinear. 

With known connections, it became possible to find the coordinate lines and coordinate surfaces of the 
matter-induced affine geometry, which have a clear physical meaning and quite high degree of symmetry. The 
congruence of lines of the timelike vector current appeared to be normal, thus determining the family of the 
hypersurfaces of the constant world time τ . The lines of the spacelike axial current appeared to be straight and 
their congruence normal. They define the surfaces of the constant distance ρ . The two-dimensional surfaces of 
constant ρ  at a given time τ  were proved to be just spherical surfaces. 

Below, the inevitable localization of the Dirac field into particles observed in real world, but not explained by 
any theory so far, is confirmed by the analytic solutions of the nonlinear Dirac equation in one-body appro- 
ximation. One of the solutions has maximum near its center and is clearly associated with a stable localized 
positive charge. Another one has minimum and is sought to be an intrinsically unstable negative charge, which 
can be only weakly localized by an external field. 

The content of the paper is organized as follows. In Section 2 we use the previously developed [1] tools of the 
matter-induced affine geometry to write down the Dirac equation in its most general coordinate-independent 
form. Then, in Section 3 we derive the formulae that connect the Dirac matrices in the principal manifold   
and in arithmetic 4 . In Sections 4 and 5, the Dirac equation is written down in a mixed representation, with 
derivatives in  , and coordinates and Dirac matrices in 4 . This representation is well suited for finding the 
analytic solution. These solutions are found in Section 6 and their stability is discussed in Section 7. The con- 
ceptual questions of the charge-asymmetric real world are briefly discussed in the Summary. 

2. The Framework 
In the first part of this work we explored differential identities for the four Dirac currents, vector current j , 
axial current J , and two “ charged currents”, Θ  and Φ . Using them, we found all components of the affine 
connection ABCω , as well as connection BΓ  of the Dirac field in principal manifold  ,  

( ) 1 11 4 .A C
B B ACBieA ω ρ α ρ αΓ = +                           (2.1) 

The connection (2.1) determines the covariant derivative of the Dirac field and it enters the Dirac equation as 
B

Bα Γ , 
[ ] 1 .B

B B imα ψ ψ ρψ∂ − Γ = −                                (2.2) 

The nonzero elements of the ABCω  in the tetrad basis of the normalized Dirac currents Ae  are as follows, 

[ ] ( )030 131 232 12,   2 ,   0,1, 2,3 ,D DQ eA Dω ω ω ω= − = − = = =                     (2.3) 

where [ ]3 ln sinQ m m≡ ∂ = − = −     is the derivative of the invariant density   in the direction of the 
axial current and it has an algebraic representation via the pseudoscalar density  . These formulae assume that  

[ ] DDA A= +  for the right-handed spatial triad [ ] [ ] [ ]1 2 3, ,e e e  with [ ]1= eΘ , [ ]2= eΦ  and the naturally out-  

ward directed axial current 3=J e , i.e. [ ] [ ] [ ]1 2 3
 × = e e e  [c.f Equations (A.9), (A.10)]. When the latter is  

directed inward, but we still wish [ ]3e  to point outward, then we have to take [ ]2= eΘ , [ ]1= eΦ  and re- 
place 12 21 12D D Dω ω ω→ = −  (or [ ] DDA A= − ) in Equation (2.3)1. 

 

 

1Throughout this paper, when uppercase index A of the basis [ ]A A≡e e , ( )0,1,2,3A =  takes a particular numeric value we put it in brackets  

[ ] [ ]0 , 1 , . The lowercase indices a that are related to the tetrad ( )a a≡h h  are put in parentheses, ( ) ( )0 , 1 , . 
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It is instructive to see how the operator A A AD = ∂ − Γ  carries out the parallel transport of the Dirac spinor 
ψ  in different directions. Substituting the results (2.3) into connection (2.1), it is straightforward to obtain, 

[ ] ( ) [ ]
[ ]

[ ] ( ) [ ]
[ ]

[ ]
[ ] [ ]

[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ] [ ]

[ ]

[ ] ( ) [ ]
[ ]

[ ] ( ) [ ]
[ ]

[ ]
[ ]

[ ]

[ ] ( ) [ ]
[ ]

[ ] ( ) [ ]
[ ]

[ ]
[ ]

0 3 0 3 0 3
0 0 0 0 3

3 3 3 0
3 3 3 3 3

1 3 1 3 1 2
1 1 1 1

2 3 2 2 1[3]
2 2 2 2

1 2 2 1 2 ,

2 ,

1 2 2 1 2 ,

1 2 2 1 2 ,

Q ieA Q ie A A

ieA ie A A

Q ieA Q ie A iA

Q ieA Q ie A iA

α α α α α ρ α

α α α ρ α

α α α α α α

α α α α α α

 Γ = + Π = + − 
 Γ = + Π = − 

 Γ = + Π = + + 
 Γ = + Π = + − 









             (2.4) 

where [ ] [ ]( ) ( )( )1 2 311 2 1 2i S Sγ γ σ−Π = = ± . The upper and lower signs in the projector Π  (accordingly,  

the sign in [ ] [ ]D DA A= ± ) correspond to the outward and inward directions of the axial current, respectively, 
which then determines the right- and left-oriented spatial triplets [ ] [ ] [ ]1 2 3, ,e e e . It will be shown below, that, from 
the perspective of the localized solutions, this orientation is translated into the bump of the positive charge and  

to the dip of the negative one, respectively, i.e. [ ]( )3sign± = − ∂  . Therefore, depending on this sign, only the  

locally inward or locally outward components, ( ),L Rd d  or ( ),L Ru u , interact with the electromagnetic 
potential but with the doubled coupling constant 2e . In a sense, the charge conjugation goes together with 
spatial reflection. The matrix 3ρ  differentiate between the right and left components. 

With the connection (2.4) the Dirac equation becomes a nonlinear equation and its explicit form reads as, 
[ ]

[ ] [ ] [ ] [ ]
[ ]

[ ] [ ] [ ] [ ] ( )
[ ]

[ ] [ ] [ ]
[ ]

[ ] [ ] [ ] [ ]

0 3
0 0 3 3 3 3 3 0

1 2
1 1 2 2 2 1 1

3 2

0,

ieA i eA ieA i eA Q

ieA eA ieA eA im

α ρ ψ α ρ ψ

α ψ α ψ ρ ψ

   ∂ − + + ∂ − + −   
   + ∂ − − + ∂ − + + =   

 

 

            (2.5) 

where anomalous term 3 2Q−  singles out the direction of the axial current among others even when 0Aµ = . 
This equation is valid in every connected domain where 2 0R >  and the Dirac currents define a non- 

degenerate orthogonal tetrad ( )Aeµ ψ . As anticipated, it is invariant in a most broad sense—it depends neither on 
choice of coordinates xµ  in 4  nor on a tetrad system ahµ  (also in 4 ) not even on a particular choice of 
the γ -matrices. The latter is always taken for granted since one can introduce a new Dirac field Sψ ψ′ =  
leaving the gamma matrices unchanged. But this trick works only for re-parameterizations in 4 , i.e. change of 
the Lorentz frame or transformations between orthogonal coordinates. It cannot be employed in the principal 
manifold   just because the Dirac field is a coordinate scalar. 

Finally, Equation (2.5) is nonlinear because both the connection ACBω  and the Dirac matrices ( )A A a
aVα ψ α=  

in it depend on the Dirac field ψ ∈ . The dependence of ACBω  on the Dirac field is due to (2.3). The 
dependence of the Dirac matrices on ψ , ( )A A a

aVα ψ α= , is not so explicit but not less important and it cannot 
be avoided. Indeed, in the basis [ ]A  each of the currents AJ  has only one nonzero component, e.g., 

[ ]0 0 .A A A a A a A
a aj V j RV V Rψ α ψ δ+= = = =  

The latter cannot be achieved without an explicit dependence ( )Aα ψ . Indeed, with ψ ∈  and numerical 
matrices aα  the current aj  will have all components. Obviously, this is a significant technical difficulty. 
However, only this dependence solves a conceptual problem of independence of the equation of motion for the 
physical Dirac field in   on a particular choice of the tetrad ah  and of the matrices aα  in tangent pT . 
Therefore, we begin with the establishing rules of transformation of the 16 Dirac matrices between   and 

4 . 

3. Dirac Matrices in Principal Manifold  
Historically, the Dirac equation for the free field ψ  was formulated as 0a

ai mα ψ βψ∂ − =  with the aid of  
Hermitian Dirac matrices ( )a aα α

+
=  and β β += , which satisfy the commutation relations, 

22  ,    0,   1.a b b a ab a aα βα α βα βη α β βα β+ = + = =                 (3.1) 
Usually one assumes that ( )1,a iα α= ; 0,1, 2,3a = ; 1, 2,3i =  (so that 0 1α =  is a unit matrix) but this is 

not required. An apparently symmetric form of commutation relations (3.1) emerges (along with the equation, 
0a

ai mγ ψ ψ∂ − = ) in terms of the matrices ( )( ) ( )0 , ,a i iγ γ γ β βα= = , 
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2 .a b b a abγ γ γ γ η+ =                                   (3.2) 

Neither of these matrices is uniquely defined. However, if there exist two sets of the matrices, aγ  and [ ]Aγ , 
that satisfy (2) then, according to the Pauli’s fundamental theorem, there exists such a nonsingular S, that 

[ ] ( )1 ,S Sκ κγ γ−=                                       (3.3) 

where 0,1,2,3κ = , [ ]κ  is a number standing for superscript A and ( )κ  is the same number for superscript a.  
There are sixteen linearly independent 4 4×  matrices ( )1, , ,a a b

pO γ γ γ=  , all of which are the products of 1,  

2, 3 or 4 different gamma. Therefore, [ ]
[ ] [ ] [ ]( )1 1, , ,a a b

ppO S O S γ γ γ−= =  , which is an indisputable technical 
advantage. 

By their definition, the matrices aγ  are not Hermitian. However, since β  and iα  are Hermitian and anti-  

commuting, the Hermit-conjugated γ -matrices are ( ) ( ) ( )0 0a aγ γ γ γ
+
= . If, by the same token, [ ] [ ] [ ]0A Aγ γ α=   

(with Hermitian [ ]0γ  and [ ]Aα ), then [ ]( ) [ ] [ ] [ ]0 0A Aγ γ γ γ
+
= , which yields, 

( ) [ ] [ ] [ ]( ) [ ] [ ] ( ) [ ] [ ] ( )( ) [ ] ( )( ) 10 0 0 0 0 00 01 1 .A AA A AS S S S S Sγ γ γ γ γ γ γ γ γ γ γ γ γ
+ −+− − + += = = =  

Multiplying this by S from the left and by [ ] ( )0 0Sγ γ+  from the right, we find, 
[ ] ( )( ) [ ] ( )( )0 00 0 .A AS S S Sγ γ γ γ γ γ+ +=                              (3.4) 

The matrix [ ] ( )( )0 0S Sγ γ+  commutes with all the matrices Aγ  and must be the unit matrix, viz., 
[ ] ( )0 01 .S Sγ γ− +=                                       (3.5) 

On the one hand, we can continue as 
[ ] [ ] [ ] [ ] ( )0 0 01 .A A A A AS S S S S Sα γ γ γ γ γ γ α− + += = = =                        (3.6) 

On the other hand, condition (3.5) means that [ ] ( ) ( )0 0 01S S S Sγ γ γ+ −= ≠ , which conflicts with Equation (3.3), 
because matrix S is not unitary. This conflict can be avoided by adopting a slightly different agreement (that 
does not affect any of the common usages of the gamma-matrices). Namely, let us denote 1β ρ=  and define 
γ -matrices as 1

a aγ ρ α=  and [ ] [ ]
1

A Aγ ρ α= . Now we must replace both [ ]0γ  and ( )0γ  in Equation (4) by 1ρ ,  
so that 1

1 1S Sρ ρ+ −=  and [ ] [ ] ( ) ( ) ( )1 1
1 1 1 ,  0,1, 2,3,a a a a aS S S S S S aγ ρ α ρ α ρ α γ+ − −= = = = =  in compliance with  

(3.3). Choosing ( )0 1α = , we have ( )0
1γ ρ= , [ ]0 S Sα += , [ ] [ ]( )0 0

1 1S S S Sγ ρ ρ γ
+

+ += = = . 

Throughout this paper, we are only interested in a special case of the transformations (3.3) and (3.6), 
[ ] [ ],   ,A AA a A a

a aV Vγ γ α α= =                                  (3.7) 

where the transformation matrix A
aV  is real and has the properties, 

,   .a B B a A a
A a A A b bV V V Vδ δ= =                                    (3.8) 

Then the commutation relations (3.1) are the same for aγ  and Aγ  and S must be a solution of the matrix 
equation, 

[ ] ( ) .A A A a
aS S Vα α ψ α+= =                                   (3.9) 

Though A
aV  has a character of a Lorentz transformation, it has no infinitesimal prototype. Since S + =  1

1 1Sρ ρ− , we also have a habitual [ ] [ ] ( )1
1

A A A A a
aS S Vγ ρ α γ ψ γ−= = = . However, in the basis of matrices [ ]Aγ , 

the Pauli-conjugated Dirac spinor must be defined as 1ψ ψ ρ+=  and not as [ ]0ψ ψ γ+= . 
The set pO  of 16 linearly independent elements of Clifford algebra comprised of various products of the 

aγ - (or the Aγ -) matrices is in one-to-one correspondence with 16 Hermitian matrices, ( )1, , ,i k k
i i iρ σ ρ σ σ ρ= , 

, 1, 2,3i k = , where 0
1ρ γ= , 1 2 3

2ρ γ γ γ= , 0 1 2 3
3 1 2i iρ γ γ γ γ ρ ρ= =  and 1 2 3

2 3
i i i ii iσ ρ γ γ γ γ γ ρ α= = = . The 

Dirac matrices, iρ  and iσ , satisfy the same commutation relations as the Pauli matrices, i k l
ik ikliσ σ δ σ= +  , 
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and a b ab abc ciρ ρ δ ρ= +  . Finally, it is straightforward to check that the matrix 0 1 2 3
3 iρ γ γ γ γ=  (commonly 

known as 5γ− ) is an invariant of transformations (3.3), 

[ ] 33 4! 4! 4!
A B C D A B C D a b c d a b c d

ABCD ABCD a b c d abcd
i i iV V V Vρ γ γ γ γ γ γ γ γ γ γ γ γ ρ= = = =               (3.10) 

Then the matrix 2 1 3iρ ρ ρ=  is transformed like 1ρ , so that 

[ ] [ ]
1

3 33 ,  ,   1, 2.i iiS S S S iρ ρ ρ ρ ρ ρ− += = = = =                           (3.11) 

As long as [ ]0
3 3 3 3S S S S S Sρ ρ ρ ρ α+ + += = = , the matrices σ  on the  , being defined as [ ] [ ]

3
I Iσ ρ α= , 

are transformed as 
[ ]

( )
( )( ) ( )
0

3 30 0
I I I I j I I j

j jS S V V V Vσ σ ρ α α ρ σ+= = + = +                         (3.12) 

(as it should be for the spatial components of the axial current aJ )2. 

4. The Nonlinear Dirac Equation, Explicitly 
So far, we have been studying the general geometric properties of the Dirac field in the scope of the affine 
geometry and carefully avoiding any assumptions about what a solution of the Dirac equation that has these 
properties can be. All the previously established [1] properties of the Dirac currents belong (along with the Dirac 
field itself) to the principal differentiable manifold  . Without resorting to any particular coordinate manifold 

4  we have established in [1] the following facts: 
(i) The congruence of lines of the vector field [ ]0eµ  is normal. The family ( )123S  of hypersurfaces, ( )xτ =  const , of the constant world time τ  is extrinsically flat; τ  is a holonomic coordinate and it can be taken for 

0x  in 4 . 
(ii) The congruence of lines of the vector field [ ]3eµ  is normal and geodesic. The hypersurfaces ( )012S  of the 

constant radius ρ  have constant extrinsic curvature and the holonomic coordinate ρ  can serve as 3x  in 
4 . 
(iii) The two-dimensional surfaces ( )12S  of constant τ  and ρ  are just spheres, i.e. umbilical (with two 

equal Gauss’ curvatures) surfaces with constant mean (extrinsic) curvature [ ]3 lnH m m= = − ∂   . The latter 
is determined by the Dirac field within principal manifold   and depends only on the radius ρ . The intrinsic  
(sectional) curvature, [ ] [ ] [ ] [ ]( ) [ ] [ ]( ) [ ]

2 2 2
1212 121 2 2 1 1 2 32 4 2 2tR e A A e A A eF eB= ∂ − ∂ − + = = , is due to the external electro-  

magnetic field. It coincides with projection of the magnetic field onto the direction of the axial current. 
(iv) The two-dimensional surfaces ( )03S  are covered by a well-defined coordinate net formed by the stream- 

lines of the vector and axial currents. This net can be identically mapped between the principal manifold   
and the arithmetic 4 . 

These general observations can be summarized as follows. For any solution of the Dirac equation, which is 
not homogeneous in spatial directions, the spherical symmetry is the property of a solution, thus being a dy- 
namic symmetry. 

In order to find a solution of the Dirac equation, one has to specify a coordinate basis in 4  and a basis of 
the Dirac matrices. Here, we shall employ the numerical matrices aα  in spinor representation (A.7) and asso- 
ciate them with a tetrad ( )a

µh . Then, A A a
aVα α= , while the derivatives [ ]A  will stay in the basis Ae , which is 

associated with coordinate surfaces determined in the principal manifold  . In this mixed representation, 
Dirac equation reads as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( )
( )
( )

0 3 1 2

1 2 0 3

0 3 1 2

1 2 0 3

e
0 0 e

e0 0 e
0 0 ee
0 0 ee

u
R

u
L

d
R d

L

uu
RL

d
Rd

L

i
A RA A A A i

L
iA A A A iA R

L
A A A A ii

RA L
A A A A i

i R
A L

u
V V V iV u

dV iV V V d
im

V V V iV uu
V iV V V dd

φ
φ

φ
φ

φφ

φ
φ

 
    + −
    
   + − 
  = −   

− − +     
    

− − +          









        (4.1) 

 

 

2Then the charge-conjugated spinor * 2 *
2ψ ψ ρ σ ψ= =c C  becomes [ ]2 *

2ψ ρ σ ψ=c . In particular,  

( ) ( )
[ ] [ ] 1 2 * 2 *

2 2
a aa a a

c S S S Sψ α ψ ψ α ρ σ ψ ψ α ρ σ ψ+ + − + +
− −Λ = → Λ = = . At the same time, [ ] [ ]0 1I IS Sγ γ α−=  and [ ] [ ]1 2 1 3i S Sγ γ σ−= , ... 
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The operators A , which are copied from Equation (2.5), are as follows, 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

30 0 0 3 1 1 1 2

33 3 3 0 2 2 2 1

,               , 

3 2,     , 

ieA i eA ieA eA

ieA i eA Q ieA eA

ρ

ρ

= ∂ − + = ∂ − −

= ∂ − + − = ∂ − +

 

 

 

 
                (4.2) 

where 3ρ  differentiate between the right and left components and it stands for 1+  for ,R Ru d  and for 1−  
for , .L Lu d  The coordinate net formed by the integral lines of the tetrad vectors [ ]0e  and [ ]3e  that covers the 
two-dimensional surface ( )03S  in   is holonomic and the vectors ( ) ( )0 3,h h  in 4  can be chosen tangent to 
this surface. In order for the other two tetrad vectors, ( )1h  and ( )2h , to be normal to this surface, it is necessary 
that the components [ ]

( )
[ ]
( )

[ ]
( )

[ ]
( )1 2 1 2

0 0 3 3 0V V V V= = = = . Just by inspection of Equations (A.9), we see that this is 
possible only when either 0R Ld d= =  or 0R Lu u= = . In both cases, as seen from Equations (A.10), we have 
[ ]
( )

[ ]
( )

[ ]
( )

[ ]
( )0 3 0 3

1 1 2 2 0V V V V= = = = . In other words, the spacetime with the matter-induced anholonomic basis can be 
viewed as a direct product of the two-dimensional subspaces, ( ) ( )03 12S S⊗ . This is sufficient to treat the up- and 
down-polarizations separately, 

( )

( )
( )

( )

0exp
exp0

,   .
0exp

exp0

u
R R

d
R R

u du
L L

d
L L

u i
d i

u i
d i

φ
φ

ψ ψ
φ

φ

   
   
   

= =   
   
   
   

                        (4.3) 

Having only ,R Lu u  or ,R Ld d  components, the states uψ  and dψ  cannot bear quantum numbers of an  
angular momentum. For the up-polarized uψ , we have ( ) ( )3 3J J= + , [ ]3 ln sin 0Q m≡ ∂ = − <  . In this  

case [C.f. (A.9)-(A.11)], 2u R Lu u= =   and the matrix ( )
( )
[ ]Aa
aVα  in the l.h.s. of Equation (4.1) simplifies to 

( )
[ ]

( )
[ ]

( )
[ ]

( )
[ ]

( )
[ ]

( )
[ ]

( )
[ ]

( )
[ ]

( )
[ ]

( )
[ ]

( )
[ ]

( )
[ ]( ) ( )

0 0 3 3 0 0 3 3
0 3 0 3 0 3 3 0

1 1 2 2
1 2 1 2

, ,

 e .
u u
L R

R L L R

i

V V V V u u V V V V u u

V iV i V iV
φ φ+

+ = + = − = − =

± = ± =




 

Accordingly, system (4.1) for uψ  becomes 

[ ] [ ]
( )

[ ] [ ]

[ ] [ ]
( )

[ ] [ ]

2
0 3 1 2

2
0 3 1 2

e e ,   e e 0,

e e ,   e e 0.

u uu u uR LR L R

u uu u uR LL R L

ii i i
R R L R

ii i i
L L R L

u u imu i u

u u imu i u

φ φφ φ φ

φ φφ φ φ

− +

− +

   + = − + =   

   − = − + =   

   

   
               (4.4) 

For the down-polarized dψ , we have ( ) ( )3 3J J= − , [ ]3 ln sin 0Q m= ∂ = + >  . Here, 2d R Ld d= =   
and the elements of the matrix in the l.h.s. of Equation (4.1) become, 

( )
[ ]

( )
[ ]

( )
[ ]

( )
[ ]

( )
[ ]

( )
[ ]

( )
[ ]

( )
[ ]( )

( )
[ ]

( )
[ ]( ) ( )

[ ]
( )
[ ]( ) ( )

0 0 3 3 0 0 3 3
0 3 0 3 0 3 0 3

1 1 2 2
1 2 1 2

, ,

 e .
d d
L R

R L L R

i

V V V V d d V V V V d d

V iV i V iV
φ φ+

− = − = + = − + =

− ± = ± =




 

Now, the system (4.1) reads as 

[ ] [ ]
( )

[ ] [ ]

[ ] [ ]
( )

[ ] [ ]

2
0 3 1 2

2
0 3 1 2

e e ,   e e 0,

e e ,   e e 0.

d dd d dR LR L R

d dd d dR LL R L

ii i i
R R L R

ii i i
L L R L

d d imd i d

d d imd i d

φ φφ φ φ

φ φφ φ φ

− +

− +

   + = − + =   

   − = − + =   

   

   

             (4.5) 

Remembering about the sign due to 3ρ , we obtain the following formulae for all the differential operators 
involved, 
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[ ] [ ] [ ] [ ] [ ] [ ]( ) [ ] [ ]( )

[ ] [ ] [ ] [ ] [ ] [ ]( ) [ ] [ ]( )
[ ] [ ] [ ] [ ] [ ] [ ]( ) [ ] [ ]( )
[ ] [ ] [ ] [ ] [ ] [ ]( ) [ ] [ ]( )

0 3 0 3 0 0 3 3

0 3 0 3 0 0 3 3

1 2 1 2 1 1 2 2

1 2 1 2 1 1 2 2

3 ,
2
3 ,
2

,

.

Q ie A A A A

Q ie A A A A

i i ie A A i A A

i i ie A A i A A

   + = ∂ + ∂ − − − + −    
   − = ∂ − ∂ − − − − −    

 + = ∂ + ∂ − − + − 
 − = ∂ − ∂ − + − + 

 

 

 

 

 

 

 

 

                   (4.6) 

In Equations (4.4) and (4.5), the operator [ ] [ ]0 3+   acts only on Ru  and Rd  while [ ] [ ]0 3−   only on 
Lu  and Ld . 

5. Solutions of the Nonlinear Equations 
So far we were expanding the vector of spacetime displacement dxµ  in terms of the basis Ae  of the tetrad 
determined by the Dirac currents d d A

Ax e Sµ µ= . But the true physical variables are the world time τ  and the 
distance ρ . They are holonomic coordinates, because [ ]0d dSτ =  and [ ]3d dSρ =  are the total diffe- 
rentials of the independent coordinates 4dxµ ∈ , 

( )
( ) ( ) [ ]

( )
( ) ( ) [ ]2 2

1 1

0 3
2 1 2 1d d ,  d d .

x x

x x
j x x S J x x S

τ ρµ µ
µ µτ ρ

τ τ ρ ρ− = = − = = ±∫ ∫ ∫ ∫              (5.1) 

Here, the upper sign is for the uψ , where 2 2
3 0R Lu u= + > . The lower sign is for dψ , where 

2 2
3 0R Ld d= − − <  and the axial current is directed inward. The world time τ  and the radial variable ρ , 

being defined as invariants in  , can immediately be used in arithmetic 4 . 

5.1. Reduction to the Physical Variables 
At the points where ( )

[ ]
( )33
0 0j V= =  and ( )

[ ]
( )00
3 0V= =  (in general, a 2-d surface) the relation between spatial 

components, [ ] 2× = + Θ Φ  , is an algebraic identity. For the axial current directed outward, i.e. 
3 0> , we take [ ]3eµ µ= +  , [ ]1eµ µΘ =  and [ ]2eµ µΦ = , so that [ ] [ ] [ ]3 1 2

 = × e e e . In this case, we 
change the variables in Equation (4.4) as follows, 

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

0 3 0 3

120 123
0 3 1 1 2 2

, , , , 

 
, , ,  

2 2

e em m eA A eA A
m m

e e e eeA A eA A eA A eA A
m m m m

τ ρ τ ρ

τ ρ
ω ω

∂ → ∂ ∂ → ∂ → →

= → = → → →       

   

 
         (5.2) 

Adopting the physical variables (5.2) in Equations (4.4) we obtain the equations that eventually must be  

solved. In these equations, according to (4.6), there is an operator [ ] [ ] [ ] ( )3 2 3 2
3 3 3

3 ln
2

f f− ∂ − ∂ = ∂ 
 

  
  

( )3 2 3 2 fρ
−= ⋅ ∂   . Since 0A A A A∂ = ∂ = ∂ = ∂ =     for 0,1, 2A = , a simple calculation with τ∂ =  

0τ∂ =  yields the system, 

( ) ( )

( ) ( )
( )

[ ] [ ]

2 2 2

3 3 3

2 2 2

3 3 3

1 2

e ,   (a)
2

e ,   (b)
2

e e 0,                                 (c)

e

u

u

u u uL R R

iuR R L
R

iuL L R
L

i i
R

u u ui i

u u ui i

i u

ρ τ ρ τ

ρ τ ρ τ

φ φ φ

φ

φ

+

−

− +

     
∂ + ∂ + ∂ + ∂ = −     

     
     

− ∂ − ∂ − ∂ − ∂ = −     
     

 ∂ + ∂ = 








  




  

( )
[ ] [ ]1 2 e 0,                                                     (d)

u u uL R L
i i

Li u
φ φ φ− +  ∂ + ∂ = 

              (5.3) 

where u u
u L Rφ φ= − . For the axial current directed inward, in order to preserve an intuitive physical under- 

standing of a distance from an object, we want [ ]3e  be directed outward. Then the triplet [ ] [ ] [ ]( )1 2 3, ,e e e  will be 
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left-handed. We have to take [3eµ µ= −  , [ ]2eµ µΘ = , and [ ]1eµ µΦ =  in order for the vector product  

[ ] [ ] [ ]1 2 3
 × = e e e  to represent the external normal and the triplet [ ] [ ] [ ]( )1 2 3, ,e e e  to be right-handed. This results  

in the interchange of the tetrad indices 1 2↔  in Equations (2.3), or, equivalently, in the change of the sign of 
the tetrad components of the vector potential, B BeA eA→ −  . Thus, the string of the change of variables becomes 

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

0 3 0 3

0 3 1 1 2 2

, , , ,

 , , , .

e em m eA A eA A
m m

e e e eeA A eA A eA A eA A
m m m m

τ ρ τ ρ

τ ρ

∂ → ∂ ∂ → − ∂ → → −

→ − → + → − → −       

   

 
              (5.4) 

Note, that in the course of the change of variables outlined above, the sign of the [ ]3eA  has been changed 
twice. Now, using the physical variables (5.4) in Equations (4.5) we arrive at a similar system, 

( ) ( ) ( )

( ) ( ) ( )

( )
[ ] [ ] [ ]

2 2 2

3 3 3

2 2 2

3 3 3

1 2 1

2 e ,          (a)
2

2 e ,        (b)
2

2e

d

d

d d
L R

idR R L
R

idL L R
L

i

d d dei A A i
m

d d dei A A i
m

iei A iA
m

ρ τ τ ρ τ ρ

ρ τ τ ρ τ ρ

φ φ

φ

φ −

− +

      − ∂ − ∂ + ∂ − ∂ − − = −            
      ∂ + ∂ + ∂ + ∂ − + = −            

∂ + ∂ − +








  




  

[ ]( )
( )

[ ] [ ] [ ] [ ]( )
2

1 2 1 2

e 0,                                    (c)

2e e 0,                                    (d)

d
R

d d dL R L

i
R

i i
L

d

iei A iA d
m

φ

φ φ φ− +

  =  
 ∂ + ∂ − + =  

      (5.5) 

where d d
d L Rφ φ= − . The difference between uψ  and dψ  is seen right in the equations of motion. The tetrad 

components of an external field along holonomic coordinates, ( )03,A A Sτ ρ ∈ , affect only dψ -mode. The 
associated with the non-holonomic coordinates angular components [ ] [ ] ( )121 2,A A S∈  are assembled as the ladder 
operators and affect dψ  pushing it up to the state uψ . This difference between the last two equations of 
systems (5.3) and (5.5) points to a generic instability of the dψ -mode3. It is discussed in Section 7. 

5.2. Reduction to the Real-Valued Functions 
As the last step before solving systems (5.3) and (5.5) we split real and imaginary parts of the first two equations 
of these systems and reduce equations to a form convenient for finding the solutions. For the mode uψ  the 
result reads as 

2 2

3 3

2

2

2 2

3 3

sin ,                                (a)
2

cos                                        (a )

sin ,    
2

R L
u

u L
R u

R

L R
u

u u

u
u

u u

ρ τ

φ
ρ τ

ρ τ

    ∂ ∂
+ =    ∂ ∂    

 ∂ ∂ ′+ = − ∂ ∂ 
    ∂ ∂

− =    ∂ ∂    




 

 




 
2

2

                      (b)

cos .                                        (b )u R
L u

L

u
u

φ
ρ τ

 ∂ ∂ ′− = ∂ ∂ 
 

                (5.6) 

For the mode dψ  the result is somewhat different, 

 

 

3Since 1e  and 2e  are the “angular” directions, it is instructive to recall that the operators 1 2L L iL+ = +  are ladder operators for the angu-

lar momentum that moves eigenstate of the zL  up. Both systems (5.3) and (5.5) contain only L+ . While uψ  cannot be pushed further up 

(and is stable), the dψ  is readily pushed up to the uψ . One can view these transitions as a manifestation of the dψ -waveform’s “motion”. 

In fact, it is a flow of surrounding Dirac matter with 1≥  that looks like a motion of the dψ -dip (or void). 
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( )

2 2

3 3

2

2

2 2

3 3

sin ,                               (a)
2

2cos ,               (a )

sin ,                 
2

R L
d

d L
R d

R

L R
d

d d

d e A A
md

d d

ρ τ

ρ τ

φ
ρ τ

ρ τ

    ∂ ∂
− = −    ∂ ∂    

 ∂ ∂ ′− = + − ∂ ∂ 
    ∂ ∂

+ = −    ∂ ∂    




 

  




 

( )
2

2

        (b)

2cos .              (b )d R
L d

L

d e A A
md ρ τφ

ρ τ
 ∂ ∂ ′+ = − + + ∂ ∂ 

  

              (5.7) 

The phases u
Rφ  and u

Lφ  are affected in uψ  by the right and left lightlike components of the vector potential, 
respectively, but with the coupling constant 2e . Conversely, the phases d

Lφ  and d
Rφ  of the dψ  are not 

affected at all. 
Next, adding and subtracting Equations (5.6.a′) and (5.6.b′) and recalling that u u

L R uφ φ− =   we find that 

[ ] [ ]

2
2

2
2

1 2

1 cos ,                  (a)

d sin ,   (b)
d

1 cos .                (c)

0,   (d)

u u
u u

u

u

u
u u

u

ui

ρ τ

ρ

ρ

 ∂ ∂
= + + 

∂ ∂  

= −

 ∂
= − − 

∂  
 ∂ + ∂ = 

 
   







  





                  (5.8) 

where u u
u L Rφ φ= +  and L R uu u =  . Repeating the same for the mode dψ  we obtain, 

[ ] [ ] [ ] [ ]( )

2
2

2
2

1 2 1 2

1 4cos ,  (a)

d sin ,   (b)
d

1 4cos .    (c)

4 ,   (d)

d d
d d

d

d

d
d d

d

d

e A
m

e A
m

ei A iA
m

τ

ρ

ρ τ

ρ

ρ

 ∂ ∂
− = + + − 

∂ ∂  

= +

 ∂
= − − + 

∂  

 ∂ + ∂ = + 

 
    







   





                   (5.9) 

where d d
u L Rφ φ= +  and L R dd d =  . Equations (5.8.d) and (5.9.d) are easily obtained from Equations 

(5.3.c,d) and (5.5.c,d) because none of the amplitudes ,R Lu u  and ,R Ld d  and of the phase differences ,u d   
depend on the angular variables S[1] and S[2]. We postpone discussion of the Equations (5.3.c,d) and (5.5.c,d), 
which are responsible for the stability or instability of the solutions, till Section 7. 

Before looking for the stationary modes of the nonlinear Dirac equation we are going to learn whether they 
can emerge as asymptotic configurations at τ → ∞  of a transient process that can begin from an arbitrary per- 
turbation or are they ad hoc constructed isolated solutions. By adding and subtracting Equations (5.6.a,b), with 
the l.h.s. reduced to the logarithmic derivatives, and some simple algebra we obtain 

2
2

2

 1 ln 1 ln ,    ,u u
u u u u

u uτ ρ ρ ρ
  ∂ ∂∂ ∂

= − = −  ∂ ∂ ∂ ∂   

  
   

 
              (5.10) 

where ln sin uρ∂ = −   . Excluding from these two equations the lnρ∂  , one finds a first-order wave  
equation, ( ) 0cτ ρ∂ + ∂ =   , with the wave velocity ( ) ( ) ( )2 21 1c = − +   . Because ( )1 0c = , the  

“propagation” of   stops at 1= . Since   depends only on ρ , both Equations (5.10) are easily 
integrated, 
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( ) ( ) ( ) ( )
( )

4
12 2

4
2 1

1, 1 ,    , ,
2 lnu u

C
C Cρ

τ
τ ρ τ ρ

τ ρ τ
−

= − =
∂ ⋅ + +


 

 
              (5.11) 

where the constants of integration ( )1C τ  and ( )2C ρ  are arbitrary functions of only one argument. Since 
( ), 1u ρ∞ =  (and then ( )1 0C ∞ = ), we find that at the asymptotic world time τ  the coefficients in front of 

( )cos u ρ  in Equations (5.8.a) and (5.8.c) become 2 and 0, respectively. Assuming further that 0e =  (no 
external field), we find that 0uρ∂ =  and thus ( )u u τ=  . Now, uτ∂   is the only potentially τ
-dependent term in Equation (5.8.a); then it cannot depend on τ . Therefore, the only option is 2u Eτ∂ = −  

const= , 2u Eτ= − , and it immediately follows that 2 2 2 2L Ru u u= = =  (which is an evidence that the 
particle is at rest!). Equations (5.11) are compatible only in the limit of τ → ∞  since they imply 0τ∂ = ; a 
transient process naturally requires that 0τ∂ ≠ . Similar results are true for the mode dψ . 

6. Stationary Solutions 
Being interested here only in stationary states we assume a trivial dependence of the phases of Dirac field 
components on τ , e iEτψ −∝ , and replace, ( )R R Eφ φ ρ τ→ − , ( )L L Eφ φ ρ τ→ − , throughout this section. 
Then, 2 2 2 2L Ru u u= = =  and 2 2 2 2L Rd d d= = = . Taking further the coupling constant 0e = , which is, in 
fact, equivalent to a one-body approximation, we end up with an autonomous system of two ODEs for two 
unknown functions (the amplitude ( )ρ  and the phase difference ( )ρ ) of the natural parameter ρ  (and 
not the affine parameter s!) along the radial geodesic lines. 

6.1. Localized Solution for the ψu-Mode of the Dirac Field 
In the stationary case, Equations (5.8) for the uψ -mode with the axial current directed outward, read as 

( ) ( ) ( )

( ) ( ) ( ) ( )

d
2 ( ) 2cos ,   (a)

d
d

sin ,   (b) 
d

u
u

u

ρ
ρ ρ ρ

ρ
ρ

ρ ρ ρ
ρ

= − +

= −


  


  

                      (6.1) 

where E m= . The characteristic equation for this system, 
d d ,

2 2cos sin
u

u u

= −
− +

 
   

                                 (6.2) 

is easily solved in terms of ( ) cos uw =  . Then, 2 2 0w w′ − + =  , and 
2cos 2 ,uY C= +                                       (6.3) 

is the first integral of system (1) depending on one, yet undetermined, constant C. 
1. General (periodic) solution. Solving Equation (6.3) for  , and taking into account two possible signs of 

C, one can rewrite Equation (1a) as 
2 2d d2 cos ,   0  and  2 cos .   0.

d d
C C C C

C Cρ ρ
= ⋅ + > = ⋅ − < 

   
            (6.4) 

Thus, the dependence ( )ρ   in the cases 0C >  and 0C <  is given by the quadratures [2], 

( )
( ) ( )

2

202 22
2

1 d 1 2 ], 0,
2 121 11 sin

1

F C
bC b C b

b

φρ
φ

 
= = > + + +−

+

∫
 

 
          (6.5) 

( )
( ) ( )

2

202 22
2

1 d 1 2 0, 0,
2 121 11 sin

1

F C
bC b C b

b

φρ
φ

 
= = < − − −−

−

∫
 

 
         (6.6) 

where 2 2 0b C= >  and ( ) ( )2 1 2| sn sin |w F k k−= Φ = Φ  is the incomplete elliptic integral of the first 
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kind4, 

( ) ( ) ( )( ) 1 21 22 2 2 2 2 2
0 0

| 1 sin d 1 1 d ,   sin .
X

F k k x k x x Xφ φ
−−Φ  Φ = − = − − = Φ ∫ ∫          (6.7) 

Its inverse is a well-known Jacobi’s amplitude function, ( )2am |w kΦ = . Leaving aside for a while the case 
of 0C < , we readily find that 

( ) ( )
( ) ( ) ( ) ( )

2 2

2 2 2 2 2 2

sin sn | ,  cos cn | ,  
2 2

sin 2sn | cn | ,  cos cn | sn | ,

u k u k

u k u k u k u k

= =

= = −

 

 
              (6.8) 

where ( )( )2 2 2 | 2 1u C F bρ= + = +  , ( )2 22 1k b= + . Now Equation (6.1b) becomes, 

( ) ( ) ( ) ( )2 2d
sin 2sn | cn | ,

d
u k u k

ρ
ρ

ρ
= − = −


                        (6.9) 

and, since ( ) ( ) ( )2 2 2 2sn | cn | d dn |u k u k u u k k= −∫  [2], the latter equation is readily integrated, 

( )
2

2
2

2 dn  ,  0.
1

C C C
C b

ρ ρ+  = + > + 


                        (6.10) 

In the second case of 0C <  we would have 

( )
2

2
2

2 dn  ,  0.
1

C
C C

C b
ρ ρ

−  = − < − 


                       (6.11) 

The Jacobi’s elliptic functions ( )2sn |u k , ( )2cn |u k  and ( )2dn |u k  are known to be double-periodic 
functions of their argument. While periodic behavior of the phase ( )ρ  cannot a priori be excluded, perio- 
dicity in radial direction is impossible for the invariant density ( )ρ , simply because it would conflict with 
the physical localization. 

2. Localized (aperiodic) solution. There is, however, a special case when the module of the elliptic function 
1k =  and the periodicity disappears (the period becomes infinite). For the Equation (6.10), this means that 

2 2 1b C= =  so that ( )dn |1 1 coshu u=  (as well as ( )cn |1 1 coshu u=  and ( )sn |1 tanhu u= ). For the 
Equation (6.11) the same would mean 2 1b = − , which is impossible, since 2 0b > , by definition. Hence, the 
case of 0C <  must be dropped from further consideration. 

The constant C of integration in the Equation (6.3) is now uniquely determined as ( )22C E m= = , and the 
equation of characteristics of system (6.1) becomes 

( ) ( )22cos 1 2cos 2 1 .+ = = +                               (6.12) 

Since the Jacobi’s elliptic functions with module 1k =  are elementary functions, it is much easier to return 
to the original system (6.1) and the characteristic equation (6.12) with 2C =  , using the latter as a constraint. 
After using the constraint (with the signs to be determined later), ( )1 2 cos 2u+ = ±  , the system (6.1) 
simplifies to 

3 2d
2 cos ,   (a)

d 2
d sin 2sin cos ,   (b)
d 2 2

u u

u u
u

ρ

ρ

= −

= − = −

 


 


                      (6.13) 

and its first equation is readily integrated to ( )ρ   first, and then yields ( )ρ  

 

 

4These expressions have no practical value and will be used below for a sole purpose of proving that the modules of the elliptic integrals 
must equal +1 by the physics of the problem. Then, and only then is ( )ρ  not oscillating in radial direction. This uniquely fixes the con-

stant as 2C =   and guarantee that elliptic integrals become smooth elementary functions. The limits of integration in (6.5) are tentative. 
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( ) ( )
1 12 tanh sin ,  sin tanh 2 ,  cos .

2 2 2 cosh 2 
u u uρ ρ

ρ
−  = = − = 
 

  
 


        (6.14) 

When ρ →∞ , we have 1 0+ → , which is possible only when 0E m= < . We also obtain the anti- 
cipated ( )sin 0∞ =  and ( )cos 1u ∞ = − , i.e. ( ) πu ∞ = . Returning the result of integration into Equations 
(6.12) and (6.13b), we simplify the latter to 

( ) ( )
( )
( )2

sinh 22 d1 ,   sin 2 .
dcosh 2 cosh 2

u

ρ
ρ

ρρ ρ
−

+ = = − = −


 
 

               (6.15) 

In order for this solution to be interpreted as an isolated particle at rest, we must require that E m= − . Thus 
the solution 

( ) ( )
2 1,

cosh 2
ρ

ρ
= +                                 (6.16) 

is the mode with the negative energy with respect to the vacuum level zero attributed to 1= . Finally, in 
natural units, 

( ) ( ) ( )
2sin tanh 2 ,  1.

2 cosh 2
u m

m
ρ ρ

ρ
= = +


                        (6.17) 

This result also follows from Equation (6.9), since ( )dn |1 1 coshu u= . We can take the radius 0ρ  of the 
spherical surface, where d dρ  reaches its maximum (the inflection point) for the size of the particle. Here, 

( )0sin 1u ρ = , and, consequently, ( )0sinh 2 1mρ = , ( )0cosh 2 2mρ = . Therefore (in natural units), 

( )
( )

1
0

0 0
0

sinh 1 0.623 1  and  ,
2

s
m mm

ρρ
ρ

−

= = = =


 

as it was previously contemplated. At the radius 0ρ , also as expected, the phase is ( )0 π 2u ρ = . Indeed, 
( )( ) ( )0cos 2 1 2 cos π 4u ρ = =  and ( )0sin 1u ρ = , ( )0 2u ρ = . The peak amplitude ( )0 1 2u = + . 

6.2. Dirac Field in ψd-Mode 
We expect that in real world the mode dψ  with the axial current looking inward will be unstable and not 
similar, even qualitatively, to the mode uψ . However, it is instructive to repeat the previous steps and consider 
only Equations (5.7) leaving aside Equations (5.5.c,d). Then most of the analysis remains the same and only 
Equations (6.1) and (6.12)-(6.16) are modified. Equations (6.1) now read as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

d
2 2cos ,   (a)

d
d

sin ,   (b)
d

d
d

ρ
ρ ρ ρ

ρ
ρ

ρ ρ ρ
ρ

= + −

= +


  


  

                    (6.18) 

and the change of the sign of   and of the slope does not affect the characteristic equation (6.3) except that we 
must replace ,cos cosu d→ − → −     in it. Then the cases C > 0 and C < 0 must be swapped in Equations 
(6.4)-(6.11) with the conclusion that constant C must be determined as ( )22C E m= − = − , and Equation (6.3) 
of characteristics of system (6.18) reads as 

( ) ( )221 cos 2sin 2 1 .− = = −                           (6.19) 

After using the constraint, ( )1 2 sin 2d− = −  , the system (6.18) becomes, 

3 2d
2 sin ,   (a)

d 2
d sin 2sin cos ,    (b)
d 2 2

d d

d d
d

ρ

ρ

= −

= =

 


 


                      (6.20) 
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and its first equation is readily integrated as 

( ) ( )
1 12 tanh cos ,  cos tanh 2 ,  sin .

2 2 2 cosh 2 
d d dmρ ρ

ρ
−  = = = 
 

  



          (6.21) 

Acting as previously, we simplify the constrain and Equation (6.20.b) to 

( ) ( )
( )
( )2

2sinh 2 2 d1 ,   sin ,
dcosh 2 cosh 2 

d

ρ
ρ

ρρ ρ
− = = + =

 
 

 
                (6.22) 

where the second equation is identical to (6.18.b) and is a consequence of the first one. When ρ →∞ , we have 
1 0− → , which is possible only when 0E m= > . Here, the condition of a particle at rest requires that 

1E m= = + . We also obtain the anticipated ( )sin 0∞ =  and ( )cos 1d ∞ = , i.e. ( ) πd ∞ = . Thus the 
solution (in natural units) 

( ) ( )
21 ,

cosh 2m
ρ

ρ
= −                              (6.23) 

can be interpreted as an isolated particle at rest with the positive energy E m= + , which is 2m higher than that 
for the similar localized static uψ -mode. Here, once again, ( ) 1∞ = . If the auto-localization is a real process 
it must favor localization not of dψ  that has a dip, but the bump of uψ . This is also a hint that an ad hoc 
created dψ  can be unstable (as it is in Nature). We elaborate on it in the last section. 

Finally, for the mode with a dip of the invariant density in its interior, the invariant density reaches its 
theoretical minimum, ( )0 0ρ = , at the inflection point 0 1s m= 5. At this point we have ( )0sin 1d ρ = , i.e. 

( )0 π 2d ρ = . Inside this radius the density R, as formally defined by (6.23), becomes negative, which is 
impossible. This can be a yet another indication that an isolated localized negative charge is unstable (at least in 
the absence of external field or of stable third bodies nearby). In other words, even being localized, it most likely 
is “an agile shallow deepening on a hill”. Indeed, in real world of a stable matter, all electrons are light and only 
weakly localized around atomic nuclei, so that normal matter is charge-neutral. The heavy inward-polarized 
particles (e.g., antiprotons) are found only rarely and they would not be detected without abundant normal 
matter nearby. These probably are “deep holes on a high hill”. Verification of this hypothesis is not a one-body 
problem and is beyond the scope of this work. 

7. Stability and an Effective Lagrangian 
The two exact solutions of the Dirac equation in one-body approximation, given by Equations (6.13)-(6.16) for 
the modes uψ , and by Equations (6.21)-(6.23) for the mode dψ , seem to be very similar to each other except 
that uψ  has a bump and dψ  has a dip of the invariant density near the center. According to the initial 
hypothesis, they correspond to positive and negative charges, respectively. The primary guess was [1, 2] that the 
former must be localized better and (if being unstable) live longer than the later, solely because the proper time 
in their interior flows the slower, the higher the invariant density is. Beyond the one-body approximation, the 
difference between these solutions is encoded mainly in the last two equations of the system (5.3) for uψ  and 
(5.5) for dψ . In the case of uψ  they do not depend on the external field Aµ , while in the case of dψ  they do. 
Furthermore, the tetrad components [ ] [ ]1 2A iA+  in Equations (5.5.c,d) oscillate with time as 2e imτ−  and can 
cause a transition from dψ  to uψ . 

The field Aµ  in the Dirac equation is an external field. Remarkably, whatever this field is, the Dirac field 
determines world time across every auto-localized object. In a sense, all solutions of Equations (5.3) and (5.5) 
with the energy E m=  are the static solutions. But it is well-known that not all static solutions are stable. 
Solutions (6.16) and (6.23) obtained in absence of an external field are both truly static since there is nothing in 
Equations (6.1) and (6.18) that could have trigger instability. To investigate the effects of instability one must 
return to Equations (5.5.c,d) and also to Equations (5.8) and (5.9), which also account for the external field DA  

 

 

5In general, none of the Dirac currents vanishes at 0= ; they all become proportional to one lightlike vector that must have both up- and 
down-components. Then nothing can identify the surface ( )12S  of constant τ  and ρ  as a two-dimensional sphere. 
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and dynamics of the sums of phases, L Rφ φ= + . The problem has two different aspects, viz., formation of a 
perturbation and its decay. 

Below, we try to specify both aspects and speculate regarding possible approaches/tools. The following ter- 
minology seems most appropriate for the discussion. Let us consider the components of uψ  and dψ  as the  
wave functions of the initial state and denote them as ,i iu d . Next, let us contract Dirac equation with the  

Hermit conjugated wave function of a “final state”, ,f fu d  and consider ...f i  as “ transition amplitudes”. 

7.1. Creation of Perturbations in Dirac Vacuum 
The problem of what may trigger the initial (and almost necessarily unstable) configuration is the most subtle 
one. Classically, one has to start with arbitrary initial field ψ  and a plausible external field A Aτ ρ±  (i.g., of 
the cosmic microwave background). In quasi-static regime, the interaction of reasonably well defined initial 
states iu  with the lightlike components A Aτ ρ±  of the vector potential is not distractive, since Equations 
(5.3.a,b) can contribute only to diagonal (with respect to the spin) matrix elements, 

( ) ( )4 ,    4 .f R R f L Li iie d A A d ie d A A dτ ρ τ ρ− + − −                    (7.1) 

These are not the transitions between up- and down-states. Regardless how weak this interaction is, it takes 
place in enormous space and for astronomical times. It can collapse to a solitary excitation just because such 
excitations exist. This mechanism can be considered as a potential source of the cosmic positron excess (for an 
extensive review see Ref. [3]). Furthermore, in Equations (5.3.c,d), which could have trigger transition from up- 
to down-states, there is no interaction terms at all. Thus, solution (6.17) of Equations (5.3), which is associated 
with a positive charge, is expected to be stable. 

7.2. Decay of an Initial Perturbation 
If an initial finite waveform is given, a reasonable theory must predict its decay into stable solitary configu- 
rations. Equations (5.5.c,d) (unlike (5.3.c,d)) prompt the interaction 

( )
( ) ( )( ) ( )

( ) ( )( )1 2 1 24 e    and  4 e  ,
d d d d
L R L Ri i

f R R f L Li iie u A iA d ie u A iA d
φ φ φ φ+ +

− + − +          (7.2) 

that affects stability of the localized inward-polarized state. In these formulae, ( )1A  and ( )2A  are the com- 
ponents of vector potential with respect to a judiciously chosen basis ( )1 2,h h  on the surface ( )12S ∈  
mapped onto 4 . The transition from unstable mode to the stable one is due to the charged Dirac currents that 
naturally oscillate as 2e imτ− , and this transition can be triggered by almost any external electromagnetic field. 
The latter can be random or regular and originate, e.g., from the cosmic background. Possibly, they can even 
stabilize the dψ  mode for a long time. This could explain the difference between an apparently stable particle 
in a storage ring and a visibly unstable particle in the natural world. 

7.3. Similarity to Magnetic Resonance? 
The matrix elements (7.2) are intimately connected with the dynamics of the spin 1/2 in magnetic field, where 
quantum and classical equations of motion coincide. Indeed, the sectional curvature6 of the spherical surface 

( )12S  (the curvature of the lines of the charged currents Θ  and Φ ), 

[ ] [ ] [ ] [ ]( ) [ ] [ ]( )2 2 2
1212 12 [3]1 2 2 1 1 22 4 2 2 ,tR e A A e A A eF eB= ∂ − ∂ − + = =                 (7.3) 

is totally due to the projection of the external magnetic field onto radial direction of the axial current. If such a 
projection is not zero, it will cause flip of the spin polarization into the outward direction of the stable uψ - 
mode. 

7.4. An Effective Lagrangian 
More accurate approach that would allow one to go beyond the lowest order approximation can probably be 

 

 

6The sectional curvature of a surface spanned by a net of the lines of the vectors 1e  and 2e  equals to the angle by which the basis 

( )1 2,e e  is rotated after moving along an infinitesimal loop within this surface. 
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based on the so-called effective Lagrangian, 1
A

Ai D mψ α ψ ρ ψ+  = −  , with the operator of Equation (2) in 
brackets. The terms depending on Aµ  in it can be viewed as the interaction with the outside sources. Retaining 
the interaction term ( 0e ≠ ), actually, leads beyond the one-body approximation. Below, solely for the purpose 
of stability analysis, we add the alien up- and/or down-components as a perturbation. The state is supposed to be 
stable if the alien components dissipate due to the interaction. It will be genuinely unstable if the interaction 
enforces dissipation of the native components. We continue to dub the configurations with 2 2 2 2

L R L Ru u d d+ > +  
as uψ  (with native u and an admixture of alien d). Those with 2 2 2 2

L R L Ru u d d+ < +  are dubbed as dψ  (with 
native d and alien u). 

Let us look at the terms associated with the charged currents aΘ  and aΦ  and consider the matrix element, 
[ ]

[ ] [ ]( ) [ ]
[ ] [ ]( )1 2

1 2 2 1 ,ab b aT b T a ieA eA ieA eAψ α ψ α ψ+  = = − − + − + 
                (7.4) 

between the configurations aψ  and bψ . Here, DA  stands for DA  when the triplet [ ] [ ] [ ]( )1 2 3, ,e e e  forms the 
right-handed system, and for DA−  when this triplet is left-handed. As an illustration, consider a particular term 
assuming native ,L Ru u  and alien ,L Rd d ; then abT  is 

[ ]
[ ] [ ]( ) [ ]

[ ] [ ]( )
[ ] [ ]( )
[ ] [ ]( )

1 2 2 1
1 2

31 2

31 2

2

2 .

b a b a

b a

b u d a

T eA i eA i

ie A iA

eA e ieµ µ
µ

ψ ψ ψ α α α α ψ

ψ ρ σ ψ

ψ ρ σ ψ

+ +
+

+ +

+ +

 = − + + − − 

= − − ⋅

= − −  

                 (7.5) 

Here, [ ] [ ]( )1 2 2iσ σ σ+ = +  is the ladder (spin-flip) operator for the projection of spin 1/2 onto the positive 
direction [ ]3e  of the right-hand oriented triplet. Let us recall that ( )3

/ 1 2u d σ= ±  are the projection 
operators onto the up-/down-components of the Dirac spinor. In detail, the action of the operator T+  is as 
follows. The ladder operator 3ρ σ +  eliminates the native components Ru  and Lu  (acting on aψ  as d ) 
and replaces them with the alien Rd  and Ld , producing ( ),0, ,0R Ld dψ ′ = − . Since dσ σ+ += , this can be 
viewed as a two-step action. Namely, the d  (inherited from connection (2.4)) filters out the Rd  and Ld  in 
their alien position, and then σ +  moves them “up”, thus filtering out the positive helicity of the native “up”- 
final state b uψ + . In other words, ( )* * 2e im

b a bR aR bL aLT u d u d τψ ψ+ −
+ ∝ − . If the state aψ  was a pure up-state uψ  

and had no components ( ),R Ld d  at all, then 0b uTψ ψ+
+ = ; this is the case of Equations (3)—the uψ  does not 

interact with the external [ ] [ ]1 2,A A . Conversely, a solitary localized state dψ  that has only ( ),R Ld d  is un- 
stable under this interaction and the charged currents will smoothen it, or even cause its decay. This reproduces 
the primitive analysis of Equations (7.1) and (7.2). 

Since the effective Lagrangian is nonlinear, there are many open questions, which cannot be addressed com- 
prehensively within the scope of the present work. For example, it is not clear a priori, which of states, initial or 
final, should determine the nonlinear terms. These issues will be discussed separately. Of highest priority are the 
questions about time scales of the processes that contribute to the transition amplitudes (2) as well as about 
stability of the uniform distribution of the invariant density. 

8. Summary 
1. The method. The most intriguing discovery of this work is that Dirac field endows spacetime with a 

matter-induced affine geometry (MIAG), which is fully determined by a real matter. This is possible solely 
because the Dirac field satisfies equations of motion. Then, and only then, the geometry is independent of a 
particular coordinate background. Possibly, this result can look strange for mathematicians. But it should not 
surprise physicists, who know very well that nothing in spacetime can be measured without localized material 
objects. So far, the method of MIAG determined the shape of a solitary localized object as spherical dynamically 
and with no conjectures. The problem of signals still has to be worked out. 

2. The results. The author’s conjecture [4] that there exists a generic mechanism of the Dirac field auto- 
localization into finite-sized positively charged Dirac particles is rigorously confirmed. The explicit solution 
representing such a particle is found. It possesses the following properties, 

(i) A solitary Dirac field waveform in free space can be stable with respect to the interaction with an external 
electromagnetic field Aµ  only if this waveform is formed solely by outward polarized components. The solu- 
tion that represents such a waveform has negative energy E m= − . 
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(ii) An apparently complementary inward-polarized solution with negative charge has positive energy E m= + . 
It cannot be stable as a strongly localized object; its instability is due to the indispensable “charged currents” Θ  
and Φ . They oscillate twice faster than stationary Dirac field, 2e iEi τ±Θ ± Φ ∝ . The corresponding tetrad 
components [ ] [ ]1 2,A A  of the vector potential affect only the inward polarized waveform, thus making it 
unstable. This “motion” is confined to within the spheres of a constant radius within a localized object7. Similar 
oscillations also show up in the theory of the Compton scattering as the t-channel transitions of electron into the 
negative energy states. These transitions are responsible for the classical part of the Compton cross-section 
(Thompson scattering). 

(iii) The difference in degree and the time duration of the localization obviously makes the localized charges 
of opposite sign unequivocally different particles. The correlation between the signs of electric charge, shape 
and polarization explains the interdependence between the discrete C- and P-transformations as a natural 
property of the simplest localized waveforms. While C qualitatively stands for the charge conjugation, P is not 
an abstract reflection symmetry in a flat space; it stands for the interchange of inward and outward. In a sense, 
these two discrete transformations do not exist separately; in this sense, CP is a physical symmetry between the 
corresponding processes8. 

3. The prospects. Our major perception of vacuum is absence of localized matter. This means that in the 
vacuum   is constant, e.g., 1= . Since Dirac equation is a hyperbolic system, the Dirac field must ex- 
perience refraction towards domains where 1> , amplifying   even more, which resembles a well-known 
nonlinear effect of self-focusing. The opposite trend must be observed in domains where 1< ; the Dirac 
waves tend to escape them. This idea can be phrased more precisely as: Identification of the sign of log  with 
the sign of electric charge leads to a dynamic picture of an empirically known charge-asymmetric world in 
which stable positively charged elementary Dirac objects are highly localized (and presumably heavy), while 
negatively charged objects tend to be poorly localized (and presumably light). This mechanism of localization is 
generic and points to the picture that stunningly resembles the today’s world. It must be worked out in greater 
details with the prospect that the issue of cosmological charge asymmetry, first addressed long ago by A.D. 
Sakharov [5], as well as the currently observed positron excess [3], could be better understood. 

Meanwhile, to validate our approach in cosmological context, two major questions must be answered, 
(i) What (if anything) can trigger a spontaneous creation of a proton alone (without an antiproton)? This is the 

most formidable problem. 
(ii) Let a pp  pair be created in an energetic process and the antiproton be thoroughly isolated from a normal 

matter (except for the cosmic background radiation). Will it live infinitely long? If not, then how will it decay? 
This question does not seem unbearable9 and can be solved by methods developed in this one and previous 
author’s papers (work in progress). 
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Appendix: Notation and Algebraic Conventions 
All observables associated with the Dirac field are bilinear forms built with the aid of Hermitian Dirac matrices 

( )i iα α
+

=  and β β += , which satisfy the commutation relations 
22  ,    0,   1,a b b a ab a aα βα α βα βη α β βα β+ = + = =                   (A.1) 

Throughout this paper, the Dirac matrices associated with a tetrad 4
ahµ ∈  are numeric and are chosen in 

the spinor representation, 

0 0 00
,       ,       

0 00
i ii i

i i

τ τ
α α σ

τ τ
    

= = =     −     

1
1

 

1 2 3

0 0 0
,  ,  .

0 0 0
i

i
ρ ρ ρ

− ⋅     
= = =     ⋅ −     

1 1 1
1 1 1

                       (A.2) 

where iτ  are the 2 2×  Pauli matrices. 
If the Dirac spinor is written down in terms of modules and phases of its components, 

( )
( )
( )
( )

exp

exp
,

exp

exp

u
R R

d
R R

u
L L

d
L L

u i

d i

u i

d i

φ

φ
ψ

φ

φ

 
 
 
 =
 
 
 
  

                                  (A.3) 

then, with the Dirac matrices (A.7), the scalars and the four Dirac currents have the following components, 

( ) ( )
( ) ( )

2 2 2 2

2 2 2 2

2 cos 2 cos
,

2 sin 2 sin

L L R R

u d u d
L L L L R R R Ra

u d u d
L L L L R R R R

L L R R

u d u d

u d u d
j

u d u d

u d u d

φ φ φ φ

φ φ φ φ

 + + +
 

− − − 
=  
− − + − 
 

− − +  

 

( ) ( )
( ) ( )

2 2 2 2

2 2 2 2

2 cos 2 cos
,

2 sin 2 sin

L L R R

u d u d
L L L L R R R Ra

u d u d
L L L L R R R R

L L R R

u d u d

u d u d

u d u d

u d u d

φ φ φ φ

φ φ φ φ

 + − −
 

− + − 
=  
− − − − 
 

− + −  

                     (A.4) 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

2 cos 2 cos

2 cos 2 cos
,

2 sin 2 sin

2 cos 2 cos

u d u d
L R L R L R R L

u u d d
L R L R L R R La

u u d d
L R L R L R R L

u d u d
L R L R L R R L

u d d u

u u d d

u u d d

u d d u

φ φ φ φ

φ φ φ φ

φ φ φ φ

φ φ φ φ

 − + + +
 
 + − +
 Θ =
 − + − + 
 − + − +  

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

2 sin 2 sin

2 sin 2 sin
,

2 cos 2 cos

2 sin 2 sin

u d u d
L R L R L R R L

u u d d
L R L R L R R La

u u d d
L R L R L R R L

u d u d
L R L R L R R L

u d d u

u u d d

u u d d

u d d u

φ φ φ φ

φ φ φ φ

φ φ φ φ

φ φ φ φ

 − + + +
 
 + − +
 Φ =
 + + + 
 − + − +  

                     (A.5) 
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( ) ( )2 e e e , 
u u d d
L R L Ri i i

R L R Li u u d d
φ φ φ φ− − + = + = 

 
    

( )2 2 2 2 24 2 cos .u u d d
R L R L R L R L L R L Ru u d d u u d d φ φ φ φ = + + − − +                (A.6) 
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